Pub Date : 2024-10-16DOI: 10.1021/acsagscitech.4c0053110.1021/acsagscitech.4c00531
Douglas A. Dias, Ilizandra A. Fernandes, Eliel P. Machado, Luiz Pedott, Maria Carolina Blassioli-Moraes, Miguel Borges, Juliana Steffens and Clarice Steffens*,
Traditional pest management strategies, such as indiscriminate pesticide use, have adverse environmental and human health implications. As a sustainable alternative, this research focuses on employing nanosensors for the detection of semiochemicals, including pheromones and defensive compounds, released by stink bugs. These nanosensors feature a nanohybrid layer of polyaniline and silver (PANI.Ag) and a nanocomposite of polyaniline and graphene oxide (PANI/GO). The study explores the detection of synthetic semiochemicals, including cis and trans bisabolene epoxides, (E)-2-hexanal, (E)-2-decenal, (E)-2-octenyl acetate, and (E)-2-octenal semiochemicals emitted by Nezara viridula (Southern green stink bug) in the real environment. The sensing layer characterization showed differences in hydrophilicity and surface roughness between the PANI.Ag and PANI/GO layers. When exposed to synthetic compounds like cis and trans bisabolene epoxides, (E)-2-hexanal, and (E)-2-decenal, the nanosensors demonstrated distinct responses, with PANI/GO exhibiting higher sensitivity. The resonance frequency shifts correlated with the concentration of the compounds, underscoring the potential of these sensors in detecting low concentrations with limits of detection (LOD) and quantification (LOQ) lower than 0.44 and 1.15 ng/mL, respectively. Real environment testing with soybean plants indicated that the nanosensors effectively detected semiochemicals emitted by N. viridula adults, especially in the presence of male–female couples, underscoring their potential for agricultural pest monitoring. The findings support the use of these nanosensors for the early detection of pest activity, offering a proactive approach to integrated pest management.
{"title":"Nanosensors for Detecting Volatile Compounds in Pest Management: A Focus on Agricultural Sustainability","authors":"Douglas A. Dias, Ilizandra A. Fernandes, Eliel P. Machado, Luiz Pedott, Maria Carolina Blassioli-Moraes, Miguel Borges, Juliana Steffens and Clarice Steffens*, ","doi":"10.1021/acsagscitech.4c0053110.1021/acsagscitech.4c00531","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00531https://doi.org/10.1021/acsagscitech.4c00531","url":null,"abstract":"<p >Traditional pest management strategies, such as indiscriminate pesticide use, have adverse environmental and human health implications. As a sustainable alternative, this research focuses on employing nanosensors for the detection of semiochemicals, including pheromones and defensive compounds, released by stink bugs. These nanosensors feature a nanohybrid layer of polyaniline and silver (PANI.Ag) and a nanocomposite of polyaniline and graphene oxide (PANI/GO). The study explores the detection of synthetic semiochemicals, including <i>cis</i> and <i>trans</i> bisabolene epoxides, (<i>E</i>)-2-hexanal, (<i>E</i>)-2-decenal, (<i>E</i>)-2-octenyl acetate, and (<i>E</i>)-2-octenal semiochemicals emitted by <i>Nezara viridula</i> (Southern green stink bug) in the real environment. The sensing layer characterization showed differences in hydrophilicity and surface roughness between the PANI.Ag and PANI/GO layers. When exposed to synthetic compounds like <i>cis</i> and <i>trans</i> bisabolene epoxides, (<i>E</i>)-2-hexanal, and (<i>E</i>)-2-decenal, the nanosensors demonstrated distinct responses, with PANI/GO exhibiting higher sensitivity. The resonance frequency shifts correlated with the concentration of the compounds, underscoring the potential of these sensors in detecting low concentrations with limits of detection (LOD) and quantification (LOQ) lower than 0.44 and 1.15 ng/mL, respectively. Real environment testing with soybean plants indicated that the nanosensors effectively detected semiochemicals emitted by <i>N. viridula</i> adults, especially in the presence of male–female couples, underscoring their potential for agricultural pest monitoring. The findings support the use of these nanosensors for the early detection of pest activity, offering a proactive approach to integrated pest management.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 11","pages":"1250–1259 1250–1259"},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.4c00531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1021/acsagscitech.4c0013610.1021/acsagscitech.4c00136
Prabhakaran Sambasivam, Marzia Bilkiss, Narshone Soda, Ido Bar, Muhammad J. A. Shiddiky and Rebecca Ford*,
Botrytis gray mold (BGM) caused by Botrytis cinerea or B. fabae is a destructive foliar fungal disease of temperate legumes such as chickpea, lentil, and fava bean. With little to no robust host resistance, fast, accurate, and quantifiable diagnosis would help to prevent disease establishment and costly overspraying. For this, gold nanoparticle-based PCR-free assays, comprising inexpensive, portable screen-printed carbon electrodes (SPCEs) and species-specific biotinylated capture probes, were developed to detect, discriminate, and quantify the causal organisms. Initially, probe specificities and sensitivities were determined (100 fg/μL ∼2 genome copies/μL) in pure fungal backgrounds using multiplexed quantitative PCR, detecting as few as 100 spores on artificially infected legume leaves. Subsequently, electrocatalytic (EC) assays were developed using functionalized magnetic nanoparticles and assessed on three lentil cultivars under quasi-field conditions. Using biotinylated capture probes, the charge densities were correlated with pathogen quantity. The limits of detection (LOD) were 10 fg for both species, 10 times more sensitive than qPCR and able to detect a single spore in a plant background. The new diagnostic tools were subsequently validated on naturally infected field material and offer substantial advances for application in advanced informed BGM management.
{"title":"A Rapid Electrochemical Biosensor Diagnostic for Botrytis ssp. Causing Botrytis Gray Mold of Temperate Legumes","authors":"Prabhakaran Sambasivam, Marzia Bilkiss, Narshone Soda, Ido Bar, Muhammad J. A. Shiddiky and Rebecca Ford*, ","doi":"10.1021/acsagscitech.4c0013610.1021/acsagscitech.4c00136","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00136https://doi.org/10.1021/acsagscitech.4c00136","url":null,"abstract":"<p >Botrytis gray mold (BGM) caused by <i>Botrytis cinerea</i> or <i>B. fabae</i> is a destructive foliar fungal disease of temperate legumes such as chickpea, lentil, and fava bean. With little to no robust host resistance, fast, accurate, and quantifiable diagnosis would help to prevent disease establishment and costly overspraying. For this, gold nanoparticle-based PCR-free assays, comprising inexpensive, portable screen-printed carbon electrodes (SPCEs) and species-specific biotinylated capture probes, were developed to detect, discriminate, and quantify the causal organisms. Initially, probe specificities and sensitivities were determined (100 fg/μL ∼2 genome copies/μL) in pure fungal backgrounds using multiplexed quantitative PCR, detecting as few as 100 spores on artificially infected legume leaves. Subsequently, electrocatalytic (EC) assays were developed using functionalized magnetic nanoparticles and assessed on three lentil cultivars under quasi-field conditions. Using biotinylated capture probes, the charge densities were correlated with pathogen quantity. The limits of detection (LOD) were 10 fg for both species, 10 times more sensitive than qPCR and able to detect a single spore in a plant background. The new diagnostic tools were subsequently validated on naturally infected field material and offer substantial advances for application in advanced informed BGM management.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 11","pages":"1184–1193 1184–1193"},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1021/acsagscitech.4c0035510.1021/acsagscitech.4c00355
María Isabel Sánchez-Rodríguez*, Elena Sánchez-López, Alberto Marinas, José María Caridad and Francisco José Urbano,
The integrity of extra virgin olive oil (EVOO) quality markers can be compromised owing to deceptive marketing practices, such as misleading geographical origin claims or counterfeit certification labels, i.e., protected designations of origin (PDO). Therefore, it is imperative to introduce ecofriendly, rapid, and economical analytical methods for authenticating EVOO, such as near-infrared (NIR) spectroscopy. Unlike traditional techniques such as chromatography, NIR spectra contain unresolved bands; hence, chemometric tools such as principal component analysis (PCA) are essential for extracting valuable information from them. Herein, PCA was employed to reduce the high dimensionality of the NIR spectra. The PCA factors were then integrated as explanatory variables in machine-learning classification models, enabling the classification of EVOO based on its geographical origin or PDO. Furthermore, the classification models were improved by incorporating agro-climatic data, resulting in a noticeable improvement in the accuracy and reliability of the results. These results were cross-validated by changing the calibration and validation subsamples in successive iterations and averaging the obtained ratios. The results were robust when the olive varieties differed. Consequently, our findings highlight the potential benefits of incorporating agro-climatic information with NIR spectral data in classification models.
{"title":"Agro-Climatic Information to Enhance the Machine-Learning Classification of Olive Oils from Near-Infrared Spectra","authors":"María Isabel Sánchez-Rodríguez*, Elena Sánchez-López, Alberto Marinas, José María Caridad and Francisco José Urbano, ","doi":"10.1021/acsagscitech.4c0035510.1021/acsagscitech.4c00355","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00355https://doi.org/10.1021/acsagscitech.4c00355","url":null,"abstract":"<p >The integrity of extra virgin olive oil (EVOO) quality markers can be compromised owing to deceptive marketing practices, such as misleading geographical origin claims or counterfeit certification labels, i.e., protected designations of origin (PDO). Therefore, it is imperative to introduce ecofriendly, rapid, and economical analytical methods for authenticating EVOO, such as near-infrared (NIR) spectroscopy. Unlike traditional techniques such as chromatography, NIR spectra contain unresolved bands; hence, chemometric tools such as principal component analysis (PCA) are essential for extracting valuable information from them. Herein, PCA was employed to reduce the high dimensionality of the NIR spectra. The PCA factors were then integrated as explanatory variables in machine-learning classification models, enabling the classification of EVOO based on its geographical origin or PDO. Furthermore, the classification models were improved by incorporating agro-climatic data, resulting in a noticeable improvement in the accuracy and reliability of the results. These results were cross-validated by changing the calibration and validation subsamples in successive iterations and averaging the obtained ratios. The results were robust when the olive varieties differed. Consequently, our findings highlight the potential benefits of incorporating agro-climatic information with NIR spectral data in classification models.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 11","pages":"1194–1205 1194–1205"},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.4c00355","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1021/acsagscitech.4c0044810.1021/acsagscitech.4c00448
Yuto Hatakeyama*, Takuya Araki and Kazuto Hatakeyama*,
The application of the nanomaterial “graphene oxide (GO)” in agriculture holds promise for enhancing crop production, potentially addressing global food scarcity. However, experimental findings on GO’s impact on plants have been inconsistent, and our understanding of its long-term effects, impact on yield, and general efficacy remains limited. To address these gaps, we administered GO to rice plants over a period exceeding 80 days and assessed its influence on the final biomass production and grain yield through a two-year experiment. Our results clearly showed that while the positive effects of short-term GO treatments were not detected, the long-term treatment of 20 mg/L GO increased both the final biomass production and grain yield. As no significant interactions between treatment and the year were detected, these outcomes are likely representative of the general effects on rice. Moreover, GO-treated plants exhibited GO coverage on root surfaces, and the presence of certain fertilizer components on the roots significantly increased with the addition of 20 mg/L GO. Therefore, our study suggests that the addition of 20 mg/L GO during the term from transplanting to harvesting promotes the accumulation of fertilizer components around the root, thereby enhancing the final biomass production and grain yield of rice.
纳米材料 "氧化石墨烯(GO)"在农业中的应用有望提高作物产量,解决全球粮食短缺问题。然而,有关 GO 对植物影响的实验结果并不一致,我们对其长期效果、对产量的影响以及总体功效的了解仍然有限。为了弥补这些不足,我们对水稻植株施用了超过 80 天的 GO,并通过为期两年的实验评估了它对最终生物量生产和谷物产量的影响。我们的结果清楚地表明,虽然没有检测到短期 GO 处理的积极影响,但 20 毫克/升 GO 的长期处理提高了最终生物量产量和谷物产量。由于没有发现处理与年份之间存在明显的交互作用,这些结果很可能代表了对水稻的普遍影响。此外,添加 20 毫克/升 GO 后,经 GO 处理的植株根部表面出现了 GO 覆盖,根部的某些肥料成分也显著增加。因此,我们的研究表明,在水稻从插秧到收割的整个过程中,添加 20 毫克/升 GO 可促进肥料成分在根部周围的积累,从而提高水稻的最终生物量产量和谷物产量。
{"title":"Effects of Prolonged Graphene Oxide Treatment on Biomass Production and Grain Yield in Hydroponically Grown Rice","authors":"Yuto Hatakeyama*, Takuya Araki and Kazuto Hatakeyama*, ","doi":"10.1021/acsagscitech.4c0044810.1021/acsagscitech.4c00448","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00448https://doi.org/10.1021/acsagscitech.4c00448","url":null,"abstract":"<p >The application of the nanomaterial “graphene oxide (GO)” in agriculture holds promise for enhancing crop production, potentially addressing global food scarcity. However, experimental findings on GO’s impact on plants have been inconsistent, and our understanding of its long-term effects, impact on yield, and general efficacy remains limited. To address these gaps, we administered GO to rice plants over a period exceeding 80 days and assessed its influence on the final biomass production and grain yield through a two-year experiment. Our results clearly showed that while the positive effects of short-term GO treatments were not detected, the long-term treatment of 20 mg/L GO increased both the final biomass production and grain yield. As no significant interactions between treatment and the year were detected, these outcomes are likely representative of the general effects on rice. Moreover, GO-treated plants exhibited GO coverage on root surfaces, and the presence of certain fertilizer components on the roots significantly increased with the addition of 20 mg/L GO. Therefore, our study suggests that the addition of 20 mg/L GO during the term from transplanting to harvesting promotes the accumulation of fertilizer components around the root, thereby enhancing the final biomass production and grain yield of rice.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 11","pages":"1230–1240 1230–1240"},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11eCollection Date: 2024-11-18DOI: 10.1021/acsagscitech.4c00355
María Isabel Sánchez-Rodríguez, Elena Sánchez-López, Alberto Marinas, José María Caridad, Francisco José Urbano
The integrity of extra virgin olive oil (EVOO) quality markers can be compromised owing to deceptive marketing practices, such as misleading geographical origin claims or counterfeit certification labels, i.e., protected designations of origin (PDO). Therefore, it is imperative to introduce ecofriendly, rapid, and economical analytical methods for authenticating EVOO, such as near-infrared (NIR) spectroscopy. Unlike traditional techniques such as chromatography, NIR spectra contain unresolved bands; hence, chemometric tools such as principal component analysis (PCA) are essential for extracting valuable information from them. Herein, PCA was employed to reduce the high dimensionality of the NIR spectra. The PCA factors were then integrated as explanatory variables in machine-learning classification models, enabling the classification of EVOO based on its geographical origin or PDO. Furthermore, the classification models were improved by incorporating agro-climatic data, resulting in a noticeable improvement in the accuracy and reliability of the results. These results were cross-validated by changing the calibration and validation subsamples in successive iterations and averaging the obtained ratios. The results were robust when the olive varieties differed. Consequently, our findings highlight the potential benefits of incorporating agro-climatic information with NIR spectral data in classification models.
{"title":"Agro-Climatic Information to Enhance the Machine-Learning Classification of Olive Oils from Near-Infrared Spectra.","authors":"María Isabel Sánchez-Rodríguez, Elena Sánchez-López, Alberto Marinas, José María Caridad, Francisco José Urbano","doi":"10.1021/acsagscitech.4c00355","DOIUrl":"10.1021/acsagscitech.4c00355","url":null,"abstract":"<p><p>The integrity of extra virgin olive oil (EVOO) quality markers can be compromised owing to deceptive marketing practices, such as misleading geographical origin claims or counterfeit certification labels, i.e., protected designations of origin (PDO). Therefore, it is imperative to introduce ecofriendly, rapid, and economical analytical methods for authenticating EVOO, such as near-infrared (NIR) spectroscopy. Unlike traditional techniques such as chromatography, NIR spectra contain unresolved bands; hence, chemometric tools such as principal component analysis (PCA) are essential for extracting valuable information from them. Herein, PCA was employed to reduce the high dimensionality of the NIR spectra. The PCA factors were then integrated as explanatory variables in machine-learning classification models, enabling the classification of EVOO based on its geographical origin or PDO. Furthermore, the classification models were improved by incorporating agro-climatic data, resulting in a noticeable improvement in the accuracy and reliability of the results. These results were cross-validated by changing the calibration and validation subsamples in successive iterations and averaging the obtained ratios. The results were robust when the olive varieties differed. Consequently, our findings highlight the potential benefits of incorporating agro-climatic information with NIR spectral data in classification models.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 11","pages":"1194-1205"},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24eCollection Date: 2024-10-21DOI: 10.1021/acsagscitech.4c00386
Jakob Lang, Sergio E Ramos, Linus Reichert, Grace M Amboka, Celina Apel, Frank Chidawanyika, Andargachew Detebo, Felipe Librán-Embid, David Meinhof, Laurent Bigler, Meredith C Schuman
Push-pull technology refers to a promising mixed cropping practice for sustainable agricultural intensification, which uses properties of intercrop and border crop species to defend a focal crop against pests. Currently, the most widely practiced system uses Desmodium spp. as intercrop and Brachiaria or Napier grass as border crops to protect maize (Zea mays) against both insect pests and parasitic weeds. Several previous studies have demonstrated the efficacy of the push-pull system, but research on the underlying chemical mechanisms has mostly been limited to laboratory and glasshouse experiments that may not fully reproduce the complexity of the system under natural conditions. To address this limitation, we performed a large-scale study in farmer-operated push-pull maize fields in three east African countries. We compared maize leaf extracts from plants grown on push-pull fields with maize from fields employing conventional agricultural practices to assess the influence of push-pull cultivation on the maize metabolome. We identified two benzoxazinoid glycosides, which are known to have antiherbivore properties and were present in greater relative abundance in push-pull-cultivated maize leaves across three countries. Our data thus suggest that maize cultivated under push-pull has an increased resistance to herbivore attack compared to maize grown under conventional local agricultural practices.
{"title":"Push-Pull Intercropping Increases the Antiherbivore Benzoxazinoid Glycoside Content in Maize Leaf Tissue.","authors":"Jakob Lang, Sergio E Ramos, Linus Reichert, Grace M Amboka, Celina Apel, Frank Chidawanyika, Andargachew Detebo, Felipe Librán-Embid, David Meinhof, Laurent Bigler, Meredith C Schuman","doi":"10.1021/acsagscitech.4c00386","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00386","url":null,"abstract":"<p><p>Push-pull technology refers to a promising mixed cropping practice for sustainable agricultural intensification, which uses properties of intercrop and border crop species to defend a focal crop against pests. Currently, the most widely practiced system uses <i>Desmodium</i> spp. as intercrop and Brachiaria or Napier grass as border crops to protect maize (<i>Zea mays</i>) against both insect pests and parasitic weeds. Several previous studies have demonstrated the efficacy of the push-pull system, but research on the underlying chemical mechanisms has mostly been limited to laboratory and glasshouse experiments that may not fully reproduce the complexity of the system under natural conditions. To address this limitation, we performed a large-scale study in farmer-operated push-pull maize fields in three east African countries. We compared maize leaf extracts from plants grown on push-pull fields with maize from fields employing conventional agricultural practices to assess the influence of push-pull cultivation on the maize metabolome. We identified two benzoxazinoid glycosides, which are known to have antiherbivore properties and were present in greater relative abundance in push-pull-cultivated maize leaves across three countries. Our data thus suggest that maize cultivated under push-pull has an increased resistance to herbivore attack compared to maize grown under conventional local agricultural practices.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 10","pages":"1074-1082"},"PeriodicalIF":2.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1021/acsagscitech.4c0037210.1021/acsagscitech.4c00372
Soraya Ferreira da Silva, Michele Pereira Cavalcante, Ye Sensheng, Sandra dos Santos Silva and Socorro Vanesca Frota Gaban*,
This study examines the effects of replacing Camellia sinensis tea with passion fruit juice (PFKLB) and apple juice (AKLB) on the resulting beverages’ physicochemical profile, bioactive composition, and sensory characteristics. PFKLB exhibited higher total acidity and alcohol content and lower total soluble solids, total sugars, reducing sugars, and nonreducing sugar contents than conventional kombucha and AKLB. Kombucha and AKLB contained higher levels of total phenolics and flavonoids, and antioxidant activity than PFKLB. The sensory evaluation indicated that PFKLB was well-regarded for its aroma but received criticism for its taste, which was perceived as sour and bitter in contrast to the sweeter taste of kombucha and AKLB. Acidity significantly affected alcohol production and influenced product acceptance in conjunction with sugar content. AKLB is a promising probiotic alternative to kombucha due to its favorable sensory acceptance and the presence of bioactive substances.
{"title":"Physicochemical Properties, Antioxidant Activity, and Sensory Profiles of Kombucha and Kombucha-Like Beverages Prepared Using Passion Fruit (Passiflora edulis) and Apple (Malus pumila)","authors":"Soraya Ferreira da Silva, Michele Pereira Cavalcante, Ye Sensheng, Sandra dos Santos Silva and Socorro Vanesca Frota Gaban*, ","doi":"10.1021/acsagscitech.4c0037210.1021/acsagscitech.4c00372","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00372https://doi.org/10.1021/acsagscitech.4c00372","url":null,"abstract":"<p >This study examines the effects of replacing <i>Camellia sinensis</i> tea with passion fruit juice (PF<sub>KLB</sub>) and apple juice (A<sub>KLB</sub>) on the resulting beverages’ physicochemical profile, bioactive composition, and sensory characteristics. PF<sub>KLB</sub> exhibited higher total acidity and alcohol content and lower total soluble solids, total sugars, reducing sugars, and nonreducing sugar contents than conventional kombucha and A<sub>KLB</sub>. Kombucha and A<sub>KLB</sub> contained higher levels of total phenolics and flavonoids, and antioxidant activity than PF<sub>KLB</sub>. The sensory evaluation indicated that PF<sub>KLB</sub> was well-regarded for its aroma but received criticism for its taste, which was perceived as sour and bitter in contrast to the sweeter taste of kombucha and A<sub>KLB</sub>. Acidity significantly affected alcohol production and influenced product acceptance in conjunction with sugar content. A<sub>KLB</sub> is a promising probiotic alternative to kombucha due to its favorable sensory acceptance and the presence of bioactive substances.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 9","pages":"938–946 938–946"},"PeriodicalIF":2.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.4c00372","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29eCollection Date: 2024-09-16DOI: 10.1021/acsagscitech.4c00133
Emily Shea, Jesus Fernandez-Bayo, Christopher Simmons
Preplant soil disinfestation often relies on harmful soil fumigants; however, the efficacy of sustainable alternatives using biomass amendment fermentation is limited to tillage depths (0-15 cm). This soil column study evaluated whether increasing the irrigation frequency could promote anaerobic pest-suppressive conditions in deeper soils by leaching biocidal fermentation products (organic acids) from surface-applied amendments. Columns received either singular (standard) or weekly irrigation. Almond hulls, an agricultural byproduct, were either incorporated 0-15 cm into soil or applied as a surface mulch. Oxygen and organic acids were measured at 4-50 cm over 21 days, and the experiment was conducted in triplicate. Anaerobic conditions (3% O2) were achieved after 5 days, corresponding to acetic acid accumulation below amended layers: maximum concentrations ranged from 42 to 93 mM at 19-50 cm depths. Additional irrigation further increased concentrations in the deepest layer (50 cm) by almost 50%, demonstrating that water management can enable strategies for depth-dependent soil pest control. This may be particularly valuable for soil disinfestation ahead of the establishment of deep-rooted crops.
{"title":"Effect of Almond Residue Soil Amendments and Irrigation Regiment on Organic Acid Development and Transport in Soil.","authors":"Emily Shea, Jesus Fernandez-Bayo, Christopher Simmons","doi":"10.1021/acsagscitech.4c00133","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00133","url":null,"abstract":"<p><p>Preplant soil disinfestation often relies on harmful soil fumigants; however, the efficacy of sustainable alternatives using biomass amendment fermentation is limited to tillage depths (0-15 cm). This soil column study evaluated whether increasing the irrigation frequency could promote anaerobic pest-suppressive conditions in deeper soils by leaching biocidal fermentation products (organic acids) from surface-applied amendments. Columns received either singular (standard) or weekly irrigation. Almond hulls, an agricultural byproduct, were either incorporated 0-15 cm into soil or applied as a surface mulch. Oxygen and organic acids were measured at 4-50 cm over 21 days, and the experiment was conducted in triplicate. Anaerobic conditions (3% O<sub>2</sub>) were achieved after 5 days, corresponding to acetic acid accumulation below amended layers: maximum concentrations ranged from 42 to 93 mM at 19-50 cm depths. Additional irrigation further increased concentrations in the deepest layer (50 cm) by almost 50%, demonstrating that water management can enable strategies for depth-dependent soil pest control. This may be particularly valuable for soil disinfestation ahead of the establishment of deep-rooted crops.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 9","pages":"899-906"},"PeriodicalIF":2.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142303120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1021/acsagscitech.4c0013310.1021/acsagscitech.4c00133
Emily Shea, Jesus Fernandez-Bayo and Christopher Simmons*,
Preplant soil disinfestation often relies on harmful soil fumigants; however, the efficacy of sustainable alternatives using biomass amendment fermentation is limited to tillage depths (0–15 cm). This soil column study evaluated whether increasing the irrigation frequency could promote anaerobic pest-suppressive conditions in deeper soils by leaching biocidal fermentation products (organic acids) from surface-applied amendments. Columns received either singular (standard) or weekly irrigation. Almond hulls, an agricultural byproduct, were either incorporated 0–15 cm into soil or applied as a surface mulch. Oxygen and organic acids were measured at 4–50 cm over 21 days, and the experiment was conducted in triplicate. Anaerobic conditions (3% O2) were achieved after 5 days, corresponding to acetic acid accumulation below amended layers: maximum concentrations ranged from 42 to 93 mM at 19–50 cm depths. Additional irrigation further increased concentrations in the deepest layer (50 cm) by almost 50%, demonstrating that water management can enable strategies for depth-dependent soil pest control. This may be particularly valuable for soil disinfestation ahead of the establishment of deep-rooted crops.
{"title":"Effect of Almond Residue Soil Amendments and Irrigation Regiment on Organic Acid Development and Transport in Soil","authors":"Emily Shea, Jesus Fernandez-Bayo and Christopher Simmons*, ","doi":"10.1021/acsagscitech.4c0013310.1021/acsagscitech.4c00133","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00133https://doi.org/10.1021/acsagscitech.4c00133","url":null,"abstract":"<p >Preplant soil disinfestation often relies on harmful soil fumigants; however, the efficacy of sustainable alternatives using biomass amendment fermentation is limited to tillage depths (0–15 cm). This soil column study evaluated whether increasing the irrigation frequency could promote anaerobic pest-suppressive conditions in deeper soils by leaching biocidal fermentation products (organic acids) from surface-applied amendments. Columns received either singular (standard) or weekly irrigation. Almond hulls, an agricultural byproduct, were either incorporated 0–15 cm into soil or applied as a surface mulch. Oxygen and organic acids were measured at 4–50 cm over 21 days, and the experiment was conducted in triplicate. Anaerobic conditions (3% O<sub>2</sub>) were achieved after 5 days, corresponding to acetic acid accumulation below amended layers: maximum concentrations ranged from 42 to 93 mM at 19–50 cm depths. Additional irrigation further increased concentrations in the deepest layer (50 cm) by almost 50%, demonstrating that water management can enable strategies for depth-dependent soil pest control. This may be particularly valuable for soil disinfestation ahead of the establishment of deep-rooted crops.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 9","pages":"899–906 899–906"},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.4c00133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1021/acsagscitech.4c0038310.1021/acsagscitech.4c00383
Preetha Sundaram, Kannan Malaichamy*, Subramanian Kizhaeral Sevanthiyppan and Govindaraju Kasivelu,
Electrospun multilayer nanofiber matrices developed using β-cyclodextrin, poly(vinyl alcohol), and poly(lactic-co-glycolic) acid effectively encapsulated the hexanal biomolecule and facilitated its controlled release. The multilayer nanofiber matrices loaded with hexanal (overlay method) are characterized through scanning electron microscopy (171 nm), transmission electron microscopy (73 nm), Fourier transform infrared spectroscopy (peak at 1716 cm–1 corresponds to hexanal), X-ray diffraction (12.13 and 18.69°), and thermogravimetric analysis (340 °C). Fruits treated with hexanal-loaded multilayer nanofiber matrices by the overlay method recorded a lower loss in physiological weight, pH, total soluble solids, and total sugar content (17.61%, 5.15, 20.05° Brix, 17.32%, whereas in control 26.99%, 5.75, 23.08° Brix, and 21.34%, respectively, on 21st day of observation), and furthermore, the firmness, titratable acidity, and vitamin C (11.86 N/m, 0.54, and 8.53%) were higher than those of control (6.12 N/m, 0.38, and 5.09%, respectively). The shelf life of mango fruits (var. Alphonso) treated with multilayer nanofiber matrices was extended up to 23 days compared to that of the control fruits (12 days). Thus, the overall results suggested that multilayer nanofiber matrices effectively encapsulate hexanal and regulate its release slowly, which could be effectively used to enhance the physical and biochemical components and shelf life of fruits.
{"title":"Encapsulation of Biomolecule (Hexanal) Using Multilayer Electrospun Nanofibers (β-Cyclodextrin/PVA/PLGA) for Controlled Release to Extend the Postharvest Shelf Life of Mango Fruits (Alphonso)","authors":"Preetha Sundaram, Kannan Malaichamy*, Subramanian Kizhaeral Sevanthiyppan and Govindaraju Kasivelu, ","doi":"10.1021/acsagscitech.4c0038310.1021/acsagscitech.4c00383","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00383https://doi.org/10.1021/acsagscitech.4c00383","url":null,"abstract":"<p >Electrospun multilayer nanofiber matrices developed using β-cyclodextrin, poly(vinyl alcohol), and poly(lactic-<i>co</i>-glycolic) acid effectively encapsulated the hexanal biomolecule and facilitated its controlled release. The multilayer nanofiber matrices loaded with hexanal (overlay method) are characterized through scanning electron microscopy (171 nm), transmission electron microscopy (73 nm), Fourier transform infrared spectroscopy (peak at 1716 cm<sup>–1</sup> corresponds to hexanal), X-ray diffraction (12.13 and 18.69°), and thermogravimetric analysis (340 °C). Fruits treated with hexanal-loaded multilayer nanofiber matrices by the overlay method recorded a lower loss in physiological weight, pH, total soluble solids, and total sugar content (17.61%, 5.15, 20.05° Brix, 17.32%, whereas in control 26.99%, 5.75, 23.08° Brix, and 21.34%, respectively, on 21st day of observation), and furthermore, the firmness, titratable acidity, and vitamin C (11.86 N/m, 0.54, and 8.53%) were higher than those of control (6.12 N/m, 0.38, and 5.09%, respectively). The shelf life of mango fruits (var. Alphonso) treated with multilayer nanofiber matrices was extended up to 23 days compared to that of the control fruits (12 days). Thus, the overall results suggested that multilayer nanofiber matrices effectively encapsulate hexanal and regulate its release slowly, which could be effectively used to enhance the physical and biochemical components and shelf life of fruits.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 9","pages":"947–960 947–960"},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}