Pub Date : 2013-01-01Epub Date: 2013-02-28DOI: 10.1155/2013/230142
Ndatsu Yakubu, Ganiyu Oboh, Amuzat Aliyu Olalekan
The antioxidant and hepatoprotective properties of tofu using acetaminophen to induce liver damage in albino rats were evaluated. Tofus were prepared using calcium chloride, alum, and steep water as coagulants. The polyphenols of tofu were extracted and their antioxidant properties were determined. The weight gain and feed intake of the rats were measured. The analysis of serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) activities and the concentrations of albumin, total protein, cholesterol, and bilirubin were analyzed. The result reveals that the antioxidant property of both soluble and bound polyphenolic extracts was significantly higher in all tofus, but the steep water coagulated tofu was recorded higher. Rats fed with various tofus and acetaminophen had their serum ALP, ALT, AST, and LDH activities; total cholesterol; and bilirubin levels significantly (P < 0.05) reduced, and total protein and albumin concentrations increased when compared with basal diet and acetaminophen administered group. Therefore, all tofus curdled with various coagulants could be used to prevent liver damage caused by oxidative stress.
{"title":"Antioxidant and Hepatoprotective Properties of Tofu (Curdle Soymilk) against Acetaminophen-Induced Liver Damage in Rats.","authors":"Ndatsu Yakubu, Ganiyu Oboh, Amuzat Aliyu Olalekan","doi":"10.1155/2013/230142","DOIUrl":"10.1155/2013/230142","url":null,"abstract":"<p><p>The antioxidant and hepatoprotective properties of tofu using acetaminophen to induce liver damage in albino rats were evaluated. Tofus were prepared using calcium chloride, alum, and steep water as coagulants. The polyphenols of tofu were extracted and their antioxidant properties were determined. The weight gain and feed intake of the rats were measured. The analysis of serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) activities and the concentrations of albumin, total protein, cholesterol, and bilirubin were analyzed. The result reveals that the antioxidant property of both soluble and bound polyphenolic extracts was significantly higher in all tofus, but the steep water coagulated tofu was recorded higher. Rats fed with various tofus and acetaminophen had their serum ALP, ALT, AST, and LDH activities; total cholesterol; and bilirubin levels significantly (P < 0.05) reduced, and total protein and albumin concentrations increased when compared with basal diet and acetaminophen administered group. Therefore, all tofus curdled with various coagulants could be used to prevent liver damage caused by oxidative stress.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":" ","pages":"230142"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40228636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-02-13DOI: 10.1155/2013/264793
Nanda Kumar Yellapu, Kalpana Kandlapalli, Koteswara Rao Valasani, P V G K Sarma, Bhaskar Matcha
Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ -turns, decreased β -turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å(2) to 1246.353 Å(2). Molecular docking study revealed variation in docking scores (intact = -12.199 and mutated = -8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition.
{"title":"Structural Variations of Human Glucokinase Glu256Lys in MODY2 Condition Using Molecular Dynamics Study.","authors":"Nanda Kumar Yellapu, Kalpana Kandlapalli, Koteswara Rao Valasani, P V G K Sarma, Bhaskar Matcha","doi":"10.1155/2013/264793","DOIUrl":"https://doi.org/10.1155/2013/264793","url":null,"abstract":"<p><p>Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ -turns, decreased β -turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å(2) to 1246.353 Å(2). Molecular docking study revealed variation in docking scores (intact = -12.199 and mutated = -8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2013 ","pages":"264793"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/264793","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31295119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-02-13DOI: 10.1155/2013/431315
Nadimpalli Ravi S Varma, Haryanti Toosa, Hooi Ling Foo, Noorjahan Banu Mohamed Alitheen, Mariana Nor Shamsudin, Ali S Arbab, Khatijah Yusoff, Raha Abdul Rahim
In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71) on the cell surface of L. lactis. The viral capsid protein (VP1) gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis. We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides and proteins on the surface of L. lactis to be useful as a delivery vehicle.
{"title":"Display of the Viral Epitopes on Lactococcus lactis: A Model for Food Grade Vaccine against EV71.","authors":"Nadimpalli Ravi S Varma, Haryanti Toosa, Hooi Ling Foo, Noorjahan Banu Mohamed Alitheen, Mariana Nor Shamsudin, Ali S Arbab, Khatijah Yusoff, Raha Abdul Rahim","doi":"10.1155/2013/431315","DOIUrl":"https://doi.org/10.1155/2013/431315","url":null,"abstract":"<p><p>In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71) on the cell surface of L. lactis. The viral capsid protein (VP1) gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis. We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides and proteins on the surface of L. lactis to be useful as a delivery vehicle.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2013 ","pages":"431315"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/431315","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31295121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karin Vega, Gretty K Villena, Victor H Sarmiento, Yvette Ludeña, Nadia Vera, Marcel Gutiérrez-Correa
Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL(-1)) with higher specific productivities (>30 U g(-1) h(-1)). Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry.
产生碱性纤维素酶的真菌是从秘鲁未受干扰的雨林土壤中分离出来的。采用土壤稀释板法在富集的选择性培养基上对快速生长的纤维素分解真菌进行计数和分离。以CMC为底物,在不同pH值下进行清板实验,最终从50个不同形态菌落中筛选出11个。11株菌株在液体培养中均能产生纤维素酶,在碱性pH值下活性均无明显下降,表明它们是真正的碱性纤维素酶产生菌。Aspergillus sp. LM-HP32、Penicillium sp. LM-HP33和Penicillium sp. LM-HP37是FP纤维素酶的最佳产生菌(>3 U mL(-1)),比产率>30 U g(-1) h(-1)。发现了三种适合开发碱性纤维素酶生产工艺的菌株。亚马逊雨林的土壤是工业真菌的良好来源,具有特殊的特征。本研究的结果具有商业和生物学意义。碱性纤维素酶可用于纺织工业牛仔布加工的抛光和洗涤。
{"title":"Production of alkaline cellulase by fungi isolated from an undisturbed rain forest of peru.","authors":"Karin Vega, Gretty K Villena, Victor H Sarmiento, Yvette Ludeña, Nadia Vera, Marcel Gutiérrez-Correa","doi":"10.1155/2012/934325","DOIUrl":"https://doi.org/10.1155/2012/934325","url":null,"abstract":"<p><p>Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL(-1)) with higher specific productivities (>30 U g(-1) h(-1)). Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2012 ","pages":"934325"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/934325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9368590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Secil Berna Kuzu, Hatice Korkmaz Güvenmez, Aziz Akin Denizci
This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni(2+) (32%), K(+) (44%), and Cu(2+) (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg(2+) (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer.
{"title":"Production of a Thermostable and Alkaline Chitinase by Bacillus thuringiensis subsp. kurstaki Strain HBK-51.","authors":"Secil Berna Kuzu, Hatice Korkmaz Güvenmez, Aziz Akin Denizci","doi":"10.1155/2012/135498","DOIUrl":"https://doi.org/10.1155/2012/135498","url":null,"abstract":"<p><p>This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni(2+) (32%), K(+) (44%), and Cu(2+) (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg(2+) (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2012 ","pages":"135498"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/135498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9368606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominic W S Wong, Victor J Chan, Amanda A McCormack, Ján Hirsch, Peter Biely
The gene encoding Schizophyllum commune glucuronoyl esterase was identified in the scaffold 17 of the genome, containing two introns of 50 bp and 48 bp, with a transcript sequence of 1179 bp. The gene was synthesized and cloned into Pichia pastoris expression vector pGAPZα to achieve constitutive expression and secretion of the recombinant enzyme in soluble active form. The purified protein was 53 kD with glycosylation and had an acidic pI of 3.7. Activity analysis on several uronic acids and their derivatives suggests that the enzyme recognized only esters of 4-O-methyl-D-glucuronic acid derivatives, even with a 4-nitrophenyl aglycon but did not hydrolyze the ester of D-galacturonic acid. The kinetic values were K(m) 0.25 mM, V(max) 16.3 μM·min(-1), and k(cat) 9.27 s(-1) with 4-nitrophenyl 2-O-(methyl 4-O-methyl-α-D-glucopyranosyluronate)-β-D-xylopyranoside as the substrate.
分裂藻葡糖醛酸酯酶编码基因位于分裂藻基因组的第17位,包含50 bp和48 bp的两个内含子,转录序列为1179 bp。合成该基因并将其克隆到毕赤酵母表达载体pGAPZα中,实现重组酶以可溶性活性形式的组成性表达和分泌。经糖基化纯化的蛋白分子量为53 kD,酸性pI为3.7。对几种糖醛酸及其衍生物的活性分析表明,该酶只能识别4- o -甲基- d -葡萄糖醛酸衍生物的酯类,即使与4-硝基苯糖醛酸也不能水解d -半乳糖醛酸的酯类。以4-硝基苯基2-O-(甲基4- o -甲基-α- d -葡萄糖醛酸盐)-β- d -木吡喃苷为底物,动力学值分别为K(m) 0.25 mM, V(max) 16.3 μM·min(-1)和K(cat) 9.27 s(-1)。
{"title":"Functional Cloning and Expression of the Schizophyllum commune Glucuronoyl Esterase Gene and Characterization of the Recombinant Enzyme.","authors":"Dominic W S Wong, Victor J Chan, Amanda A McCormack, Ján Hirsch, Peter Biely","doi":"10.1155/2012/951267","DOIUrl":"https://doi.org/10.1155/2012/951267","url":null,"abstract":"<p><p>The gene encoding Schizophyllum commune glucuronoyl esterase was identified in the scaffold 17 of the genome, containing two introns of 50 bp and 48 bp, with a transcript sequence of 1179 bp. The gene was synthesized and cloned into Pichia pastoris expression vector pGAPZα to achieve constitutive expression and secretion of the recombinant enzyme in soluble active form. The purified protein was 53 kD with glycosylation and had an acidic pI of 3.7. Activity analysis on several uronic acids and their derivatives suggests that the enzyme recognized only esters of 4-O-methyl-D-glucuronic acid derivatives, even with a 4-nitrophenyl aglycon but did not hydrolyze the ester of D-galacturonic acid. The kinetic values were K(m) 0.25 mM, V(max) 16.3 μM·min(-1), and k(cat) 9.27 s(-1) with 4-nitrophenyl 2-O-(methyl 4-O-methyl-α-D-glucopyranosyluronate)-β-D-xylopyranoside as the substrate.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2012 ","pages":"951267"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/951267","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9375001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The combination of medium ingredients has a profound influence on the metabolic pathways running in the microorganism which regulates the production of numerous metabolites. Glucose isomerase (GI), an enzyme with huge potential in the market, can isomerise glucose into fructose. GI is used widely for the production of High-Fructose Corn Syrup (HFCS). HFCS is used as a sweetener in food and pharmaceutical industries. Streptomyces are well-known producers of numerous enzymes including glucose isomerase. An array of 75 isolates was screened for the production of glucose isomerase. The isolate Streptomyces sp. SB-P1 was found to produce maximum amount of extracellular GI. Sucrose and raffinose among pure carbon sources and corn cob and wheat husk among crude agro residues were found to yield high enzyme titers. Potassium nitrate among pure nitrogen sources and soy residues among crude sources gave maximum production. Quantitative effect of carbon, nitrogen, and inducer on GI was also determined. Plackett-Burman design was used to study the effect of different medium ingredients. Sucrose and xylose as carbon sources and peptone and soy residues as nitrogen sources proved to be beneficial for GI production.
{"title":"Optimization of Fermentation Medium for the Production of Glucose Isomerase Using Streptomyces sp. SB-P1.","authors":"Sheetal Bhasin, H A Modi","doi":"10.1155/2012/874152","DOIUrl":"https://doi.org/10.1155/2012/874152","url":null,"abstract":"<p><p>The combination of medium ingredients has a profound influence on the metabolic pathways running in the microorganism which regulates the production of numerous metabolites. Glucose isomerase (GI), an enzyme with huge potential in the market, can isomerise glucose into fructose. GI is used widely for the production of High-Fructose Corn Syrup (HFCS). HFCS is used as a sweetener in food and pharmaceutical industries. Streptomyces are well-known producers of numerous enzymes including glucose isomerase. An array of 75 isolates was screened for the production of glucose isomerase. The isolate Streptomyces sp. SB-P1 was found to produce maximum amount of extracellular GI. Sucrose and raffinose among pure carbon sources and corn cob and wheat husk among crude agro residues were found to yield high enzyme titers. Potassium nitrate among pure nitrogen sources and soy residues among crude sources gave maximum production. Quantitative effect of carbon, nitrogen, and inducer on GI was also determined. Plackett-Burman design was used to study the effect of different medium ingredients. Sucrose and xylose as carbon sources and peptone and soy residues as nitrogen sources proved to be beneficial for GI production.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2012 ","pages":"874152"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/874152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9368102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There is increasing interest in natural food colorants like carotenoids and anthocyanins with functional properties. Red sorghum bran is known as a rich source for anthocyanins. The anthocyanin contents extracted from red sorghum bran were evaluated by biochemical analysis. Among the three solvent system used, the acidified methanol extract showed a highest anthocyanin content (4.7 mg/g of sorghum bran) followed by methanol (1.95 mg/g) and acetone (1 mg/g). Similarly, the highest total flavonoids (143 mg/g) and total phenolic contents (0.93 mg/g) were obtained in acidified methanol extracts than methanol and acetone extracts. To study the health benefits of anthocyanin from red sorghum bran, the total antioxidant activity was evaluated by biochemical and molecular methods. The highest antioxidant activity was observed in acidified methanol extracts of anthocyanin in dose-dependent manner. The antioxidant activity of the red sorghum bran was directly related to the total anthocyanin found in red sorghum bran.
{"title":"DNA Damage Protecting Activity and Free Radical Scavenging Activity of Anthocyanins from Red Sorghum (Sorghum bicolor) Bran.","authors":"P Suganya Devi, M Saravana Kumar, S Mohan Das","doi":"10.1155/2012/258787","DOIUrl":"https://doi.org/10.1155/2012/258787","url":null,"abstract":"<p><p>There is increasing interest in natural food colorants like carotenoids and anthocyanins with functional properties. Red sorghum bran is known as a rich source for anthocyanins. The anthocyanin contents extracted from red sorghum bran were evaluated by biochemical analysis. Among the three solvent system used, the acidified methanol extract showed a highest anthocyanin content (4.7 mg/g of sorghum bran) followed by methanol (1.95 mg/g) and acetone (1 mg/g). Similarly, the highest total flavonoids (143 mg/g) and total phenolic contents (0.93 mg/g) were obtained in acidified methanol extracts than methanol and acetone extracts. To study the health benefits of anthocyanin from red sorghum bran, the total antioxidant activity was evaluated by biochemical and molecular methods. The highest antioxidant activity was observed in acidified methanol extracts of anthocyanin in dose-dependent manner. The antioxidant activity of the red sorghum bran was directly related to the total anthocyanin found in red sorghum bran.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2012 ","pages":"258787"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/258787","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10272505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-06-20DOI: 10.1155/2012/587041
O P Abioye, P Agamuthu, A R Abdul Aziz
Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day(-1)) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day(-1)) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration.
{"title":"Biodegradation of used motor oil in soil using organic waste amendments.","authors":"O P Abioye, P Agamuthu, A R Abdul Aziz","doi":"10.1155/2012/587041","DOIUrl":"https://doi.org/10.1155/2012/587041","url":null,"abstract":"<p><p>Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day(-1)) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day(-1)) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":" ","pages":"587041"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/587041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30856175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the capacity of PAH degradation. The enzymes involved in the degradation of PAHs are ligninolytic and include lignin peroxidase, versatile peroxidase, Mn-peroxidase, and laccase. This paper summarizes the data available on PAH degradation by fungi belonging to different ecophysiological groups (white-rot and litter-decomposing fungi) under submerged cultivation and during mycoremediation of PAH-contaminated soils. The role of the ligninolytic enzymes of these fungi in PAH degradation is discussed.
{"title":"Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons.","authors":"Natalia N Pozdnyakova","doi":"10.1155/2012/243217","DOIUrl":"https://doi.org/10.1155/2012/243217","url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the capacity of PAH degradation. The enzymes involved in the degradation of PAHs are ligninolytic and include lignin peroxidase, versatile peroxidase, Mn-peroxidase, and laccase. This paper summarizes the data available on PAH degradation by fungi belonging to different ecophysiological groups (white-rot and litter-decomposing fungi) under submerged cultivation and during mycoremediation of PAH-contaminated soils. The role of the ligninolytic enzymes of these fungi in PAH degradation is discussed.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2012 ","pages":"243217"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/243217","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9375106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}