L. Kahouadji, Fuyue Liang, J. Valdés, Seungwon Shin, J. Chergui, D. Juric, R. Craster, O. Matar
Abstract We consider the mixing dynamics of an air–liquid system driven by the rotation of a pitched blade turbine (PBT) inside an open, cylindrical tank. To examine the flow and interfacial dynamics, we use a highly parallelised implementation of a hybrid front-tracking/level-set method that employs a domain-decomposition parallelisation strategy. Our numerical technique is designed to capture faithfully complex interfacial deformation, and changes of topology, including interface rupture and dispersed phase coalescence. As shown via transient, a three-dimensional (3-D) LES (large eddy simulation) using a Smagorinsky–Lilly turbulence model, the impeller induces the formation of primary vortices that arise in many idealised rotating flows as well as several secondary vortical structures resembling Kelvin–Helmholtz, vortex breakdown, blade tip vortices and end-wall corner vortices. As the rotation rate increases, a transition to ‘aeration’ is observed when the interface reaches the rotating blades leading to the entrainment of air bubbles into the viscous fluid and the creation of a bubbly, rotating, free surface flow. The mechanisms underlying the aeration transition are probed as are the routes leading to it, which are shown to exhibit a strong dependence on flow history.
{"title":"The transition to aeration in turbulent two-phase mixing in stirred vessels","authors":"L. Kahouadji, Fuyue Liang, J. Valdés, Seungwon Shin, J. Chergui, D. Juric, R. Craster, O. Matar","doi":"10.1017/flo.2022.24","DOIUrl":"https://doi.org/10.1017/flo.2022.24","url":null,"abstract":"Abstract We consider the mixing dynamics of an air–liquid system driven by the rotation of a pitched blade turbine (PBT) inside an open, cylindrical tank. To examine the flow and interfacial dynamics, we use a highly parallelised implementation of a hybrid front-tracking/level-set method that employs a domain-decomposition parallelisation strategy. Our numerical technique is designed to capture faithfully complex interfacial deformation, and changes of topology, including interface rupture and dispersed phase coalescence. As shown via transient, a three-dimensional (3-D) LES (large eddy simulation) using a Smagorinsky–Lilly turbulence model, the impeller induces the formation of primary vortices that arise in many idealised rotating flows as well as several secondary vortical structures resembling Kelvin–Helmholtz, vortex breakdown, blade tip vortices and end-wall corner vortices. As the rotation rate increases, a transition to ‘aeration’ is observed when the interface reaches the rotating blades leading to the entrainment of air bubbles into the viscous fluid and the creation of a bubbly, rotating, free surface flow. The mechanisms underlying the aeration transition are probed as are the routes leading to it, which are shown to exhibit a strong dependence on flow history.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43822059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anshul S. Tomar, Kristina M. Kamensky, R. Mejía-Alvarez, A. Hellum, R. Mukherjee
Abstract Bernoulli pads can create a significant normal force on an object without contact. The radial outflow which creates this force also imposes a significant shear force on the object. Better understanding this shear force can improve pad designs in order to mitigate material deformation and damage, or allow the pads to be used as shear-based cleaning implements. Here, we use computational fluid dynamics to explore the parameter space and show a power-law relationship between the fluid power at the pad inlet and the maximum shear stress. These simulations are validated by a particle tracking velocimetry experiment. A relationship between the maximum shear stress and the inlet Reynolds number is provided, and some implications of the observed scaling relationships are explored.
{"title":"A scaling relationship between power and shear for Bernoulli pads at equilibrium","authors":"Anshul S. Tomar, Kristina M. Kamensky, R. Mejía-Alvarez, A. Hellum, R. Mukherjee","doi":"10.1017/flo.2022.23","DOIUrl":"https://doi.org/10.1017/flo.2022.23","url":null,"abstract":"Abstract Bernoulli pads can create a significant normal force on an object without contact. The radial outflow which creates this force also imposes a significant shear force on the object. Better understanding this shear force can improve pad designs in order to mitigate material deformation and damage, or allow the pads to be used as shear-based cleaning implements. Here, we use computational fluid dynamics to explore the parameter space and show a power-law relationship between the fluid power at the pad inlet and the maximum shear stress. These simulations are validated by a particle tracking velocimetry experiment. A relationship between the maximum shear stress and the inlet Reynolds number is provided, and some implications of the observed scaling relationships are explored.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48867990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract A constantly rotating spherical container sustains turbulence of a fluid partially filling it. This simple turbulence generator has the potential for wide engineering applications as a bladeless mixer. Using the coupled level-set and volume of fluid method and the boundary data immersion method, we conduct direct numerical simulations of liquid–gas flow in a spherical container rotating about a horizontal axis to investigate the driving mechanism of turbulence, flow dependence on the filling rate $varPsi$ and the mixing ability of the sustained turbulence. Even if the Froude number $Fr$ is small enough ($Frlesssim 10^{-3}$) for the liquid–gas interface to be undeformed, if the Reynolds number $Re$ is large enough ($Regtrsim 10^3$), small-scale turbulent eddies are sustained by being stretched in shear flow around a counter-rotating pair of container-size vortices, whose swirling directions depend on $varPsi$. We clarify that the angle of flow near the solid wall colliding with the interface controls the swirling direction of these container-size vortices. Furthermore, we track fluid particles in the liquid phase to quantify mixing properties to show that almost perfect mixing occurs after approximately 10 spins of the container for lower $varPsi$ ($lesssim 0.5$), whereas the mixing requires less energy consumption for higher $varPsi$ ($gtrsim 0.7$) at the examined $Re=O(10^3)$.
{"title":"Simple bladeless mixer with liquid–gas interface","authors":"Daiki Watanabe, S. Goto","doi":"10.1017/flo.2022.22","DOIUrl":"https://doi.org/10.1017/flo.2022.22","url":null,"abstract":"Abstract A constantly rotating spherical container sustains turbulence of a fluid partially filling it. This simple turbulence generator has the potential for wide engineering applications as a bladeless mixer. Using the coupled level-set and volume of fluid method and the boundary data immersion method, we conduct direct numerical simulations of liquid–gas flow in a spherical container rotating about a horizontal axis to investigate the driving mechanism of turbulence, flow dependence on the filling rate $varPsi$ and the mixing ability of the sustained turbulence. Even if the Froude number $Fr$ is small enough ($Frlesssim 10^{-3}$) for the liquid–gas interface to be undeformed, if the Reynolds number $Re$ is large enough ($Regtrsim 10^3$), small-scale turbulent eddies are sustained by being stretched in shear flow around a counter-rotating pair of container-size vortices, whose swirling directions depend on $varPsi$. We clarify that the angle of flow near the solid wall colliding with the interface controls the swirling direction of these container-size vortices. Furthermore, we track fluid particles in the liquid phase to quantify mixing properties to show that almost perfect mixing occurs after approximately 10 spins of the container for lower $varPsi$ ($lesssim 0.5$), whereas the mixing requires less energy consumption for higher $varPsi$ ($gtrsim 0.7$) at the examined $Re=O(10^3)$.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44389646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We present a series of experiments to illustrate the dynamics of positively or negatively buoyant particle-laden plumes in a cross-flow, with relevance for the discharge of sediment into the ocean during deep-sea mining operations. In an unstratified ambient fluid, our experiments identify three different regimes, corresponding to (i) a dense particle-laden plume, host to relatively dense saline fluid, in which the particles separate from the descending plume as the flow speed falls below the particle settling speed; (ii) a dense particle-laden plume, host to buoyant fluid, in which the fluid gradually rises from the sinking plume of particles, to form a second rising plume of source fluid; and (iii) a buoyant particle-laden plume, host to buoyant fluid, which rises from the discharge pipe, and from which particles gradually sediment. Classical models of single-phase plumes describe the initial motion of the plumes in cases (i) and (iii), but as the flow speed falls below the particle fall speed, sedimentation leads to a change in the averaged buoyancy, and, hence, the plume speed. Our data also suggest that the sedimentation leads to a reduction in the rate of entrainment of ambient fluid, compared with the classical single-phase plumes. We also show that with a density stratified ambient fluid, the stratification may arrest the plume prior to significant particle sedimentation, and in this case, the plume tends to spread downstream at the level of neutral buoyancy where particle sedimentation proceeds. The bulk density of the residual plume fluid may then remain intermediate between the density of the upper and lower layer fluid, or may become less dense than the upper layer fluid, in which case, following sedimentation, the plume fluid rises through the upper layer. While the dynamics of deep-sea mining plumes in the ocean are more complex, for example, owing to background turbulence and mixing, the results of our new laboratory experiments highlight the range of flow processes which may influence the initial dispersion and sedimentation of particles in such plumes following release into the water, depending on the initial conditions, the ambient density and the particle fall speed. We also discuss the relevance of our work in the context of ash dispersal by volcanic plumes.
{"title":"Dynamics of sediment-laden plumes in the ocean","authors":"N. Mingotti, A. Woods","doi":"10.1017/flo.2022.12","DOIUrl":"https://doi.org/10.1017/flo.2022.12","url":null,"abstract":"Abstract We present a series of experiments to illustrate the dynamics of positively or negatively buoyant particle-laden plumes in a cross-flow, with relevance for the discharge of sediment into the ocean during deep-sea mining operations. In an unstratified ambient fluid, our experiments identify three different regimes, corresponding to (i) a dense particle-laden plume, host to relatively dense saline fluid, in which the particles separate from the descending plume as the flow speed falls below the particle settling speed; (ii) a dense particle-laden plume, host to buoyant fluid, in which the fluid gradually rises from the sinking plume of particles, to form a second rising plume of source fluid; and (iii) a buoyant particle-laden plume, host to buoyant fluid, which rises from the discharge pipe, and from which particles gradually sediment. Classical models of single-phase plumes describe the initial motion of the plumes in cases (i) and (iii), but as the flow speed falls below the particle fall speed, sedimentation leads to a change in the averaged buoyancy, and, hence, the plume speed. Our data also suggest that the sedimentation leads to a reduction in the rate of entrainment of ambient fluid, compared with the classical single-phase plumes. We also show that with a density stratified ambient fluid, the stratification may arrest the plume prior to significant particle sedimentation, and in this case, the plume tends to spread downstream at the level of neutral buoyancy where particle sedimentation proceeds. The bulk density of the residual plume fluid may then remain intermediate between the density of the upper and lower layer fluid, or may become less dense than the upper layer fluid, in which case, following sedimentation, the plume fluid rises through the upper layer. While the dynamics of deep-sea mining plumes in the ocean are more complex, for example, owing to background turbulence and mixing, the results of our new laboratory experiments highlight the range of flow processes which may influence the initial dispersion and sedimentation of particles in such plumes following release into the water, depending on the initial conditions, the ambient density and the particle fall speed. We also discuss the relevance of our work in the context of ash dispersal by volcanic plumes.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41633357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We revisit the laminar–turbulent transition of a fine-grained slurry in a large pipe. The combination of long measurement times in an industrial-scale facility and ultrasound imaging allows us to observe and address anomalous trends. Under turbulent conditions, the flow is homogeneous and steady. However, under laminar conditions, two types of long-time-scale transient behaviours are captured. In the first scenario, the system has been homogenized, following which the flow rate is reduced to laminar conditions. The flow rate continues to gradually drop, while particles settle and form a stationary bed. In the second scenario, the system has been shut down for a prolonged period and the flow rate is slowly increased. The flow rate continues to rise while particles are slowly resuspended from the gradually eroding bed. Near the laminar–turbulent transition point, two types of intermittent structures are responsible for resuspension. The equilibrium phase, with steady flow rate, coincides with complete resuspension. These two long-time-scale transients correspond to the phenomena of ‘slow settling’ and ‘self-equilibration’, respectively. While the former can lead to shutdowns, the latter generates a stable system. Being aware of these phenomena is of relevance while operating slurry pipelines near the favourable operating point of the laminar–turbulent transition.
{"title":"Long-time-scale transients in an industrial-scale slurry pipeline near the laminar–turbulent transition","authors":"A. Dash, C. Poelma","doi":"10.1017/flo.2022.18","DOIUrl":"https://doi.org/10.1017/flo.2022.18","url":null,"abstract":"Abstract We revisit the laminar–turbulent transition of a fine-grained slurry in a large pipe. The combination of long measurement times in an industrial-scale facility and ultrasound imaging allows us to observe and address anomalous trends. Under turbulent conditions, the flow is homogeneous and steady. However, under laminar conditions, two types of long-time-scale transient behaviours are captured. In the first scenario, the system has been homogenized, following which the flow rate is reduced to laminar conditions. The flow rate continues to gradually drop, while particles settle and form a stationary bed. In the second scenario, the system has been shut down for a prolonged period and the flow rate is slowly increased. The flow rate continues to rise while particles are slowly resuspended from the gradually eroding bed. Near the laminar–turbulent transition point, two types of intermittent structures are responsible for resuspension. The equilibrium phase, with steady flow rate, coincides with complete resuspension. These two long-time-scale transients correspond to the phenomena of ‘slow settling’ and ‘self-equilibration’, respectively. While the former can lead to shutdowns, the latter generates a stable system. Being aware of these phenomena is of relevance while operating slurry pipelines near the favourable operating point of the laminar–turbulent transition.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44071899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mashayek, B. Cael, L. Cimoli, M. Alford, C. Caulfield
Abstract It is well established that small-scale cross-density (diapycnal) turbulent mixing induced by breaking of overturns in the interior of the ocean plays a significant role in sustaining the deep ocean circulation and in regulating tracer budgets such as those of heat, carbon and nutrients. There has been significant progress in the fluid mechanical understanding of the physics of breaking internal waves. Connection of the microphysics of such turbulence to the larger scale dynamics, however, is significantly underdeveloped. We offer a hybrid theoretical–statistical approach, informed by observations, to make such a link. By doing so, we define a bulk flux coefficient, $varGamma _B$, which represents the partitioning of energy available to an ‘ocean box’ (such as a grid cell of a coarse resolution climate model), from winds, tides, and other sources, into mixing and dissipation. Here, $varGamma _B$ depends on both the statistical distribution of turbulent patches and the flux coefficient associated with individual patches, $varGamma _i$. We rely on recent parametrizations of $varGamma _i$ and the seeming universal characteristics of statistics of turbulent patches to infer $varGamma _B$, which is the essential quantity for representation of turbulent diffusivity in climate models. By applying our approach to climatology and global tidal estimates, we show that, on a basin scale, energetic mixing zones exhibit moderately efficient mixing that induces significant vertical density fluxes, while quiet zones (with small background turbulence levels), although highly efficient in mixing, exhibit minimal vertical fluxes. The transition between the less energetic to more energetic zones marks regions of intense upwelling and downwelling of deep waters. We suggest that such upwelling and downwelling may be stronger than previously estimated, which in turn has direct implications for the closure of the deep branch of the ocean meridional overturning circulation as well as for the associated tracer budgets.
{"title":"A physical–statistical recipe for representation of small-scale oceanic turbulent mixing in climate models","authors":"A. Mashayek, B. Cael, L. Cimoli, M. Alford, C. Caulfield","doi":"10.1017/flo.2022.16","DOIUrl":"https://doi.org/10.1017/flo.2022.16","url":null,"abstract":"Abstract It is well established that small-scale cross-density (diapycnal) turbulent mixing induced by breaking of overturns in the interior of the ocean plays a significant role in sustaining the deep ocean circulation and in regulating tracer budgets such as those of heat, carbon and nutrients. There has been significant progress in the fluid mechanical understanding of the physics of breaking internal waves. Connection of the microphysics of such turbulence to the larger scale dynamics, however, is significantly underdeveloped. We offer a hybrid theoretical–statistical approach, informed by observations, to make such a link. By doing so, we define a bulk flux coefficient, $varGamma _B$, which represents the partitioning of energy available to an ‘ocean box’ (such as a grid cell of a coarse resolution climate model), from winds, tides, and other sources, into mixing and dissipation. Here, $varGamma _B$ depends on both the statistical distribution of turbulent patches and the flux coefficient associated with individual patches, $varGamma _i$. We rely on recent parametrizations of $varGamma _i$ and the seeming universal characteristics of statistics of turbulent patches to infer $varGamma _B$, which is the essential quantity for representation of turbulent diffusivity in climate models. By applying our approach to climatology and global tidal estimates, we show that, on a basin scale, energetic mixing zones exhibit moderately efficient mixing that induces significant vertical density fluxes, while quiet zones (with small background turbulence levels), although highly efficient in mixing, exhibit minimal vertical fluxes. The transition between the less energetic to more energetic zones marks regions of intense upwelling and downwelling of deep waters. We suggest that such upwelling and downwelling may be stronger than previously estimated, which in turn has direct implications for the closure of the deep branch of the ocean meridional overturning circulation as well as for the associated tracer budgets.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42695350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Ouillon, Carlos Muñoz-Royo, M. Alford, T. Peacock
Abstract The evolution of midwater sediment plumes associated with deep-sea mining activities is investigated in the passive-transport phase using a simplified advection–diffusion-settling model. Key metrics that characterize the extent of plumes are defined based on a concentration threshold. Namely, we consider the volume flux of fluid that ever exceeds a concentration threshold, the furthest distance from and maximum depth below the intrusion where the plume exceeds the threshold, and the instantaneous volume of fluid in excess of the threshold. Formulas are derived for the metrics that provide insight into the parameters that most strongly affect the extent of the plume. The model is applied to a reference deep-sea mining scenario around which key parameters are varied. The results provide some sense of scale for deep-sea mining midwater plumes, but more significantly demonstrate the importance of the parameters that influence the evolution of midwater plumes. The model shows that the discharge mass flow rate and the concentration threshold play an equal and opposite role on setting the extent of the plume. Ambient ocean turbulence and the settling velocity distribution of particles play a lesser yet significant role on setting the extent, and can influence different metrics in opposing ways.
{"title":"Advection-diffusion-settling of deep-sea mining sediment plumes. Part 1: Midwater plumes","authors":"R. Ouillon, Carlos Muñoz-Royo, M. Alford, T. Peacock","doi":"10.1017/flo.2022.20","DOIUrl":"https://doi.org/10.1017/flo.2022.20","url":null,"abstract":"Abstract The evolution of midwater sediment plumes associated with deep-sea mining activities is investigated in the passive-transport phase using a simplified advection–diffusion-settling model. Key metrics that characterize the extent of plumes are defined based on a concentration threshold. Namely, we consider the volume flux of fluid that ever exceeds a concentration threshold, the furthest distance from and maximum depth below the intrusion where the plume exceeds the threshold, and the instantaneous volume of fluid in excess of the threshold. Formulas are derived for the metrics that provide insight into the parameters that most strongly affect the extent of the plume. The model is applied to a reference deep-sea mining scenario around which key parameters are varied. The results provide some sense of scale for deep-sea mining midwater plumes, but more significantly demonstrate the importance of the parameters that influence the evolution of midwater plumes. The model shows that the discharge mass flow rate and the concentration threshold play an equal and opposite role on setting the extent of the plume. Ambient ocean turbulence and the settling velocity distribution of particles play a lesser yet significant role on setting the extent, and can influence different metrics in opposing ways.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48787220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Ouillon, Carlos Muñoz-Royo, M. Alford, T. Peacock
Abstract We develop and investigate an advection–diffusion-settling model of deep-sea mining collector plumes, building on the analysis of midwater plumes in Part 1. In the case of collector plumes, deposition plays a predominant role in controlling the mass of sediment in suspension, and thus on setting the extent of the plume. We first discuss the competition between settling, which leads to deposition, and vertical turbulent diffusion, which stretches the plume vertically and reduces deposition. The time evolution of the concentration at the seabed is found to be a highly nonlinear function of time that depends non-trivially on the ratio of diffusion to settling time scales. This has direct implications for the three extent metrics considered, namely the instantaneous area of the seabed where a deposition rate threshold is exceeded, the furthest distance from the discharge where the plume exceeds a concentration threshold and the volume flux of fluid in the water column that ever exceeds a concentration threshold. Unlike the midwater plume, the particle velocity distribution of the sediment has the greatest influence on the extent metrics. The turbulence levels experienced by the plume also markedly affects its extent. Expected variability of turbulence and particle settling velocity yields orders of magnitude changes in the extent metrics.
{"title":"Advection–diffusion settling of deep-sea mining sediment plumes. Part 2. Collector plumes","authors":"R. Ouillon, Carlos Muñoz-Royo, M. Alford, T. Peacock","doi":"10.1017/flo.2022.19","DOIUrl":"https://doi.org/10.1017/flo.2022.19","url":null,"abstract":"Abstract We develop and investigate an advection–diffusion-settling model of deep-sea mining collector plumes, building on the analysis of midwater plumes in Part 1. In the case of collector plumes, deposition plays a predominant role in controlling the mass of sediment in suspension, and thus on setting the extent of the plume. We first discuss the competition between settling, which leads to deposition, and vertical turbulent diffusion, which stretches the plume vertically and reduces deposition. The time evolution of the concentration at the seabed is found to be a highly nonlinear function of time that depends non-trivially on the ratio of diffusion to settling time scales. This has direct implications for the three extent metrics considered, namely the instantaneous area of the seabed where a deposition rate threshold is exceeded, the furthest distance from the discharge where the plume exceeds a concentration threshold and the volume flux of fluid in the water column that ever exceeds a concentration threshold. Unlike the midwater plume, the particle velocity distribution of the sediment has the greatest influence on the extent metrics. The turbulence levels experienced by the plume also markedly affects its extent. Expected variability of turbulence and particle settling velocity yields orders of magnitude changes in the extent metrics.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47544404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We performed large-eddy simulations in a neutral atmospheric boundary layer to study the interaction between two identical wind farms with 72 turbines each. We demonstrate that the wind farm wake created by the upstream farm affects the entire flow in and around the downstream farm. The vertical entrainment fluxes above the downstream wind farm are strengthened, resulting in a faster wind farm wake recovery behind the downstream farm. These findings illustrate that interaction between extended wind farms affects flow structures beyond the wind farm scale. Furthermore, we demonstrate that wind farm wakes can reduce the power production of turbines throughout the downstream wind farms. We additionally observe that a staggered wind farm extracts more energy from the flow and thus creates a stronger wind farm wake than an aligned wind farm.
{"title":"Impact of wind farm wakes on flow structures in and around downstream wind farms","authors":"Anja Stieren, R. Stevens","doi":"10.1017/flo.2022.15","DOIUrl":"https://doi.org/10.1017/flo.2022.15","url":null,"abstract":"Abstract We performed large-eddy simulations in a neutral atmospheric boundary layer to study the interaction between two identical wind farms with 72 turbines each. We demonstrate that the wind farm wake created by the upstream farm affects the entire flow in and around the downstream farm. The vertical entrainment fluxes above the downstream wind farm are strengthened, resulting in a faster wind farm wake recovery behind the downstream farm. These findings illustrate that interaction between extended wind farms affects flow structures beyond the wind farm scale. Furthermore, we demonstrate that wind farm wakes can reduce the power production of turbines throughout the downstream wind farms. We additionally observe that a staggered wind farm extracts more energy from the flow and thus creates a stronger wind farm wake than an aligned wind farm.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46552948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel Altland, X. Zhu, S. McClain, R. Kunz, Xiang I. A. Yang
Abstract Metal additive manufacturing has enabled geometrically complex internal cooling channels for turbine and heat exchanger applications, but the process gives rise to large-scale roughness whose size is comparable to the channel height (which is 500 $mathrm {mu }$m). These super-rough channels pose previously unseen challenges for experimental measurements, data interpretation and roughness modelling. First, it is not clear if measurements at a particular streamwise and spanwise location still provide accurate representation of the mean (time- and plane-averaged) flow. Second, we do not know if the logarithmic layer survives. Third, it is unknown how well previously developed rough-wall models work for these large-scale roughnesses. To answer the above practical questions, we conduct direct numerical simulations of flow in additively manufactured super-rough channels. Three rough surfaces are considered, all of which are obtained from computed tomography scans of additively manufactured surfaces. The roughness’ trough to peak sizes are 0.1$h$, 0.3$h$ and 0.8$h$, respectively, where $h$ is the intended half-channel height. Each rough surface is placed opposite a smooth wall and the other two rough surfaces, leading to six rough-wall channel configurations. Two Reynolds numbers are considered, namely $Re_tau =180$ and $Re_tau =395$. We show first that measurements at one streamwise and spanwise location are insufficient due to strong mean flow inhomogeneity across the entire channel, second that the logarithmic law of the wall survives despite the mean flow inhomogeneity and third that the established roughness sheltering model remains accurate.
{"title":"Flow in additively manufactured super-rough channels","authors":"Samuel Altland, X. Zhu, S. McClain, R. Kunz, Xiang I. A. Yang","doi":"10.1017/flo.2022.13","DOIUrl":"https://doi.org/10.1017/flo.2022.13","url":null,"abstract":"Abstract Metal additive manufacturing has enabled geometrically complex internal cooling channels for turbine and heat exchanger applications, but the process gives rise to large-scale roughness whose size is comparable to the channel height (which is 500 $mathrm {mu }$m). These super-rough channels pose previously unseen challenges for experimental measurements, data interpretation and roughness modelling. First, it is not clear if measurements at a particular streamwise and spanwise location still provide accurate representation of the mean (time- and plane-averaged) flow. Second, we do not know if the logarithmic layer survives. Third, it is unknown how well previously developed rough-wall models work for these large-scale roughnesses. To answer the above practical questions, we conduct direct numerical simulations of flow in additively manufactured super-rough channels. Three rough surfaces are considered, all of which are obtained from computed tomography scans of additively manufactured surfaces. The roughness’ trough to peak sizes are 0.1$h$, 0.3$h$ and 0.8$h$, respectively, where $h$ is the intended half-channel height. Each rough surface is placed opposite a smooth wall and the other two rough surfaces, leading to six rough-wall channel configurations. Two Reynolds numbers are considered, namely $Re_tau =180$ and $Re_tau =395$. We show first that measurements at one streamwise and spanwise location are insufficient due to strong mean flow inhomogeneity across the entire channel, second that the logarithmic law of the wall survives despite the mean flow inhomogeneity and third that the established roughness sheltering model remains accurate.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"56600621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}