Consuming video content poses significant challenges for many screen magnifier users, which is the "go to" assistive technology for people with low vision. While screen magnifier software could be used to achieve a zoom factor that would make the content of the video visible to low-vision users, it is oftentimes a major challenge for these users to navigate through videos. Towards making videos more accessible for low-vision users, we have developed the SViM video magnifier system [6]. Specifically, SViM consists of three different magnifier interfaces with easy-to-use means of interactions. All three interfaces are driven by visual saliency as a guided signal, which provides a quantification of interestingness at the pixel-level. Saliency information, which is provided as a heatmap is then processed to obtain distinct regions of interest. These regions of interests are tracked over time and displayed using an easy-to-use interface. We present a description of our overall design and interfaces.
Wayfinding is a major challenge for visually impaired travelers, who generally lack access to visual cues such as landmarks and informational signs that many travelers rely on for navigation. Indoor wayfinding is particularly challenging since the most commonly used source of location information for wayfinding, GPS, is inaccurate indoors. We describe a computer vision approach to indoor localization that runs as a real-time app on a conventional smartphone, which is intended to support a full-featured wayfinding app in the future that will include turn-by-turn directions. Our approach combines computer vision, existing informational signs such as Exit signs, inertial sensors and a 2D map to estimate and track the user's location in the environment. An important feature of our approach is that it requires no new physical infrastructure. While our approach requires the user to either hold the smartphone or wear it (e.g., on a lanyard) with the camera facing forward while walking, it has the advantage of not forcing the user to aim the camera towards specific signs, which would be challenging for people with low or no vision. We demonstrate the feasibility of our approach with five blind travelers navigating an indoor space, with localization accuracy of roughly 1 meter once the localization algorithm has converged.