As part of the December issue, Breathe presents a podcast of early career members' highlights from the ERS Congress. Chief Editor Brian Kent discusses highlights from the ERS Congress with Joana Cruz, Siyu Dai and Sarah Alami.
As part of the December issue, Breathe presents a podcast of early career members' highlights from the ERS Congress. Chief Editor Brian Kent discusses highlights from the ERS Congress with Joana Cruz, Siyu Dai and Sarah Alami.
Pleural tuberculosis (TB) is a common entity with similar epidemiological characteristics to pulmonary TB. It represents a spectrum of disease that can variably self-resolve or progress to TB empyema with severe sequelae such as chronic fibrothorax or empyema necessitans. Coexistence of and progression to pulmonary TB is high. Diagnosis is challenging, as pleural TB is paucibacillary in most cases, but every effort should be made to obtain microbiological diagnosis, especially where drug resistance is suspected. Much attention has been focussed on adjunctive investigations to support diagnosis, but clinicians must be aware that apparent diagnostic accuracy is affected both by the underlying TB prevalence in the population, and by the diagnostic standard against which the specified investigation is being evaluated. Pharmacological treatment of pleural TB is similar to that of pulmonary TB, but penetration of the pleural space may be suboptimal in complicated effusions. Evidence for routine drainage is limited, but evacuation of the pleural space is indicated in complicated disease.
Educational aims: To demonstrate that pleural TB incorporates a wide spectrum of disease, ranging from self-resolving lymphocytic effusions to severe TB empyema with serious sequelae.To emphasise the high coexistence of pulmonary TB with pleural TB, and the importance of obtaining sputum for culture (induced if necessary) in all cases.To explore the significant diagnostic challenges posed by pleural TB, and consequently the frequent lack of information about drug sensitivity prior to initiating treatment.To highlight the influence of underlying TB prevalence in the population on the diagnostic accuracy of adjunctive investigations for the diagnosis of pleural TB.To discuss concerns around penetration of anti-TB medications into the pleural space and how this can influence decisions around treatment duration in practice.
Pleural infection remains a medical challenge. Although closed tube drainage revolutionised treatment in the 19th century, pleural infection still poses a significant health burden with increasing incidence. Diagnosis presents challenges due to non-specific clinical presenting features. Imaging techniques such as chest radiographs, thoracic ultrasound and computed tomography scans aid diagnosis. Pleural fluid analysis, the gold standard, involves assessing gross appearance, biochemical markers and microbiology. Novel biomarkers such as suPAR (soluble urokinase plasminogen activator receptor) and PAI-1 (plasminogen activator inhibitor-1) show promise in diagnosis and prognosis, and microbiology demonstrates complex microbial diversity and is associated with outcomes. The management of pleural infection involves antibiotic therapy, chest drain insertion, intrapleural fibrinolytic therapy and surgery. Antibiotic therapy relies on empirical broad-spectrum antibiotics based on local policies, infection setting and resistance patterns. Chest drain insertion is the mainstay of management, and use of intrapleural fibrinolytics facilitates effective drainage. Surgical interventions such as video-assisted thoracoscopic surgery and decortication are considered in cases not responding to medical therapy. Risk stratification tools such as the RAPID (renal, age, purulence, infection source and dietary factors) score may help guide tailored management. The roles of other modalities such as local anaesthetic medical thoracoscopy and intrapleural antibiotics are debated. Ongoing research aims to improve outcomes by matching interventions with risk profile and to better understand the development of disease.
Care of a simple pneumothorax in a paediatric patient is often anything but simple, and a refractory and complex pneumothorax requires thoughtful and deliberate care https://bit.ly/3NFAk9S.
Over the past 20 years, the concept of asthma weaning plans on discharge after an attack has crept into common practice, although the precise origin of these plans is unclear. High use of short-acting β2-agonists (SABAs) may result in tolerance to their bronchodilator effects, thus diminishing their efficacy, particularly when they are most needed at the time of an acute attack. Furthermore, key warning signs of a deterioration in asthma control may be masked and the weaning plan may encourage the over-use and over-reliance on SABAs. Side-effects from over-use may also occur, including lactic acidosis, downregulation of the β2-adrenoreceptor, increased allergen response and pro-inflammatory effects. The need for asthma education at discharge, a personal asthma action plan and vigilance about prescribing and ensuring adherence to maintenance therapy are definitely important. However, the current authors conclude that the benefit of prescribing regular salbutamol (up to 10 puffs every 4 h) at discharge after an acute asthma attack is a myth, and a very dangerous one.
We support the World Health Organization (WHO) recent decision to create a council to accelerate the development of a tuberculosis (TB) vaccine. With over 10 million new cases and 1.4 million deaths in 2020 alone, new and improved vaccines are urgently needed. Recent advancements in TB vaccine research offer hope, but a lack of funding, coordination and understanding of immune responses have impeded progress. A TB Vaccine Accelerator Council aims to bring together resources and expertise to overcome these obstacles and speed up development. Support and investment in research are crucial to ultimately eradicate TB and achieve the WHO goal of ending TB by 2035.
Pulmonary embolism (PE) is a common disease associated with high morbidity and mortality. Currently, guidelines recommend systemic thrombolysis in patients with haemodynamic instability (high-risk PE) or patients with intermediate-high-risk PE with haemodynamic deterioration. Nevertheless, more than half of high-risk PE patients do not receive systemic thrombolysis due to a perceived increased risk of bleeding. In these cases, percutaneous catheter-directed therapy (CDT) or surgical embolectomy should be considered. CDT has emerged and appears to be an effective alternative in treating PE, with a hypothetical lower risk of bleeding than systemic thrombolysis, acting directly in the thrombus with a much lower dose of thrombolytic drug or even without thrombolytic therapy. CDT techniques include catheter-directed clot aspiration or fragmentation, mechanical embolectomy, local thrombolysis, and combined pharmaco-mechanical approaches. A few observational prospective studies have demonstrated that CDT improves right ventricular function with a low rate of haemorrhage. Nevertheless, the evidence from randomised controlled trials is scarce. Here we review different scenarios where CDT may be useful and trials ongoing in this field. These results may change the upcoming guidelines for management and treatment of PE, establishing CDT as a recommended treatment in patients with acute intermediate-high-risk PE.
This issue of Breathe examines both the integral role multidisciplinary care has in managing respiratory disease, and the changing faces of the respiratory clinicians providing that care. https://bit.ly/47MsW5R.