CAR-T cell therapy is known as an effective therapy in patients with hematological malignancies. Since 2017, several autologous CAR-T cell (auto-CAR-T) drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of some kinds of relapsed/refractory hematological malignancies. However, some patients fail to respond to these drugs due to high manufacturing time, batch-to-batch variation, poor quality and insufficient quantity of primary T cells, and their insufficient expansion and function. CAR-T cells prepared from allogeneic sources (allo-CAR-Ts) can be an alternative option to overcome these obstacles. Recently, several allo-CAR-Ts have entered into the early clinical trials. Despite their promising preclinical and clinical results, there are two main barriers, including graft-versus-host disease (GvHD) and allo-rejection that may decline the safety and efficacy of allo-CAR-Ts in the clinic. The successful development of these products depends on the starter cell source, the gene editing method, and the ability to escape immune rejection and prevent GvHD. Here, we summarize the gene editing technologies and the potential of various cell sources for developing allo-CAR-Ts and highlight their advantages for the treatment of hematological malignancies. We also describe preclinical and clinical data focusing on allo-CAR-T therapy in blood malignancies and discuss challenges and future perspectives of allo-CAR-Ts for therapeutic applications.
{"title":"Recent updates on allogeneic CAR-T cells in hematological malignancies.","authors":"Shafieeh Mansoori, Ahmad Noei, Amirhosein Maali, Seyedeh Sheila Seyed-Motahari, Zahra Sharifzadeh","doi":"10.1186/s12935-024-03479-y","DOIUrl":"10.1186/s12935-024-03479-y","url":null,"abstract":"<p><p>CAR-T cell therapy is known as an effective therapy in patients with hematological malignancies. Since 2017, several autologous CAR-T cell (auto-CAR-T) drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of some kinds of relapsed/refractory hematological malignancies. However, some patients fail to respond to these drugs due to high manufacturing time, batch-to-batch variation, poor quality and insufficient quantity of primary T cells, and their insufficient expansion and function. CAR-T cells prepared from allogeneic sources (allo-CAR-Ts) can be an alternative option to overcome these obstacles. Recently, several allo-CAR-Ts have entered into the early clinical trials. Despite their promising preclinical and clinical results, there are two main barriers, including graft-versus-host disease (GvHD) and allo-rejection that may decline the safety and efficacy of allo-CAR-Ts in the clinic. The successful development of these products depends on the starter cell source, the gene editing method, and the ability to escape immune rejection and prevent GvHD. Here, we summarize the gene editing technologies and the potential of various cell sources for developing allo-CAR-Ts and highlight their advantages for the treatment of hematological malignancies. We also describe preclinical and clinical data focusing on allo-CAR-T therapy in blood malignancies and discuss challenges and future perspectives of allo-CAR-Ts for therapeutic applications.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1186/s12935-024-03483-2
Qinghua Xie, Yaohua Hu, Chenyang Zhang, Caiqin Zhang, Jing Qin, Yong Zhao, Qingling An, Jie Zheng, Changhong Shi
Prostate cancer (PCa) is one of the most common and prevalent cancers in men worldwide. The majority of PCa-related deaths result from metastasis rather than primary tumors. Several studies have focused on the relationship between male-specific genes encoded on the Y chromosome and PCa metastasis; however, the relationship between the male specific protein encoded on the Y chromosome and tumor suppression has not been fully clarified. Here, we report a male specific protein of this type, the histone H3 lysine 4 (H3K4) demethylase JARID1D, which has the ability to inhibit the gene expression program related to cell invasion, and can thus form a phenotype that inhibits the invasion of PCa cells. However, JARID1D exhibits low expression level in advanced PCa, and which is related to rapid invasion and metastasis in patients with PCa. Curcumin, as a multi-target drug, can enhance the expression and demethylation activity of JARID1D, affect the androgen receptor (AR) and epithelial-mesenchymal transition (EMT) signaling cascade, and inhibit the metastatic potential of castration resistant cancer (CRPC). These findings suggest that using curcumin to increase the expression and demethylation activity of JARID1D may be a feasible strategy to inhibit PCa metastasis by regulating EMT and AR.
{"title":"Curcumin blunts epithelial-mesenchymal transition to alleviate invasion and metastasis of prostate cancer through the JARID1D demethylation.","authors":"Qinghua Xie, Yaohua Hu, Chenyang Zhang, Caiqin Zhang, Jing Qin, Yong Zhao, Qingling An, Jie Zheng, Changhong Shi","doi":"10.1186/s12935-024-03483-2","DOIUrl":"10.1186/s12935-024-03483-2","url":null,"abstract":"<p><p>Prostate cancer (PCa) is one of the most common and prevalent cancers in men worldwide. The majority of PCa-related deaths result from metastasis rather than primary tumors. Several studies have focused on the relationship between male-specific genes encoded on the Y chromosome and PCa metastasis; however, the relationship between the male specific protein encoded on the Y chromosome and tumor suppression has not been fully clarified. Here, we report a male specific protein of this type, the histone H3 lysine 4 (H3K4) demethylase JARID1D, which has the ability to inhibit the gene expression program related to cell invasion, and can thus form a phenotype that inhibits the invasion of PCa cells. However, JARID1D exhibits low expression level in advanced PCa, and which is related to rapid invasion and metastasis in patients with PCa. Curcumin, as a multi-target drug, can enhance the expression and demethylation activity of JARID1D, affect the androgen receptor (AR) and epithelial-mesenchymal transition (EMT) signaling cascade, and inhibit the metastatic potential of castration resistant cancer (CRPC). These findings suggest that using curcumin to increase the expression and demethylation activity of JARID1D may be a feasible strategy to inhibit PCa metastasis by regulating EMT and AR.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1186/s12935-024-03488-x
Piaopiao Wang, Lei Yang, Jing Dong, Wenjing Liu, Fan Xie, Yan Lu, Wenyan Li
Small extracellular vesicles (sEVs) are important mediators of intercellular communication between tumor cells and their surrounding environment. Furthermore, the mechanisms by which miRNAs carried in tumor sEVs regulate macrophage polarization remain largely unknown. To concentrate sEVs, we used the traditional ultracentrifugation method. Western blot, NanoSight, and transmission electron microscopy were used to identify sEVs. To determine the function of sEVs-miR-487a, we conducted in vivo and in vitro investigations. The intercellular communication mechanism between osteosarcoma cells and M2 macrophages, mediated by sEVs carrying miR-487a, was validated using luciferase reporter assays, transwell assays, and Western blot analysis. In vitro, sEVs enriched in miR-487a and delivered miR-487a to macrophages, promoting macrophage polarization toward an M2-like type, which promotes proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. In vivo, sEVs enriched in miR-487a facilitate lung metastasis of osteosarcoma. Moreover, plasma miR-487a in sEVs was shown to be a potential biomarker applicable for osteosarcoma diagnosis. In summary, miR-487a derived from osteosarcoma cells can be transferred to macrophages via sEVs, then promote macrophage polarization towards an M2-like type by targeting Notch2 and activating the GATA3 pathway. In a feedback loop, the activation of macrophages accelerates epithelial-mesenchymal transition (EMT), which in turn promotes the migration, invasion, and lung metastasis of osteosarcoma cells. This reciprocal interaction between activated macrophages and osteosarcoma cells contributes to the progression of the disease. Our data demonstrate a new mechanism that osteosarcoma tumor cells derived exosomal-miR-487a which is involved in osteosarcoma development by regulating macrophage polarization in tumor microenvironment (TME).
{"title":"The sEVs miR-487a/Notch2/GATA3 axis promotes osteosarcoma lung metastasis by inducing macrophage polarization toward the M2-subtype.","authors":"Piaopiao Wang, Lei Yang, Jing Dong, Wenjing Liu, Fan Xie, Yan Lu, Wenyan Li","doi":"10.1186/s12935-024-03488-x","DOIUrl":"10.1186/s12935-024-03488-x","url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) are important mediators of intercellular communication between tumor cells and their surrounding environment. Furthermore, the mechanisms by which miRNAs carried in tumor sEVs regulate macrophage polarization remain largely unknown. To concentrate sEVs, we used the traditional ultracentrifugation method. Western blot, NanoSight, and transmission electron microscopy were used to identify sEVs. To determine the function of sEVs-miR-487a, we conducted in vivo and in vitro investigations. The intercellular communication mechanism between osteosarcoma cells and M2 macrophages, mediated by sEVs carrying miR-487a, was validated using luciferase reporter assays, transwell assays, and Western blot analysis. In vitro, sEVs enriched in miR-487a and delivered miR-487a to macrophages, promoting macrophage polarization toward an M2-like type, which promotes proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. In vivo, sEVs enriched in miR-487a facilitate lung metastasis of osteosarcoma. Moreover, plasma miR-487a in sEVs was shown to be a potential biomarker applicable for osteosarcoma diagnosis. In summary, miR-487a derived from osteosarcoma cells can be transferred to macrophages via sEVs, then promote macrophage polarization towards an M2-like type by targeting Notch2 and activating the GATA3 pathway. In a feedback loop, the activation of macrophages accelerates epithelial-mesenchymal transition (EMT), which in turn promotes the migration, invasion, and lung metastasis of osteosarcoma cells. This reciprocal interaction between activated macrophages and osteosarcoma cells contributes to the progression of the disease. Our data demonstrate a new mechanism that osteosarcoma tumor cells derived exosomal-miR-487a which is involved in osteosarcoma development by regulating macrophage polarization in tumor microenvironment (TME).</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune checkpoint inhibitors (ICIs) have achieved remarkable success in clinical research and practice. Notably, liver metastasis is not sensitive to ICIs. Liver locoregional therapies can cause irreversible damage to tumor cells and release tumor antigens, thereby providing a rationale for immunotherapy treatments in liver metastasis. The combination therapy of ICIs with locoregional therapies is a promising option for patients with liver metastasis. Preclinical studies have demonstrated that combining ICIs with locoregional therapies produces a significantly synergistic anti-tumor effect. However, the current evidence for the efficacy of ICIs combined with locoregional therapies remains insufficient. Therefore, we review the literature on the mechanisms of locoregional therapies in treating liver metastasis and the clinical research progress of their combination with ICIs.
{"title":"Locoregional therapies combined with immune checkpoint inhibitors for liver metastases.","authors":"Xing-Chen Zhang, Yu-Wen Zhou, Gui-Xia Wei, Yi-Qiao Luo, Meng Qiu","doi":"10.1186/s12935-024-03484-1","DOIUrl":"10.1186/s12935-024-03484-1","url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have achieved remarkable success in clinical research and practice. Notably, liver metastasis is not sensitive to ICIs. Liver locoregional therapies can cause irreversible damage to tumor cells and release tumor antigens, thereby providing a rationale for immunotherapy treatments in liver metastasis. The combination therapy of ICIs with locoregional therapies is a promising option for patients with liver metastasis. Preclinical studies have demonstrated that combining ICIs with locoregional therapies produces a significantly synergistic anti-tumor effect. However, the current evidence for the efficacy of ICIs combined with locoregional therapies remains insufficient. Therefore, we review the literature on the mechanisms of locoregional therapies in treating liver metastasis and the clinical research progress of their combination with ICIs.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1186/s12935-024-03485-0
Zhuang Li, Qiwei Zhao, Xiayang Liu, Xinyue Zhou, Yu Wang, Min Zhao, Fenghua Wu, Gang Zhao, Xiaohong Guo
Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors among oral cancers, and its treatment is based on radio-chemotherapy and surgery, which always produces more serious side effects and sequelae. Traditional medicine can compensate for the shortcomings of modern medical treatments and play a better therapeutic role. Currently, active ingredients derived from plants are attracting the attention of researchers and clinical professionals. We examined capsaicin (CAP), an active ingredient isolated from Capsicum annuum (family Solanaceae), and explored the effect of CAP combined with cisplatin (DDP) on epithelial-mesenchymal transition (EMT) and TSCC cells migration. Our results demonstrated that Transforming growth factor-β1(TGF-β1) induced EMT and promoted cell migration in TSCC cells. CAP combined with DDP inhibits non-TGF-β1-induced or TGF-β1-induced EMT and migration. Mechanistically, the inhibition of non-TGF-β1-induced EMT and migration by CAP combined with DDP was mediated by the AMPK/mTOR pathway, whereas TGF-β1-induced EMT and migration were regulated by the Claudin-1/PI3K/AKT/mTOR pathway. A nude lung metastasis mouse model was established for in vivo validation. These results support our hypothesis that the combination of CAP and DDP inhibits TSCC metastasis. These data set the stage for further studies aimed at validating CAP as an effective active ingredient for enhancing chemotherapy efficacy and reducing the dosage and toxicity of chemotherapeutic drugs, ultimately paving the way for translational research and clinical trials for TSCC eradication.
舌鳞状细胞癌(TSCC)是口腔癌中最常见的恶性肿瘤之一,其治疗方法以放射化疗和手术为主,但总是会产生较严重的副作用和后遗症。传统医学可以弥补现代医学治疗的不足,发挥更好的治疗作用。目前,从植物中提取的活性成分正受到研究人员和临床专业人员的关注。我们研究了从茄科植物辣椒(Capsicum annuum)中分离出的有效成分辣椒素(CAP),并探讨了 CAP 与顺铂(DDP)联合使用对上皮细胞-间质转化(EMT)和 TSCC 细胞迁移的影响。结果表明,转化生长因子-β1(TGF-β1)可诱导上皮-间质转化并促进 TSCC 细胞迁移。CAP 联合 DDP 可抑制非 TGF-β1 诱导或 TGF-β1 诱导的 EMT 和迁移。从机理上讲,CAP联合DDP抑制非TGF-β1诱导的EMT和迁移是由AMPK/mTOR途径介导的,而TGF-β1诱导的EMT和迁移是由Claudin-1/PI3K/AKT/mTOR途径调控的。我们建立了一个裸肺转移小鼠模型进行体内验证。这些结果支持了我们的假设,即 CAP 和 DDP 联合使用可抑制 TSCC 转移。这些数据为进一步的研究奠定了基础,这些研究旨在验证 CAP 是一种有效的活性成分,可增强化疗效果并减少化疗药物的剂量和毒性,最终为根除 TSCC 的转化研究和临床试验铺平道路。
{"title":"Capsaicin combined with cisplatin inhibits TGF-β1-induced EMT and TSCC cells migration via the Claudin-1/PI3K/AKT/mTOR signaling pathway.","authors":"Zhuang Li, Qiwei Zhao, Xiayang Liu, Xinyue Zhou, Yu Wang, Min Zhao, Fenghua Wu, Gang Zhao, Xiaohong Guo","doi":"10.1186/s12935-024-03485-0","DOIUrl":"10.1186/s12935-024-03485-0","url":null,"abstract":"<p><p>Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors among oral cancers, and its treatment is based on radio-chemotherapy and surgery, which always produces more serious side effects and sequelae. Traditional medicine can compensate for the shortcomings of modern medical treatments and play a better therapeutic role. Currently, active ingredients derived from plants are attracting the attention of researchers and clinical professionals. We examined capsaicin (CAP), an active ingredient isolated from Capsicum annuum (family Solanaceae), and explored the effect of CAP combined with cisplatin (DDP) on epithelial-mesenchymal transition (EMT) and TSCC cells migration. Our results demonstrated that Transforming growth factor-β1(TGF-β1) induced EMT and promoted cell migration in TSCC cells. CAP combined with DDP inhibits non-TGF-β1-induced or TGF-β1-induced EMT and migration. Mechanistically, the inhibition of non-TGF-β1-induced EMT and migration by CAP combined with DDP was mediated by the AMPK/mTOR pathway, whereas TGF-β1-induced EMT and migration were regulated by the Claudin-1/PI3K/AKT/mTOR pathway. A nude lung metastasis mouse model was established for in vivo validation. These results support our hypothesis that the combination of CAP and DDP inhibits TSCC metastasis. These data set the stage for further studies aimed at validating CAP as an effective active ingredient for enhancing chemotherapy efficacy and reducing the dosage and toxicity of chemotherapeutic drugs, ultimately paving the way for translational research and clinical trials for TSCC eradication.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1186/s12935-024-03480-5
Weitong Shu, Qianying Huang, Rui Chen, Huatao Lan, Luxin Yu, Kai Cui, Wanjun He, Songshan Zhu, Mei Chen, Li Li, Dan Jiang, Guangxian Xu
Gastrointestinal cancer is the most common malignancy in humans, often accompanied by poor prognosis. N6-methyladenosine (m6A) modification is widely present in eukaryotic cells as the most abundant RNA modification. It plays a crucial role in RNA splicing and processing, nuclear export, translation, and stability. Human AlkB homolog 5 (ALKBH5) is a type of RNA demethylase exhibiting abnormal expression in various gastrointestinal cancers.It is closely related to the tumorigenesis, proliferation, migration, and other biological functions of gastrointestinal cancer. However, recent studies indicated that the role and mechanism of ALKBH5 in gastrointestinal cancer are complicated and even controversial. Thus, this review summarizes recent advances in elucidating the role of ALKBH5 as a tumor suppressor or promoter in gastrointestinal cancer. It examines the biological functions of ALKBH5 and its potential as a therapeutic target, providing new perspectives and insights for gastrointestinal cancer research.
{"title":"Complicated role of ALKBH5 in gastrointestinal cancer: an updated review.","authors":"Weitong Shu, Qianying Huang, Rui Chen, Huatao Lan, Luxin Yu, Kai Cui, Wanjun He, Songshan Zhu, Mei Chen, Li Li, Dan Jiang, Guangxian Xu","doi":"10.1186/s12935-024-03480-5","DOIUrl":"10.1186/s12935-024-03480-5","url":null,"abstract":"<p><p>Gastrointestinal cancer is the most common malignancy in humans, often accompanied by poor prognosis. N6-methyladenosine (m6A) modification is widely present in eukaryotic cells as the most abundant RNA modification. It plays a crucial role in RNA splicing and processing, nuclear export, translation, and stability. Human AlkB homolog 5 (ALKBH5) is a type of RNA demethylase exhibiting abnormal expression in various gastrointestinal cancers.It is closely related to the tumorigenesis, proliferation, migration, and other biological functions of gastrointestinal cancer. However, recent studies indicated that the role and mechanism of ALKBH5 in gastrointestinal cancer are complicated and even controversial. Thus, this review summarizes recent advances in elucidating the role of ALKBH5 as a tumor suppressor or promoter in gastrointestinal cancer. It examines the biological functions of ALKBH5 and its potential as a therapeutic target, providing new perspectives and insights for gastrointestinal cancer research.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1186/s12935-024-03465-4
Gaoteng Lin, Jiamei Lin, Hao Wang, Liucheng Wang, Fangfang Zhan, Liqian Wu, Liang Xue, Yang Dong, Wanqing Wei, Lin Liu
It is accepted that cancer stem cells (CSCs) are key to the occurrence, progression, drug resistance, and recurrence of bladder cancer (BLCA). Here, we aimed to characterize the landscapes of CSCs and investigate the biological and clinical signatures based on a prognostic model constructed by genes associated with CSCs. The malignant epithelial cells were discovered and sorted into six clusters through single cell analysis. C2 was identified as the CSCs. The signaling involved in the interactions between C2, cancer-associated fibroblasts (CAFs), and immune cells mainly consisted of MK, THBS, ANGPTL, VISFATIN, JAM, and ncWNT pathways. The CSC-like prognostic index (CSCLPI) constructed by the random survival forest was a reliable risk factor for BLCA and had a stable and powerful effect on predicting the overall survival of patients with BLCA. The level of CAFs was higher among patients with higher CSCLPI scores, suggesting that CAFs play a significant role in regulating biological characteristics. The CSCLPI-developed survival prediction nomogram has the potential to be applied clinically to predict the 1-, 2-, 3-, and 5-year overall survival of patients with BLCA. The CSCLPI can be used for prognostic prediction and drug treatment evaluation in the clinic.
{"title":"Characterization of the stem cell landscape and identification of a stemness-associated prognostic signature in bladder cancer.","authors":"Gaoteng Lin, Jiamei Lin, Hao Wang, Liucheng Wang, Fangfang Zhan, Liqian Wu, Liang Xue, Yang Dong, Wanqing Wei, Lin Liu","doi":"10.1186/s12935-024-03465-4","DOIUrl":"10.1186/s12935-024-03465-4","url":null,"abstract":"<p><p>It is accepted that cancer stem cells (CSCs) are key to the occurrence, progression, drug resistance, and recurrence of bladder cancer (BLCA). Here, we aimed to characterize the landscapes of CSCs and investigate the biological and clinical signatures based on a prognostic model constructed by genes associated with CSCs. The malignant epithelial cells were discovered and sorted into six clusters through single cell analysis. C2 was identified as the CSCs. The signaling involved in the interactions between C2, cancer-associated fibroblasts (CAFs), and immune cells mainly consisted of MK, THBS, ANGPTL, VISFATIN, JAM, and ncWNT pathways. The CSC-like prognostic index (CSCLPI) constructed by the random survival forest was a reliable risk factor for BLCA and had a stable and powerful effect on predicting the overall survival of patients with BLCA. The level of CAFs was higher among patients with higher CSCLPI scores, suggesting that CAFs play a significant role in regulating biological characteristics. The CSCLPI-developed survival prediction nomogram has the potential to be applied clinically to predict the 1-, 2-, 3-, and 5-year overall survival of patients with BLCA. The CSCLPI can be used for prognostic prediction and drug treatment evaluation in the clinic.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1186/s12935-024-03462-7
Ming Wang, Bangshun Dai, Qiushi Liu, Xiansheng Zhang
Background: Prostate cancer is one of the most common cancers in men with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles in tumor progression and can potentially serve as prognostic and therapeutic biomarkers in PCa. This study aimed to develop a prognostic signature for BCR in PCa using PCD-related genes.
Materials and methods: We conducted an analysis of 19 different modes of PCD to develop a comprehensive model. Bulk transcriptomic, single-cell transcriptomic, genomic, and clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, and GSE193337. We analyzed the expression and mutations of the 19 PCD modes and constructed, evaluated, and validated the model.
Results: Ten PCD modes were found to be associated with BCR in PCa, with specific PCD patterns exhibited by various cell components within the tumor microenvironment. Through Lasso Cox regression analysis, we established a Programmed Cell Death Index (PCDI) utilizing an 11-gene signature. High PCDI values were validated in five independent datasets and were found to be associated with an increased risk of BCR in PCa patients. Notably, older age and advanced T and N staging were associated with higher PCDI values. By combining PCDI with T staging, we constructed a nomogram with enhanced predictive performance. Additionally, high PCDI values were significantly correlated with decreased drug sensitivity, including drugs such as Docetaxel and Methotrexate. Patients with lower PCDI values demonstrated higher immunophenoscores (IPS), suggesting a potentially higher response rate to immune therapy. Furthermore, PCDI was associated with immune checkpoint genes and key components of the tumor microenvironment, including macrophages, T cells, and NK cells. Finally, clinical specimens validated the differential expression of PCDI-related PCDRGs at both the gene and protein levels.
Conclusion: In conclusion, we developed a novel PCD-based prognostic feature that successfully predicted BCR in PCa patients and provided insights into drug sensitivity and potential response to immune therapy. These findings have significant clinical implications for the treatment of PCa.
{"title":"Prognostic and immunological implications of heterogeneous cell death patterns in prostate cancer.","authors":"Ming Wang, Bangshun Dai, Qiushi Liu, Xiansheng Zhang","doi":"10.1186/s12935-024-03462-7","DOIUrl":"10.1186/s12935-024-03462-7","url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer is one of the most common cancers in men with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles in tumor progression and can potentially serve as prognostic and therapeutic biomarkers in PCa. This study aimed to develop a prognostic signature for BCR in PCa using PCD-related genes.</p><p><strong>Materials and methods: </strong>We conducted an analysis of 19 different modes of PCD to develop a comprehensive model. Bulk transcriptomic, single-cell transcriptomic, genomic, and clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, and GSE193337. We analyzed the expression and mutations of the 19 PCD modes and constructed, evaluated, and validated the model.</p><p><strong>Results: </strong>Ten PCD modes were found to be associated with BCR in PCa, with specific PCD patterns exhibited by various cell components within the tumor microenvironment. Through Lasso Cox regression analysis, we established a Programmed Cell Death Index (PCDI) utilizing an 11-gene signature. High PCDI values were validated in five independent datasets and were found to be associated with an increased risk of BCR in PCa patients. Notably, older age and advanced T and N staging were associated with higher PCDI values. By combining PCDI with T staging, we constructed a nomogram with enhanced predictive performance. Additionally, high PCDI values were significantly correlated with decreased drug sensitivity, including drugs such as Docetaxel and Methotrexate. Patients with lower PCDI values demonstrated higher immunophenoscores (IPS), suggesting a potentially higher response rate to immune therapy. Furthermore, PCDI was associated with immune checkpoint genes and key components of the tumor microenvironment, including macrophages, T cells, and NK cells. Finally, clinical specimens validated the differential expression of PCDI-related PCDRGs at both the gene and protein levels.</p><p><strong>Conclusion: </strong>In conclusion, we developed a novel PCD-based prognostic feature that successfully predicted BCR in PCa patients and provided insights into drug sensitivity and potential response to immune therapy. These findings have significant clinical implications for the treatment of PCa.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Vascular endothelial growth factor (VEGF) is an important proangiogenic factor and has been considered as a key target of antiangiogenetic therapy in oral squamous cell carcinoma (OSCC). However, clinical application of bevacizumab, a specific VEGF antibody, didn't improve the survival rate of OSCC patients. One possible explanation is that VEGF gene expresses diverse isoforms, which associate with extracellular vesicles (EVs), and EVs potentially contribute to VEGF resistance to bevacizumab. However, clear solution is lacking in addressing this issue.
Methods: Expression of VEGF isoforms in OSCC cells was confirmed by reverse transcription and polymerase chain reaction (RT-PCR) and western blot. EVs isolated from OSCC cell's conditioned medium (CM) were characterized by western blot, transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Flow cytometry, immunogold labeling and western blot were applied to study the VEGF on EVs. Tube formation assay and Matrigel plug angiogenesis assay were used for analyzing the angiogenesis capacity of EV-VEGF.
Results: The most popular isoforms expressed by VEGF gene are VEGF121, VEGF165 and VEGF189. In this study, we demonstrated that all three isoforms of mRNA could be detected at varying levels in OSCC cells, while only VEGF165 and VEGF189 proteins were found. CM derived from OSCC cells, both soluble and non-soluble forms of VEGF could be detected. We further confirmed the presence of VGEF189 bound to EVs as a non-soluble form. EV-bound VEGF189 presented angiogenic activity, which could not be neutralized by bevacizumab. It was found that VEGF189 bound to EVs by heparan sulfate proteoglycans (HSPG). In addition, the angiogenic effect of EV-VEGF could be reversed by surfen, a kind of HSPG antagonist both in vitro and in vivo.
Conclusion: Antagonists targeting HSPG might potentially overcome the resistance of EV-VEGF to bevacizumab and serve as an alternative for anti-VEGF therapy in OSCC.
背景:血管内皮生长因子(VEGF)是一种重要的促血管生成因子,一直被认为是口腔鳞状细胞癌(OSCC)抗血管生成治疗的关键靶点。然而,贝伐单抗(一种特异性血管内皮生长因子抗体)的临床应用并没有提高 OSCC 患者的生存率。一种可能的解释是血管内皮生长因子(VEGF)基因表达不同的异构体,这些异构体与细胞外囊泡(EVs)相关联,而EVs可能导致血管内皮生长因子对贝伐单抗产生耐药性。然而,在解决这一问题方面还缺乏明确的方案:方法:通过反转录聚合酶链式反应(RT-PCR)和免疫印迹证实了VEGF同工酶在OSCC细胞中的表达。从 OSCC 细胞的条件培养基(CM)中分离出的 EVs 通过 Western 印迹、透射电子显微镜(TEM)和纳米粒子追踪分析(NTA)进行表征。应用流式细胞术、免疫金标记和 Western 印迹法研究了 EVs 上的 VEGF。结果表明,EV-VEGF表达的最多的异构体是EV-VEGF,而EV-VEGF表达的最多的异构体是EV-VEGF:结果:VEGF 基因最常表达的同工型是 VEGF121、VEGF165 和 VEGF189。本研究表明,在 OSCC 细胞中可检测到不同水平的三种同工酶 mRNA,但只发现了 VEGF165 和 VEGF189 蛋白。从 OSCC 细胞中提取的 CM 可以检测到可溶性和非可溶性形式的 VEGF。我们进一步证实,与 EV 结合的 VGEF189 以非可溶性形式存在。与 EV 结合的 VEGF189 具有血管生成活性,贝伐珠单抗无法中和这种活性。研究发现,VEGF189 是通过硫酸肝素蛋白多糖(HSPG)与 EV 结合的。此外,一种 HSPG 拮抗剂 surfen 可以在体外和体内逆转 EV-VEGF 的血管生成效应:结论:靶向 HSPG 的拮抗剂有可能克服 EV-VEGF 对贝伐单抗的耐药性,成为 OSCC 抗血管内皮生长因子疗法的替代疗法。
{"title":"Extracellular vesicle-bound VEGF in oral squamous cell carcinoma and its role in resistance to Bevacizumab Therapy.","authors":"Jiasheng Zhou, Xue Liu, Qi Dong, Jiao Li, Weidong Niu, Tingjiao Liu","doi":"10.1186/s12935-024-03476-1","DOIUrl":"10.1186/s12935-024-03476-1","url":null,"abstract":"<p><strong>Background: </strong>Vascular endothelial growth factor (VEGF) is an important proangiogenic factor and has been considered as a key target of antiangiogenetic therapy in oral squamous cell carcinoma (OSCC). However, clinical application of bevacizumab, a specific VEGF antibody, didn't improve the survival rate of OSCC patients. One possible explanation is that VEGF gene expresses diverse isoforms, which associate with extracellular vesicles (EVs), and EVs potentially contribute to VEGF resistance to bevacizumab. However, clear solution is lacking in addressing this issue.</p><p><strong>Methods: </strong>Expression of VEGF isoforms in OSCC cells was confirmed by reverse transcription and polymerase chain reaction (RT-PCR) and western blot. EVs isolated from OSCC cell's conditioned medium (CM) were characterized by western blot, transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Flow cytometry, immunogold labeling and western blot were applied to study the VEGF on EVs. Tube formation assay and Matrigel plug angiogenesis assay were used for analyzing the angiogenesis capacity of EV-VEGF.</p><p><strong>Results: </strong>The most popular isoforms expressed by VEGF gene are VEGF<sub>121</sub>, VEGF<sub>165</sub> and VEGF<sub>189</sub>. In this study, we demonstrated that all three isoforms of mRNA could be detected at varying levels in OSCC cells, while only VEGF<sub>165</sub> and VEGF<sub>189</sub> proteins were found. CM derived from OSCC cells, both soluble and non-soluble forms of VEGF could be detected. We further confirmed the presence of VGEF<sub>189</sub> bound to EVs as a non-soluble form. EV-bound VEGF<sub>189</sub> presented angiogenic activity, which could not be neutralized by bevacizumab. It was found that VEGF<sub>189</sub> bound to EVs by heparan sulfate proteoglycans (HSPG). In addition, the angiogenic effect of EV-VEGF could be reversed by surfen, a kind of HSPG antagonist both in vitro and in vivo.</p><p><strong>Conclusion: </strong>Antagonists targeting HSPG might potentially overcome the resistance of EV-VEGF to bevacizumab and serve as an alternative for anti-VEGF therapy in OSCC.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1186/s12935-024-03481-4
Zhongshu Lin, Guanxiang Hua, Xiaojuan Hu
Cancer is closely related to lipid metabolism, with the tumor microenvironment (TME) containing numerous lipid metabolic interactions. Cancer cells can bidirectionally interact with immune and stromal cells, the major components of the TME. This interaction is primarily mediated by fatty acids (FAs), cholesterol, and phospholipids. These interactions can lead to various physiological changes, including immune suppression, cancer cell proliferation, dissemination, and anti-apoptotic effects on cancer cells. The physiological modulation resulting from this lipid metabolism-associated crosstalk between cancer cells and immune/stromal cells provides valuable insights into cancer prognosis. A comprehensive literature review was conducted to examine the function of the bidirectional lipid metabolism interactions between cancer cells and immune/stromal cells within the TME, particularly how these interactions influence cancer prognosis. A novel autophagy-extracellular vesicle (EV) pathway has been proposed as a mediator of lipid metabolism interactions between cancer cells and immune cells/stromal cells, impacting cancer prognosis. As a result, different forms of lipid metabolism interactions have been described as being linked to cancer prognosis, including those mediated by the autophagy-EV pathway. In conclusion, understanding the bidirectional lipid metabolism interactions between cancer cells and stromal/immune cells in the TME can help develop more advanced prognostic approaches for cancer patients.
{"title":"Lipid metabolism associated crosstalk: the bidirectional interaction between cancer cells and immune/stromal cells within the tumor microenvironment for prognostic insight.","authors":"Zhongshu Lin, Guanxiang Hua, Xiaojuan Hu","doi":"10.1186/s12935-024-03481-4","DOIUrl":"10.1186/s12935-024-03481-4","url":null,"abstract":"<p><p>Cancer is closely related to lipid metabolism, with the tumor microenvironment (TME) containing numerous lipid metabolic interactions. Cancer cells can bidirectionally interact with immune and stromal cells, the major components of the TME. This interaction is primarily mediated by fatty acids (FAs), cholesterol, and phospholipids. These interactions can lead to various physiological changes, including immune suppression, cancer cell proliferation, dissemination, and anti-apoptotic effects on cancer cells. The physiological modulation resulting from this lipid metabolism-associated crosstalk between cancer cells and immune/stromal cells provides valuable insights into cancer prognosis. A comprehensive literature review was conducted to examine the function of the bidirectional lipid metabolism interactions between cancer cells and immune/stromal cells within the TME, particularly how these interactions influence cancer prognosis. A novel autophagy-extracellular vesicle (EV) pathway has been proposed as a mediator of lipid metabolism interactions between cancer cells and immune cells/stromal cells, impacting cancer prognosis. As a result, different forms of lipid metabolism interactions have been described as being linked to cancer prognosis, including those mediated by the autophagy-EV pathway. In conclusion, understanding the bidirectional lipid metabolism interactions between cancer cells and stromal/immune cells in the TME can help develop more advanced prognostic approaches for cancer patients.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}