We previously demonstrated that transcutaneous CO2 application promotes muscle fiber-type switching, fracture healing, and osteogenesis by increasing blood flow and angiogenesis. Here, we aimed to investigate the preventive effects of transcutaneous CO2 application on disuse osteoporosis and muscle atrophy in a rat hindlimb suspension model. Eleven-week-old male Sprague-Dawley rats were divided into hindlimb suspension (HS), HS with transcutaneous CO2 application (HSCO2), and control groups. HSCO2 rats were administered transcutaneous 100 % CO2 gas in their bilateral hindlimbs, five times a week for 20 min. After 3 weeks, we harvested the gastrocnemius, femur, and tibia for assessment. Histological analysis revealed a significant decrease in the gastrocnemius myofiber cross-sectional area in HS rats compared to the control rats, whereas HSCO2 rats exhibited a significant increase compared to HS rats. Micro-computed tomography showed significant bone atrophy in the trabecular and cortical bones of the femur in HS rats compared to those of the control rats, whereas significant improvement was noted in HSCO2 rats. Histological analysis of the proximal tibia revealed more marrow adipose tissue in the HS rats than in the control rats. However, in the HSCO2 rats, fewer marrow adipose tissue and osteoclasts were observed. Moreover, HSCO2 rats had more osteoblasts and higher expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and vascular endothelial growth factor (VEGF) than the HS rats. The gastrocnemius and distal femur of HSCO2 rats also exhibited elevated PGC-1α and VEGF expression and upregulation of the myogenesis markers and osteogenesis markers compared to those of HS rats. This treatment effectively prevented disuse osteoporosis and muscle atrophy by promoting local angiogenesis and blood flow. PGC-1α is crucial for promoting this angiogenic pathway. Transcutaneous CO2 application may be a novel preventive procedure for disuse osteoporosis and muscle atrophy, complementing medication and rehabilitation.
Prior studies demonstrate that muscle and bone health are integrally related, and both independently impact orthopedic surgery outcomes. However, relationships between bone density, in vivo microarchitecture, and muscle area have not been previously investigated in orthopedic surgery patients. This study assessed associations between psoas cross sectional area (CSA), bone mineral density (BMD), and microstructure in a cohort undergoing spine fusion. Pre-operatively, bilateral psoas CSA was measured on axial lumbar spine CT in the L3-L4 disc space. To adjust for body size, Psoas Muscle Index (PMI) was calculated (CSA divided by the square of patient height). High resolution peripheral quantitative CT (HR-pQCT, XtremeCT2) assessed volumetric BMD (vBMD), cortical (Ct) and trabecular (Tb) microarchitecture at the distal radius and tibia. Areal BMD (aBMD) was measured by DXA at the lumbar spine (LS), total hip (TH), femoral neck (FN), and the 1/3 radius (1/3R). Pearson correlations related psoas CSA and bone imaging parameters before and after correcting for height and weight. Among 88 patients included, mean age was 63 ± 12 years, BMI was 28 ± 7 kg/m2, 47 (53 %) were female. Larger psoas CSA was associated with higher vBMD, greater Ct thickness and better Tb microarchitecture (higher Tb number and lower Tb separation) at the tibia and radius. Larger psoas CSA was also associated with greater aBMD at TH and FN bilaterally and 1/3R (r 0.33 to 0.61; p < 0.002 for all comparisons). Psoas CSA was not associated with aBMD at the LS. Similar results were observed when relating PMI, and adjusting for age, height and weight to HR-pQCT and DXA measurements. Investigation of subgroups by sex demonstrated that relationships were similar magnitude among women but not the men. Patients who underwent primary compared to revision spine surgery had similar associations. Our results demonstrate a link between psoas muscle size and peripheral bone microarchitecture among patients undergoing posterior lumbar spinal fusion. Given the importance of both muscle and skeletal integrity to the success of spine surgery, further study regarding the associations between measurements of psoas muscle, bone microarchitecture, and surgical outcomes is warranted.
Mitochondrial Permeability Transition Pore (MPTP) and its key positive regulator, Cyclophilin D (CypD), control activity of cell oxidative metabolism important for differentiation of stem cells of various lineages including osteogenic lineage. Our previous work (Sautchuk et al., 2022) showed that CypD gene, Ppif, is transcriptionally repressed during osteogenic differentiation by regulatory Smad transcription factors in BMP canonical pathway, a major driver of osteoblast (OB) differentiation. Such a repression favors closure of the MPTP, priming OBs to higher usage of mitochondrial oxidative metabolism. The physiological role of CypD/MPTP regulation was demonstrated by its inverse correlation with BMP signaling in aging and bone fracture healing in addition to the negative effect of CypD gain-of-function (GOF) on bone maintenance. Here we show evidence that CypD GOF also negatively affects bone development and growth as well as fracture healing in adult mice. Developing craniofacial and long bones presented with delayed ossification and decreased growth rate, respectively, whereas in fracture, bony callus volume was diminished. Given that Genome Wide Association Studies showed that PPIF locus is associated with both body height and bone mineral density, our new data provide functional evidence for the role of PPIF gene product, CypD, and thus MPTP in bone growth and repair.
This study aimed to investigate the association between biological age acceleration and osteoporosis (OP) risk in middle-aged and older adults using data from the National Health and Nutrition Examination Survey (NHANES). The research focused on analyzing the relationship between two biological aging metrics, Klemera-Doubal Method Age (KDMAge) and Phenotypic Age (PhenoAge), and OP risk.
The study analyzed data from NHANES, which included 6550 participants aged 50 and above from survey cycles 2005–2010 and 2017–2018. Linear and logistic regression were used to investigate the relationship between biological age acceleration (KDMAgeAccel and PhenoAgeAccel) and OP. Subgroup analysis was performed by age, gender and other factors. Multivariable Cox regression analysis yielded Hazard Ratios (HRs) relating biological age acceleration to mortality were evaluated. The study also considered the mediating roles of body mass index (BMI).
KDMAgeAccel (odds ratio [OR] = 2.34, 95 % CI, 1.72–3.18) and PhenoAgeAccel (OR = 2.03, 95 % CI, 1.48–2.78) were significantly associated with increased OP risk and reduced bone mineral density (BMD). Specifically, higher KDMAgeAccel and PhenoAgeAccel were linked to higher OP prevalence and lower BMD at multiple sites. Subgroup analyses indicated that the association between accelerated biological age acceleration and OP risk was consistent across different demographics. Mediation analysis revealed that BMI partially mediated the relationship between accelerated biological age and OP, although other mechanisms are likely involved. Statistical analysis indicated that individuals with higher biological age metrics had increased mortality risk related to OP.
The findings suggest that accelerated biological age is a robust predictor of OP risk and related mortality. KDMAgeAccel and PhenoAgeAccel could serve as valuable biomarkers for identifying individuals at high risk for OP, guiding preventive strategies.