首页 > 最新文献

Autophagy最新文献

英文 中文
BIN1 deficiency enhances ULK3-dependent autophagic flux and reduces dendritic size in mouse hippocampal neurons. BIN1 缺乏会增强 ULK3 依赖性自噬通量并缩小小鼠海马神经元的树突大小。
Pub Date : 2025-01-01 Epub Date: 2024-09-10 DOI: 10.1080/15548627.2024.2393932
Yuxi Jin, Lin Zhao, Yanli Zhang, Tingzhen Chen, Huili Shi, Huaiqing Sun, Shixin Ding, Sijia Chen, Haifeng Cao, Guannan Zhang, Qian Li, Junying Gao, Ming Xiao, Chengyu Sheng

Genome-wide association studies identified variants around the BIN1 (bridging integrator 1) gene locus as prominent risk factors for late-onset Alzheimer disease. In the present study, we decreased the expression of BIN1 in mouse hippocampal neurons to investigate its neuronal function. Bin1 knockdown via RNAi reduced the dendritic arbor size in primary cultured hippocampal neurons as well as in mature Cornu Ammonis 1 excitatory neurons. The AAV-mediated Bin1 RNAi knockdown also generated a significant regional volume loss around the injection sites at the organ level, as revealed by 7-Tesla structural magnetic resonance imaging, and an impaired spatial reference memory performance in the Barnes maze test. Unexpectedly, Bin1 knockdown led to concurrent activation of both macroautophagy/autophagy and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Autophagy inhibition with the lysosome inhibitor chloroquine effectively mitigated the Bin1 knockdown-induced dendritic regression. The subsequent molecular studydemonstrated that increased expression of ULK3 (unc-51 like kinase 3), which is MTOR-insensitive, supported autophagosome formation in BIN1 deficiency. Reducing ULK3 activity with SU6668, a receptor tyrosine kinase inhibitor, or decreasing neuronal ULK3 expression through AAV-mediated RNAi, significantly attenuated Bin1 knockdown-induced hippocampal volume loss and spatial memory decline. In Alzheimer disease patients, the major neuronal isoform of BIN1 is specifically reduced. Our work suggests this reduction is probably an important molecular event that increases the autophagy level, which might subsequently promote brain atrophy and cognitive impairment through reducing dendritic structures, and ULK3 is a potential interventional target for relieving these detrimental effects.Abbreviations: AV: adeno-associated virus; Aβ: amyloid-β; ACTB: actin, beta; AD: Alzheimer disease; Aduk: Another Drosophila Unc-51-like kinase; AKT1: thymoma viral proto-oncogene 1; AMPK: AMP-activated protein kinase; AP: autophagosome; BafA1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BIN1: bridging integrator 1; BIN1-iso1: BIN1, isoform 1; CA1: cornu Ammonis 1; CA3: cornu Ammonis 3; CLAP: clathrin and adapter binding; CQ: chloroquine; DMEM: Dulbecco's modified Eagle medium; EGFP: enhanced green fluorescent protein; GWAS: genome-wide association study; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MRI: magnetic resonance imaging; MTOR; mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; PET: positron emission tomography; qRT-PCR: real-time quantitative reverse transcription PCR; ROS: reactive oxygen species; RPS6KB1: ribosomal protein S6 kinase B1; TFEB: transcription factor EB; ULK1: unc-51 like kinase 1; ULK3: unc-51 like kinase 3.

全基因组关联研究发现,BIN1(桥接整合子 1)基因位点周围的变异是晚发性阿尔茨海默病的主要风险因素。在本研究中,我们降低了 BIN1 在小鼠海马神经元中的表达,以研究其在神经元中的功能。通过RNAi敲除Bin1,原代培养的海马神经元以及成熟的Cornu Ammonis 1兴奋性神经元的树突轴大小均有所减少。7-特斯拉结构磁共振成像显示,AAV介导的Bin1 RNAi敲除还在器官水平上导致注射点周围区域体积显著缩小,并损害了巴恩斯迷宫测试中的空间参照记忆表现。意想不到的是,Bin1基因敲除会同时激活大自噬/自噬和MTOR(雷帕霉素激酶机制靶点)复合物1(MTORC1)。用溶酶体抑制剂氯喹抑制自噬,可有效缓解 Bin1 基因敲除诱导的树突退化。随后的分子研究表明,对MTOR不敏感的ULK3(unc-51 like kinase 3)的表达增加,支持了BIN1缺失时自噬体的形成。使用受体酪氨酸激酶抑制剂SU6668降低ULK3的活性,或通过AAV介导的RNAi减少神经元ULK3的表达,可显著减轻Bin1基因敲除诱导的海马体积损失和空间记忆衰退。在阿尔茨海默病患者中,BIN1 的主要神经元同工形式会特别减少。我们的研究表明,这种减少可能是自噬水平升高的一个重要分子事件,自噬水平升高可能会通过减少树突结构促进脑萎缩和认知障碍,而ULK3是缓解这些有害影响的潜在干预靶点。
{"title":"BIN1 deficiency enhances ULK3-dependent autophagic flux and reduces dendritic size in mouse hippocampal neurons.","authors":"Yuxi Jin, Lin Zhao, Yanli Zhang, Tingzhen Chen, Huili Shi, Huaiqing Sun, Shixin Ding, Sijia Chen, Haifeng Cao, Guannan Zhang, Qian Li, Junying Gao, Ming Xiao, Chengyu Sheng","doi":"10.1080/15548627.2024.2393932","DOIUrl":"10.1080/15548627.2024.2393932","url":null,"abstract":"<p><p>Genome-wide association studies identified variants around the <i>BIN1</i> (bridging integrator 1) gene locus as prominent risk factors for late-onset Alzheimer disease. In the present study, we decreased the expression of BIN1 in mouse hippocampal neurons to investigate its neuronal function. <i>Bin1</i> knockdown via RNAi reduced the dendritic arbor size in primary cultured hippocampal neurons as well as in mature Cornu Ammonis 1 excitatory neurons. The AAV-mediated <i>Bin1</i> RNAi knockdown also generated a significant regional volume loss around the injection sites at the organ level, as revealed by 7-Tesla structural magnetic resonance imaging, and an impaired spatial reference memory performance in the Barnes maze test. Unexpectedly, <i>Bin1</i> knockdown led to concurrent activation of both macroautophagy/autophagy and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Autophagy inhibition with the lysosome inhibitor chloroquine effectively mitigated the <i>Bin1</i> knockdown-induced dendritic regression. The subsequent molecular studydemonstrated that increased expression of ULK3 (unc-51 like kinase 3), which is MTOR-insensitive, supported autophagosome formation in BIN1 deficiency. Reducing ULK3 activity with SU6668, a receptor tyrosine kinase inhibitor, or decreasing neuronal ULK3 expression through AAV-mediated RNAi, significantly attenuated <i>Bin1</i> knockdown-induced hippocampal volume loss and spatial memory decline. In Alzheimer disease patients, the major neuronal isoform of BIN1 is specifically reduced. Our work suggests this reduction is probably an important molecular event that increases the autophagy level, which might subsequently promote brain atrophy and cognitive impairment through reducing dendritic structures, and ULK3 is a potential interventional target for relieving these detrimental effects.<b>Abbreviations</b>: AV: adeno-associated virus; Aβ: amyloid-β; ACTB: actin, beta; AD: Alzheimer disease; Aduk: Another Drosophila Unc-51-like kinase; AKT1: thymoma viral proto-oncogene 1; AMPK: AMP-activated protein kinase; AP: autophagosome; BafA1: bafilomycin A<sub>1</sub>; BDNF: brain derived neurotrophic factor; BIN1: bridging integrator 1; BIN1-iso1: BIN1, isoform 1; CA1: cornu Ammonis 1; CA3: cornu Ammonis 3; CLAP: clathrin and adapter binding; CQ: chloroquine; DMEM: Dulbecco's modified Eagle medium; EGFP: enhanced green fluorescent protein; GWAS: genome-wide association study; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MRI: magnetic resonance imaging; MTOR; mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; PET: positron emission tomography; qRT-PCR: real-time quantitative reverse transcription PCR; ROS: reactive oxygen species; RPS6KB1: ribosomal protein S6 kinase B1; TFEB: transcription factor EB; ULK1: unc-51 like kinase 1; ULK3: unc-51 like kinase 3.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"223-242"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular mechanisms of ESCRT-mediated autophagosome maturation in plants. escrt介导植物自噬体成熟的分子机制
Pub Date : 2025-01-01 Epub Date: 2024-11-03 DOI: 10.1080/15548627.2024.2423327
Niccolò Mosesso, Erika Isono

Diverse environmental stress factors affect the functionality of proteins and membrane compartments within cells causing potentially irremediable damage to the cell. A major process to eliminate nonfunctional molecular aggregates or damaged organelles under stress conditions is macroautophagy/autophagy, thus making its regulation critical for cellular adaptation and survival. The formation of autophagosomes is coordinated by a wide range of cellular factors and culminates in the closure of the cup-shaped double membrane or phagophore. The endosomal sorting complex required for transport (ESCRT) machinery has been proposed to mediate the sealing of the autophagic membranes. However, the molecular basis for ESCRT recruitment to phagophores under stress conditions are not yet fully understood. We recently described the role of ALIX (ALG-2 interacting protein-X) and its interactor CALB1 (Ca2+-dependent Lipid Binding protein 1) in autophagosome maturation during salt stress in Arabidopsis. Our study shows that CALB1 is important for phagophore closure and thus to the subsequent delivery to the vacuole. CALB1 localizes on salt-induced phagophores together with ALIX. CALB1 stimulates the phase separation of ALIX, which can facilitate the further ESCRT recruitment to phagophore membranes.

各种环境应激因素会影响细胞内蛋白质和膜区的功能,从而对细胞造成潜在的无法弥补的损害。在应激条件下,消除无功能分子聚集体或受损细胞器的一个主要过程是大自噬/自噬,因此对它的调控对细胞的适应和存活至关重要。自噬体的形成受多种细胞因子的协调,最终导致杯状双层膜或吞噬体的闭合。运输所需的内体分拣复合体(ESCRT)机制被认为是自噬膜封闭的中介。然而,在应激条件下,ESCRT 招募到吞噬体的分子基础尚未完全清楚。我们最近描述了 ALIX(ALG-2 互作蛋白-X)及其互作因子 CALB1(Ca2+ 依赖性脂质结合蛋白 1)在拟南芥盐胁迫期间自噬体成熟过程中的作用。我们的研究表明,CALB1 对于吞噬体的闭合以及随后向液泡的输送非常重要。CALB1 与 ALIX 一起定位于盐诱导的吞噬体上。CALB1 可刺激 ALIX 的相分离,从而促进 ESCRT 进一步招募到吞噬体膜上。
{"title":"Molecular mechanisms of ESCRT-mediated autophagosome maturation in plants.","authors":"Niccolò Mosesso, Erika Isono","doi":"10.1080/15548627.2024.2423327","DOIUrl":"10.1080/15548627.2024.2423327","url":null,"abstract":"<p><p>Diverse environmental stress factors affect the functionality of proteins and membrane compartments within cells causing potentially irremediable damage to the cell. A major process to eliminate nonfunctional molecular aggregates or damaged organelles under stress conditions is macroautophagy/autophagy, thus making its regulation critical for cellular adaptation and survival. The formation of autophagosomes is coordinated by a wide range of cellular factors and culminates in the closure of the cup-shaped double membrane or phagophore. The endosomal sorting complex required for transport (ESCRT) machinery has been proposed to mediate the sealing of the autophagic membranes. However, the molecular basis for ESCRT recruitment to phagophores under stress conditions are not yet fully understood. We recently described the role of ALIX (ALG-2 interacting protein-X) and its interactor CALB1 (Ca<sup>2+</sup>-dependent Lipid Binding protein 1) in autophagosome maturation during salt stress in Arabidopsis. Our study shows that CALB1 is important for phagophore closure and thus to the subsequent delivery to the vacuole. CALB1 localizes on salt-induced phagophores together with ALIX. CALB1 stimulates the phase separation of ALIX, which can facilitate the further ESCRT recruitment to phagophore membranes.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"252-253"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysosomal damage due to cholesterol accumulation triggers immunogenic cell death. 由胆固醇积累引起的溶酶体损伤触发免疫原性细胞死亡。
Pub Date : 2024-12-27 DOI: 10.1080/15548627.2024.2440842
Karla Alvarez-Valadez, Allan Sauvat, Julien Diharce, Marion Leduc, Gautier Stoll, Lionel Guittat, Flavia Lambertucci, Juliette Paillet, Omar Motiño, Lucille Ferret, Alexandra Muller, Sabrina Forveille, Maria Chiara Maiuri, Oliver Kepp, Alexandre G de Brevern, Harald Wodrich, Jonathan G Pol, Guido Kroemer, Mojgan Djavaheri-Mergny

Cholesterol serves as a vital lipid that regulates numerous physiological processes. Nonetheless, its role in regulating cell death processes remains incompletely understood. In this study, we investigated the role of cholesterol trafficking in immunogenic cell death. Through cell-based drug screening, we identified two antidepressants, sertraline and indatraline, as potent inducers of the nuclear translocation of TFEB (transcription factor EB). Activation of TFEB was mediated through the autophagy-independent lipidation of MAP1LC3/LC3 (microtubule associated protein 1 light chain 3). Both compounds promoted cholesterol accumulation within lysosomes, resulting in lysosomal membrane permeabilization, disruption of autophagy and cell death that could be reversed by cholesterol depletion. Molecular docking analysis indicated that sertraline and indatraline have the potential to inhibit cholesterol binding to the lysosomal cholesterol transporters, NPC1 (NPC intracellular cholesterol transporter 1) and NPC2. This inhibitory effect might be further enhanced by the upregulation of NPC1 and NPC2 expression by TFEB. Both antidepressants also upregulated PLA2G15 (phospholipase A2 group XV), an enzyme that elevates lysosomal cholesterol. In cancer cells, sertraline and indatraline elicited immunogenic cell death, converting dying cells into prophylactic vaccines that were able to confer protection against tumor growth in mice. In a therapeutic setting, a single dose of each compound was sufficient to significantly reduce the outgrowth of established tumors in a T-cell-dependent manner. These results identify sertraline and indatraline as immunostimulatory agents for cancer treatment. More generally, this research shed light on novel therapeutic avenues harnessing lysosomal cholesterol transport to regulate immunogenic cell death.Abbreviation: ATG5: autophagy related 5; ATG13: autophagy related 13; DKO: double knockout; ICD: immunogenic cell death; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; LGALS3: galectin 3; LDL: low-density lipoprotein; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTX: mitoxantrone; NPC1: NPC intracellular cholesterol transporter 1; NPC2: NPC intracellular cholesterol transporter 2; TFE3: transcription factor E3; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1.

胆固醇是一种重要的脂质,可以调节许多生理过程。尽管如此,它在调节细胞死亡过程中的作用仍然不完全清楚。在这项研究中,我们研究了胆固醇运输在免疫原性细胞死亡中的作用。通过基于细胞的药物筛选,我们确定了两种抗抑郁药,舍曲林和茚他林,作为TFEB(转录因子EB)核易位的有效诱导剂。TFEB的激活是通过与自噬无关的MAP1LC3/LC3(微管相关蛋白1轻链3)脂化介导的。这两种化合物都促进了溶酶体内胆固醇的积累,导致溶酶体膜渗透、自噬破坏和细胞死亡,而这可以通过胆固醇消耗来逆转。分子对接分析表明,舍曲林和茚丙林具有抑制胆固醇与溶酶体胆固醇转运蛋白NPC1和NPC2结合的潜力。这种抑制作用可能通过TFEB上调NPC1和NPC2的表达而进一步增强。这两种抗抑郁药也上调PLA2G15(磷脂酶A2组XV),一种升高溶酶体胆固醇的酶。在癌细胞中,舍曲林和茚丙林诱导免疫原性细胞死亡,将垂死的细胞转化为预防性疫苗,能够保护小鼠免受肿瘤生长。在治疗环境中,每种化合物的单剂量足以以t细胞依赖的方式显著减少已建立的肿瘤的生长。这些结果确定舍曲林和茚丙林是治疗癌症的免疫刺激剂。更广泛地说,这项研究揭示了利用溶酶体胆固醇转运来调节免疫原性细胞死亡的新治疗途径。
{"title":"Lysosomal damage due to cholesterol accumulation triggers immunogenic cell death.","authors":"Karla Alvarez-Valadez, Allan Sauvat, Julien Diharce, Marion Leduc, Gautier Stoll, Lionel Guittat, Flavia Lambertucci, Juliette Paillet, Omar Motiño, Lucille Ferret, Alexandra Muller, Sabrina Forveille, Maria Chiara Maiuri, Oliver Kepp, Alexandre G de Brevern, Harald Wodrich, Jonathan G Pol, Guido Kroemer, Mojgan Djavaheri-Mergny","doi":"10.1080/15548627.2024.2440842","DOIUrl":"10.1080/15548627.2024.2440842","url":null,"abstract":"<p><p>Cholesterol serves as a vital lipid that regulates numerous physiological processes. Nonetheless, its role in regulating cell death processes remains incompletely understood. In this study, we investigated the role of cholesterol trafficking in immunogenic cell death. Through cell-based drug screening, we identified two antidepressants, sertraline and indatraline, as potent inducers of the nuclear translocation of TFEB (transcription factor EB). Activation of TFEB was mediated through the autophagy-independent lipidation of MAP1LC3/LC3 (microtubule associated protein 1 light chain 3). Both compounds promoted cholesterol accumulation within lysosomes, resulting in lysosomal membrane permeabilization, disruption of autophagy and cell death that could be reversed by cholesterol depletion. Molecular docking analysis indicated that sertraline and indatraline have the potential to inhibit cholesterol binding to the lysosomal cholesterol transporters, NPC1 (NPC intracellular cholesterol transporter 1) and NPC2. This inhibitory effect might be further enhanced by the upregulation of NPC1 and NPC2 expression by TFEB. Both antidepressants also upregulated PLA2G15 (phospholipase A2 group XV), an enzyme that elevates lysosomal cholesterol. In cancer cells, sertraline and indatraline elicited immunogenic cell death, converting dying cells into prophylactic vaccines that were able to confer protection against tumor growth in mice. In a therapeutic setting, a single dose of each compound was sufficient to significantly reduce the outgrowth of established tumors in a T-cell-dependent manner. These results identify sertraline and indatraline as immunostimulatory agents for cancer treatment. More generally, this research shed light on novel therapeutic avenues harnessing lysosomal cholesterol transport to regulate immunogenic cell death.<b>Abbreviation</b>: ATG5: autophagy related 5; ATG13: autophagy related 13; DKO: double knockout; ICD: immunogenic cell death; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; LGALS3: galectin 3; LDL: low-density lipoprotein; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTX: mitoxantrone; NPC1: NPC intracellular cholesterol transporter 1; NPC2: NPC intracellular cholesterol transporter 2; TFE3: transcription factor E3; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy induction by piplartine ameliorates axonal degeneration caused by mutant HSPB1 and HSPB8 in Charcot-Marie-Tooth type 2 neuropathies. 匹铂诱导自噬可改善2型焦齿神经病中突变型HSPB1和HSPB8引起的轴突变性。
Pub Date : 2024-12-27 DOI: 10.1080/15548627.2024.2439649
Angela Sisto, Tamira van Wermeskerken, Michael Pancher, Pamela Gatto, Bob Asselbergh, Ágata Sofia Assunção Carreira, Vicky De Winter, Valentina Adami, Alessandro Provenzani, Vincent Timmerman

HSPB1 [heat shock protein family B (small) member 1] and HSPB8 are essential molecular chaperones for neuronal proteostasis, as they prevent protein aggregation. Mutant HSPB1 and HSPB8 primarily harm peripheral neurons, resulting in axonal Charcot-Marie-Tooth neuropathies (CMT2). Macroautophagy/autophagy is a shared mechanism by which HSPB1 and HSPB8 mutations cause neuronal dysfunction. Autophagosome formation is reduced in mutant HSPB1-induced pluripotent stem-cell-derived motor neurons from CMT type 2F patients. Likewise, the HSPB8K141N knockin mouse model, mimicking CMT type 2 L, exhibits axonal degeneration and muscle atrophy, with SQSTM1/p62-positive deposits. We show here that mouse embryonic fibroblasts isolated from a HSPB8K141N/green fluorescent protein (GFP)-LC3 model have diminished autophagosome production under conditions of MTOR inhibition. To correct the autophagic deficits in the HSPB1 and HSPB8 models, we screened by high-throughput autophagosome quantification the repurposing Spectrum Collection library for molecules that could boost the autophagic activity above the canonical MTOR inhibition. Hit compounds were validated on motor neurons obtained by differentiation of HSPB1P182L and HSPB8K141N patient-derived induced pluripotent stem cells, focusing on autophagy induction as well as neurite network density, axonal degeneration, and mitochondrial morphology. We identified molecules that specifically stimulate autophagosome formation in the HSPB8K141N cells, without affecting autophagy flux. Two top lead compounds induced autophagy and reduced axonal degeneration, thus promoting neuronal network maturation in the CMT2 patient-derived motor neurons. Based on these findings, the phenotypical screen revealed that piplartine rescued autophagy deficiencies in both the HSPB1 and HSPB8 models, demonstrating autophagy induction as an effective therapeutic strategy for CMT neuropathies and other chaperonopathies.

HSPB1[热休克蛋白家族B(小)成员1]和HSPB8是神经元蛋白静止的重要分子伴侣,因为它们可以阻止蛋白质聚集。突变的HSPB1和HSPB8主要损害外周神经元,导致轴突Charcot-Marie-Tooth神经病(CMT2)。巨噬/自噬是HSPB1和HSPB8突变引起神经元功能障碍的共同机制。来自CMT 2F型患者的突变体hspb1诱导的多能干细胞来源的运动神经元的自噬体形成减少。同样,HSPB8K141N敲入小鼠模型,模拟CMT 2型L,表现为轴突变性和肌肉萎缩,伴有SQSTM1/p62阳性沉积。我们在这里表明,从HSPB8K141N/绿色荧光蛋白(GFP)-LC3模型中分离的小鼠胚胎成纤维细胞在MTOR抑制条件下减少了自噬体的产生。为了纠正HSPB1和HSPB8模型的自噬缺陷,我们通过高通量自噬体定量筛选了可提高自噬活性高于典型MTOR抑制的分子。Hit化合物在HSPB1P182L和HSPB8K141N患者源性诱导多能干细胞分化获得的运动神经元上进行了验证,重点关注自噬诱导、神经突网络密度、轴突变性和线粒体形态。我们在HSPB8K141N细胞中发现了特异性刺激自噬体形成的分子,而不影响自噬通量。两种顶级先导化合物诱导自噬并减少轴突变性,从而促进CMT2患者源性运动神经元的神经网络成熟。基于这些发现,表型筛选显示,在HSPB1和HSPB8模型中,匹铂可挽救自噬缺陷,证明自噬诱导是治疗CMT神经性病变和其他伴侣性病变的有效策略。
{"title":"Autophagy induction by piplartine ameliorates axonal degeneration caused by mutant HSPB1 and HSPB8 in Charcot-Marie-Tooth type 2 neuropathies.","authors":"Angela Sisto, Tamira van Wermeskerken, Michael Pancher, Pamela Gatto, Bob Asselbergh, Ágata Sofia Assunção Carreira, Vicky De Winter, Valentina Adami, Alessandro Provenzani, Vincent Timmerman","doi":"10.1080/15548627.2024.2439649","DOIUrl":"10.1080/15548627.2024.2439649","url":null,"abstract":"<p><p>HSPB1 [heat shock protein family B (small) member 1] and HSPB8 are essential molecular chaperones for neuronal proteostasis, as they prevent protein aggregation. Mutant HSPB1 and HSPB8 primarily harm peripheral neurons, resulting in axonal Charcot-Marie-Tooth neuropathies (CMT2). Macroautophagy/autophagy is a shared mechanism by which HSPB1 and HSPB8 mutations cause neuronal dysfunction. Autophagosome formation is reduced in mutant HSPB1-induced pluripotent stem-cell-derived motor neurons from CMT type 2F patients. Likewise, the HSPB8<sup>K141N</sup> knockin mouse model, mimicking CMT type 2 L, exhibits axonal degeneration and muscle atrophy, with SQSTM1/p62-positive deposits. We show here that mouse embryonic fibroblasts isolated from a HSPB8<sup>K141N</sup>/green fluorescent protein (GFP)-LC3 model have diminished autophagosome production under conditions of MTOR inhibition. To correct the autophagic deficits in the HSPB1 and HSPB8 models, we screened by high-throughput autophagosome quantification the repurposing Spectrum Collection library for molecules that could boost the autophagic activity above the canonical MTOR inhibition. Hit compounds were validated on motor neurons obtained by differentiation of HSPB1<sup>P182L</sup> and HSPB8<sup>K141N</sup> patient-derived induced pluripotent stem cells, focusing on autophagy induction as well as neurite network density, axonal degeneration, and mitochondrial morphology. We identified molecules that specifically stimulate autophagosome formation in the HSPB8<sup>K141N</sup> cells, without affecting autophagy flux. Two top lead compounds induced autophagy and reduced axonal degeneration, thus promoting neuronal network maturation in the CMT2 patient-derived motor neurons. Based on these findings, the phenotypical screen revealed that piplartine rescued autophagy deficiencies in both the HSPB1 and HSPB8 models, demonstrating autophagy induction as an effective therapeutic strategy for CMT neuropathies and other chaperonopathies.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-28"},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restoration of lysosomal function attenuates autophagic flux impairment in nucleus pulposus cells and protects against mechanical overloading-induced intervertebral disc degeneration. 恢复溶酶体功能可减轻髓核细胞的自噬通量损伤,防止机械过载引起的椎间盘退化。
Pub Date : 2024-12-25 DOI: 10.1080/15548627.2024.2440844
Sheng Liu, Yiqiang Hu, Weihua Xu, Weijian Liu, Bingjin Wang, Xianlin Zeng, Zengwu Shao, Cao Yang, Liming Xiong, Xianyi Cai

Intervertebral disc degeneration (IVDD) is a leading cause of low back pain that incurs large socioeconomic burdens. Growing evidence reveals that macroautophagy/autophagy dysregulation contributes to IVDD, but the exact role of autophagy and its regulatory mechanisms remain largely unknown. Here, we found that mechanical overloading impaired the autophagic flux of nucleus pulposus (NP) cells in vivo and in vitro. Mechanistically, the impairment of autophagic flux was attributed to lysosomal dysfunction induced by overloading. Overloading could also lead to lysosomal membrane permeabilization and consequent lysosome-dependent cell death. As critical effectors of lysosomal quality control pathways, CHMP4B (charged multivesicular body protein 4B) and TFEB (transcription factor EB) were downregulated in overloading-treated NP cells and degenerative discs. Restoring lysosomal function by CHMP4B or TFEB overexpression attenuated autophagic flux impairment of NP cells and protected against overloading-induced IVDD. Additionally, human IVDD was associated with impaired autophagy, and defective lysosomal quality control was also linked to human IVDD. Collectively, these findings highlighted that lysosomal defects were crucial for mechanical overloading-induced autophagic flux impairment and death of NP cells, suggesting the potential therapeutic relevance of restoring lysosomal function for IVDD.Abbreviations: ADAMTS4: ADAM metallopeptidase with thrombospondin type 1 motif 4; Ad: adenovirus; AO: acridine orange; BafA1: bafilomycin A1; CHMP4B: charged multivesicular body protein 4B; CTSD: cathepsin D; CV%: coefficient of variation; DMSO: dimethyl sulfoxide; ESCRT: endosomal sorting complex required for transport; HE: haemotoxylin and eosin; IVDD: intervertebral disc degeneration; LAMP: lysosomal associated membrane protein; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MMP3: matrix metallopeptidase 3; MRI: magnetic resonance imaging; NP: nucleus pulposus; PG: Pfirrmann grade; PI: propidium iodide; RT-qPCR: reverse transcription-quantitative PCR; SOFG: safranin O fast green; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB.

椎间盘退行性病变(IVDD)是导致腰背痛的主要原因,给社会经济造成了巨大负担。越来越多的证据表明,大自噬/自噬失调是导致椎间盘退变的原因之一,但自噬的确切作用及其调控机制在很大程度上仍不为人所知。在这里,我们发现机械过载会损害体内和体外髓核细胞的自噬通量。从机理上讲,自噬通量的损害可归因于超载引起的溶酶体功能障碍。超载还可能导致溶酶体膜通透,进而导致依赖溶酶体的细胞死亡。作为溶酶体质量控制途径的关键效应因子,CHMP4B(带电多囊体蛋白4B)和TFEB(转录因子EB)在超载处理的NP细胞和退化椎间盘中被下调。通过过表达CHMP4B或TFEB来恢复溶酶体功能可减轻NP细胞的自噬通量损伤,并对超载诱导的IVDD起到保护作用。此外,人类IVDD与自噬受损有关,溶酶体质量控制缺陷也与人类IVDD有关。总之,这些发现突出表明,溶酶体缺陷是机械超载诱导的自噬通量受损和NP细胞死亡的关键,这表明恢复溶酶体功能对IVDD具有潜在的治疗意义。
{"title":"Restoration of lysosomal function attenuates autophagic flux impairment in nucleus pulposus cells and protects against mechanical overloading-induced intervertebral disc degeneration.","authors":"Sheng Liu, Yiqiang Hu, Weihua Xu, Weijian Liu, Bingjin Wang, Xianlin Zeng, Zengwu Shao, Cao Yang, Liming Xiong, Xianyi Cai","doi":"10.1080/15548627.2024.2440844","DOIUrl":"10.1080/15548627.2024.2440844","url":null,"abstract":"<p><p>Intervertebral disc degeneration (IVDD) is a leading cause of low back pain that incurs large socioeconomic burdens. Growing evidence reveals that macroautophagy/autophagy dysregulation contributes to IVDD, but the exact role of autophagy and its regulatory mechanisms remain largely unknown. Here, we found that mechanical overloading impaired the autophagic flux of nucleus pulposus (NP) cells <i>in vivo</i> and <i>in vitro</i>. Mechanistically, the impairment of autophagic flux was attributed to lysosomal dysfunction induced by overloading. Overloading could also lead to lysosomal membrane permeabilization and consequent lysosome-dependent cell death. As critical effectors of lysosomal quality control pathways, CHMP4B (charged multivesicular body protein 4B) and TFEB (transcription factor EB) were downregulated in overloading-treated NP cells and degenerative discs. Restoring lysosomal function by CHMP4B or TFEB overexpression attenuated autophagic flux impairment of NP cells and protected against overloading-induced IVDD. Additionally, human IVDD was associated with impaired autophagy, and defective lysosomal quality control was also linked to human IVDD. Collectively, these findings highlighted that lysosomal defects were crucial for mechanical overloading-induced autophagic flux impairment and death of NP cells, suggesting the potential therapeutic relevance of restoring lysosomal function for IVDD.<b>Abbreviations</b>: ADAMTS4: ADAM metallopeptidase with thrombospondin type 1 motif 4; Ad: adenovirus; AO: acridine orange; BafA1: bafilomycin A<sub>1</sub>; CHMP4B: charged multivesicular body protein 4B; CTSD: cathepsin D; CV%: coefficient of variation; DMSO: dimethyl sulfoxide; ESCRT: endosomal sorting complex required for transport; HE: haemotoxylin and eosin; IVDD: intervertebral disc degeneration; LAMP: lysosomal associated membrane protein; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MMP3: matrix metallopeptidase 3; MRI: magnetic resonance imaging; NP: nucleus pulposus; PG: Pfirrmann grade; PI: propidium iodide; RT-qPCR: reverse transcription-quantitative PCR; SOFG: safranin O fast green; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A molecular glue for PRKN/parkin. 用于Prkn/parkin的分子胶。
Pub Date : 2024-12-24 DOI: 10.1080/15548627.2024.2443232
Véronique Sauvé, Kalle Gehring

Parkinson disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra, primarily due to mitochondria dysfunction. PRKN (parkin RBR E3 ubiquitin protein ligase) and PINK1 (PTEN induced kinase 1) are linked to early-onset cases of PD and essential for the clearance of damaged mitochondria via selective mitochondrial autophagy (mitophagy). In a recent publication, we detail how a small molecule can activate PRKN mutants that are unable to be phosphorylated, restoring mitophagy in cellular assays. These findings offer hope for the design of therapeutic drugs for some forms of PD.

帕金森病(PD)是一种神经退行性疾病,其特征是黑质多巴胺能神经元的丧失,主要是由于线粒体功能障碍。PRKN (parkin RBR E3泛素蛋白连接酶)和PINK1 (PTEN诱导的激酶1)与早发性PD病例有关,并且通过选择性线粒体自噬(mitophagy)清除受损线粒体至关重要。在最近发表的一篇文章中,我们详细介绍了一个小分子如何激活无法磷酸化的PRKN突变体,在细胞分析中恢复有丝分裂。这些发现为设计治疗某些形式帕金森病的药物提供了希望。
{"title":"A molecular glue for PRKN/parkin.","authors":"Véronique Sauvé, Kalle Gehring","doi":"10.1080/15548627.2024.2443232","DOIUrl":"10.1080/15548627.2024.2443232","url":null,"abstract":"<p><p>Parkinson disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the <i>substantia nigra</i>, primarily due to mitochondria dysfunction. PRKN (parkin RBR E3 ubiquitin protein ligase) and PINK1 (PTEN induced kinase 1) are linked to early-onset cases of PD and essential for the clearance of damaged mitochondria via selective mitochondrial autophagy (mitophagy). In a recent publication, we detail how a small molecule can activate PRKN mutants that are unable to be phosphorylated, restoring mitophagy in cellular assays. These findings offer hope for the design of therapeutic drugs for some forms of PD.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endogenous interactomes of MFN1 and MFN2 provide novel insights into interorganelle communication and autophagy. MFN1和MFN2的内源相互作用组提供了关于细胞器间通讯和自噬的新见解。
Pub Date : 2024-12-24 DOI: 10.1080/15548627.2024.2440843
Isabel Gordaliza-Alaguero, Paula Sànchez-Fernàndez-de-Landa, Dragana Radivojevikj, Laura Villarreal, Gianluca Arauz-Garofalo, Marina Gay, Marta Martinez-Vicente, Jorge Seco, Pau Martín-Malpartida, Marta Vilaseca, María J Macías, Manuel Palacin, Saška Ivanova, Antonio Zorzano

MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA. HA-affinity isolation followed by mass spectrometry identified potential interactors of MFN1 and MFN2. A substantial proportion of interactors were common for MFN1 and MFN2 and were regulated by nutrient deprivation. We validated novel ER and endosomal partners of MFN1 and/or MFN2 with a potential role in interorganelle communication. We characterized RAB5C (RAB5C, member RAS oncogene family) as an endosomal modulator of mitochondrial homeostasis, and SLC27A2 (solute carrier family 27 (fatty acid transporter), member 2) as a novel partner of MFN2 relevant in autophagy. We conclude that MFN proteins participate in nutrient-modulated pathways involved in organelle communication and autophagy.Abbreviations: ACTB: actin, beta; ATG2: autophagy related 2; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; Baf A1: bafilomycin A1; BECN1: beclin 1, autophagy related; BFDR: Bayesian false discovery rate; Cas9: CRISPR-associated endonuclease Cas9; CRISPR: clustered regularly interspaced short palindromic repeats; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; Faa1: fatty acid activation 1; FC: fold change; FDR: false discovery rate; FIS1: fission, mitochondrial 1; GABARAP: gamma-aminobutyric acid receptor associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HA: hemagglutinin; KO: knockout; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MARCHF5: membrane associated ring-CH-type finger 5; MDVs: mitochondria-derived vesicles; MFN1: mitofusin 1; MFN2: mitofusin 2; NDFIP2: Nedd4 family interacting protein 2; OMM: outer mitochondrial membrane; OPA1: OPA1, mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PE: phosphatidylethanolamine; PINK1: PTEN induced putative kinase 1; PS: phosphatidylserine; RAB5C: RAB5C, member RAS oncogene family; S100A8: S100 calcium binding protein A8 (calgranulin A); S100A9: S100 calcium binding protein A9 (calgranulin B); SLC27A2: solute carrier family 27 (fatty acid transporter), member 2; TIMM44: translocase of inner mitochondrial membrane 44; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1; VCL: vinculin; VDAC1: voltage-dependent anion channel 1; WT: wild type.

MFN1(丝裂霉素 1)和 MFN2 是线粒体融合、内质网(ER)-半球体并列和大自噬/自噬过程中的关键角色。然而,人们对这些蛋白参与这些过程的机制知之甚少。在这里,我们利用CRISPR-Cas9技术在MFN1和MFN2的C末端插入HA标记,从而产生内源表达MFN1-HA或MFN2-HA的HeLa细胞系,研究了这两种蛋白的相互作用组。HA 亲和分离后进行质谱分析,确定了 MFN1 和 MFN2 的潜在相互作用体。相当一部分相互作用因子是 MFN1 和 MFN2 的共同作用因子,并受营养缺乏的调控。我们验证了 MFN1 和/或 MFN2 的新型 ER 和内体伙伴,它们在细胞器间通讯中可能发挥作用。我们将 RAB5C(RAB5C,RAS 癌基因家族成员)鉴定为线粒体平衡的内体调节剂,将 SLC27A2(溶质运载家族 27(脂肪酸转运体),成员 2)鉴定为与自噬相关的 MFN2 的新型伙伴。我们的结论是,MFN 蛋白参与了细胞器通讯和自噬中的营养调节途径。
{"title":"Endogenous interactomes of MFN1 and MFN2 provide novel insights into interorganelle communication and autophagy.","authors":"Isabel Gordaliza-Alaguero, Paula Sànchez-Fernàndez-de-Landa, Dragana Radivojevikj, Laura Villarreal, Gianluca Arauz-Garofalo, Marina Gay, Marta Martinez-Vicente, Jorge Seco, Pau Martín-Malpartida, Marta Vilaseca, María J Macías, Manuel Palacin, Saška Ivanova, Antonio Zorzano","doi":"10.1080/15548627.2024.2440843","DOIUrl":"10.1080/15548627.2024.2440843","url":null,"abstract":"<p><p>MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA. HA-affinity isolation followed by mass spectrometry identified potential interactors of MFN1 and MFN2. A substantial proportion of interactors were common for MFN1 and MFN2 and were regulated by nutrient deprivation. We validated novel ER and endosomal partners of MFN1 and/or MFN2 with a potential role in interorganelle communication. We characterized RAB5C (RAB5C, member RAS oncogene family) as an endosomal modulator of mitochondrial homeostasis, and SLC27A2 (solute carrier family 27 (fatty acid transporter), member 2) as a novel partner of MFN2 relevant in autophagy. We conclude that MFN proteins participate in nutrient-modulated pathways involved in organelle communication and autophagy.<b>Abbreviations</b>: ACTB: actin, beta; ATG2: autophagy related 2; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; Baf A1: bafilomycin A<sub>1</sub>; BECN1: beclin 1, autophagy related; BFDR: Bayesian false discovery rate; Cas9: CRISPR-associated endonuclease Cas9; CRISPR: clustered regularly interspaced short palindromic repeats; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; Faa1: fatty acid activation 1; FC: fold change; FDR: false discovery rate; FIS1: fission, mitochondrial 1; GABARAP: gamma-aminobutyric acid receptor associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HA: hemagglutinin; KO: knockout; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MARCHF5: membrane associated ring-CH-type finger 5; MDVs: mitochondria-derived vesicles; MFN1: mitofusin 1; MFN2: mitofusin 2; NDFIP2: Nedd4 family interacting protein 2; OMM: outer mitochondrial membrane; OPA1: OPA1, mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PE: phosphatidylethanolamine; PINK1: PTEN induced putative kinase 1; PS: phosphatidylserine; RAB5C: RAB5C, member RAS oncogene family; S100A8: S100 calcium binding protein A8 (calgranulin A); S100A9: S100 calcium binding protein A9 (calgranulin B); SLC27A2: solute carrier family 27 (fatty acid transporter), member 2; TIMM44: translocase of inner mitochondrial membrane 44; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1; VCL: vinculin; VDAC1: voltage-dependent anion channel 1; WT: wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upregulation of ISG15 induced by MAPT/tau accumulation represses autophagic flux by inhibiting HDAC6 activity: a vicious cycle in Alzheimer disease. MAPT/tau积累诱导的ISG15上调通过抑制HDAC6活性抑制自噬通量:阿尔茨海默病的恶性循环。
Pub Date : 2024-12-24 DOI: 10.1080/15548627.2024.2431472
Qian Liu, Xin Wang, Zhi-Ting Fang, Jun-Ning Zhao, Xue-Xiang Rui, Bing-Ge Zhang, Ye He, Rui-Juan Liu, Jian Chen, Gao-Shang Chai, Gong-Ping Liu

Alzheimer disease (AD), a prevalent neurodegenerative condition in the elderly, is marked by a deficit in macroautophagy/autophagy, leading to intracellular MAPT/tau accumulation. While ISG15 (ISG15 ubiquitin like modifier) has been identified as a regulator of selective autophagy in ataxia telangiectasia (A-T), its role in AD remains unexplored. Our study reveals elevated ISG15 levels in the brains of patients with sporadic AD and AD models in vivo and in vitro. ISG15 overexpression in cells and the hippocampus inhibited HDAC6 (histone deacetylase 6) activity through C-terminal LRLRGG binding to HDAC6. Consequently, this increased CTTN (cortactin) acetylation, disrupted CTTN and F-actin recruitment to lysosomes, and impaired autophagosome (AP)-lysosome (LY) fusion. These disruptions led to MAPT/tau accumulation, synaptic damage, neuronal loss, and cognitive deficits. Conversely, ISG15 knockdown in our HsMAPT (human MAPT) pathology model restored HDAC6 activity, promoted AP-LY fusion, and improved cognitive function. This study identifies ISG15 as a key regulator of autophagic flux in AD, suggesting that targeting ISG15-mediated autophagy could offer therapeutic potential for AD.Abbreviation: AAV: adeno-associated virus; AD: Alzheimer disease; ALP: autophagy-lysosomal pathway; ANOVA: analysis of variance; AP: autophagosome; BafA1: bafilomycin A1; CHX: cycloheximide; CQ: chloroquine; CTTN: cortactin; FC: fear conditioning; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GRIN/NMDARs: N-methyl-D-aspartate glutamate ionotropic receptor NMDA types; HDAC6: histone deacetylase 6; HEK293: human embryonic kidney 293; HsMAPT: human MAPT; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; ISG15: ISG15 ubiquitin like modifier; LAMP1: lysosomal associated membrane protein 1; LY: lysosome; MAPT: microtubule associated protein tau; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MWM: Morris water maze; NOR: novel object recognition; SQSTM1/p62: sequestosome 1; ZnF UBP: zinc finger ubiquitin-binding protein.

阿尔茨海默病(AD)是老年人普遍存在的一种神经退行性疾病,其特征是巨噬/自噬缺陷,导致细胞内MAPT/tau积累。虽然ISG15 (ISG15泛素样调节剂)已被确定为共济失调毛细血管扩张(a - t)中选择性自噬的调节因子,但其在AD中的作用仍未被探索。我们的研究表明,散发性AD患者和AD模型的大脑中ISG15水平在体内和体外升高。ISG15在细胞和海马中的过表达通过c端LRLRGG结合HDAC6抑制HDAC6(组蛋白去乙酰化酶6)活性。因此,这增加了CTTN(接触蛋白)乙酰化,破坏了CTTN和f -肌动蛋白向溶酶体的募集,并损害了自噬体(AP)-溶酶体(LY)的融合。这些破坏导致MAPT/tau积累、突触损伤、神经元丢失和认知缺陷。相反,在我们的HsMAPT(人类MAPT)病理模型中,ISG15敲低可以恢复HDAC6活性,促进AP-LY融合,改善认知功能。本研究确定ISG15是AD自噬通量的关键调节因子,提示靶向ISG15介导的自噬可能为AD提供治疗潜力。
{"title":"Upregulation of ISG15 induced by MAPT/tau accumulation represses autophagic flux by inhibiting HDAC6 activity: a vicious cycle in Alzheimer disease.","authors":"Qian Liu, Xin Wang, Zhi-Ting Fang, Jun-Ning Zhao, Xue-Xiang Rui, Bing-Ge Zhang, Ye He, Rui-Juan Liu, Jian Chen, Gao-Shang Chai, Gong-Ping Liu","doi":"10.1080/15548627.2024.2431472","DOIUrl":"10.1080/15548627.2024.2431472","url":null,"abstract":"<p><p>Alzheimer disease (AD), a prevalent neurodegenerative condition in the elderly, is marked by a deficit in macroautophagy/autophagy, leading to intracellular MAPT/tau accumulation. While ISG15 (ISG15 ubiquitin like modifier) has been identified as a regulator of selective autophagy in ataxia telangiectasia (A-T), its role in AD remains unexplored. Our study reveals elevated ISG15 levels in the brains of patients with sporadic AD and AD models <i>in vivo</i> and <i>in vitro</i>. ISG15 overexpression in cells and the hippocampus inhibited HDAC6 (histone deacetylase 6) activity through C-terminal LRLRGG binding to HDAC6. Consequently, this increased CTTN (cortactin) acetylation, disrupted CTTN and F-actin recruitment to lysosomes, and impaired autophagosome (AP)-lysosome (LY) fusion. These disruptions led to MAPT/tau accumulation, synaptic damage, neuronal loss, and cognitive deficits. Conversely, ISG15 knockdown in our HsMAPT (human MAPT) pathology model restored HDAC6 activity, promoted AP-LY fusion, and improved cognitive function. This study identifies ISG15 as a key regulator of autophagic flux in AD, suggesting that targeting ISG15-mediated autophagy could offer therapeutic potential for AD.<b>Abbreviation</b>: AAV: adeno-associated virus; AD: Alzheimer disease; ALP: autophagy-lysosomal pathway; ANOVA: analysis of variance; AP: autophagosome; BafA1: bafilomycin A<sub>1</sub>; CHX: cycloheximide; CQ: chloroquine; CTTN: cortactin; FC: fear conditioning; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GRIN/NMDARs: N-methyl-D-aspartate glutamate ionotropic receptor NMDA types; HDAC6: histone deacetylase 6; HEK293: human embryonic kidney 293; HsMAPT: human MAPT; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; ISG15: ISG15 ubiquitin like modifier; LAMP1: lysosomal associated membrane protein 1; LY: lysosome; MAPT: microtubule associated protein tau; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MWM: Morris water maze; NOR: novel object recognition; SQSTM1/p62: sequestosome 1; ZnF UBP: zinc finger ubiquitin-binding protein.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-20"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Baicalein tethers CD274/PD-L1 for autophagic degradation to boost antitumor immunity. 黄芩素通过诱导CD274/PD-L1自噬降解增强抗肿瘤免疫。
Pub Date : 2024-12-22 DOI: 10.1080/15548627.2024.2439657
Bingjie Hao, Shumeng Lin, Haipeng Liu, Junfang Xu, Li Chen, Tiansheng Zheng, Wen Zhang, Yifang Dang, Russel J Reiter, Chaoqun Li, Hong Zhai, Qing Xia, Lihong Fan

Immune checkpoint inhibitors, especially those targeting CD274/PD-L1yield powerful clinical therapeutic efficacy. Thoughmuch progress has been made in the development of antibody-basedCD274 drugs, chemical compounds applied for CD274degradation remain largely unavailable. Herein,baicalein, a monomer of traditional Chinese medicine, isscreened and validated to target CD274 and induces itsmacroautophagic/autophagic degradation. Moreover, we demonstrate thatCD274 directly interacts with MAP1LC3B (microtubule associatedprotein 1 light chain 3 beta). Intriguingly, baicalein potentiatesCD274-LC3 interaction to facilitate autophagic-lysosomal degradationof CD274. Importantly, targeted CD274. degradation via baicaleininhibits tumor development by boosting T-cell-mediated antitumorimmunity. Thus, we elucidate a critical role of autophagy-lysosomalpathway in mediating CD274 degradation, and conceptually demonstratethat the design of a molecular "glue" that tethers the CD274-LC3interaction is an appealing strategy to develop CD274 inhibitors incancer therapy.Abbreviations: ATTECs: autophagy-tethering compounds; AUTACs: AUtophagy-TArgeting Chimeras; AUTOTACs: AUTOphagy-TArgeting Chimeras; AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; BiFC: bimolecular fluorescence complementation; BafA1: bafilomycin A1; CD274/PD-L1/B7-H1: CD274 molecule; CQ: chloroquine; CGAS: cyclic GMP-AMP synthase; DAPI: 4'6-diamino-2-phenylindole; FITC: fluorescein isothiocyanate isomer; GFP: green fluorescent protein; GZMB: granzyme B; IHC: immunohistochemistry; ICB: immune checkpoint blockade; KO: knockout; KD: equilibrium dissociation constant; LYTAC: LYsosome-TArgeting Chimera; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MST: microscale thermophoresis; NFAT: nuclear factor of activated T cells; NFKB/NF-kB: nuclear factor kappa B; NSCLC: non-small-cell lung cancer; PDCD1: programmed cell death 1; PROTACs: PROteolysis TArgeting Chimeras; PRF1: perforin 1; PE: phosphatidylethanolamine; PHA: phytohemagglutinin; PMA: phorbol 12-myristate 13-acetate; STAT: signal transducer and activator of transcription; SPR: surface plasmon resonance; TILs: tumor-infiltrating lymphocyte; TME: tumor microenvironment.

免疫检查点抑制剂,特别是靶向CD274/ pd - l1的免疫检查点抑制剂具有强大的临床治疗效果。尽管基于抗体的cd274药物的开发取得了很大进展,但用于降解cd274的化合物在很大程度上仍然不可用。本文筛选并验证了中药单体黄芩苷靶向CD274并诱导其自噬降解。此外,我们证明cd274直接与MAP1LC3B(微管相关蛋白1轻链3 β)相互作用。有趣的是,黄芩素增强CD274- lc3相互作用,促进CD274的自噬-溶酶体降解。重要的是,靶向CD274。黄芩苷降解通过增强t细胞介导的抗肿瘤免疫抑制肿瘤发展。因此,我们阐明了自噬-溶酶体途径在介导CD274降解中的关键作用,并从概念上证明了设计一种连接CD274- lc3相互作用的分子“胶”是开发CD274抑制剂癌症治疗的一种有吸引力的策略。缩写:attec:自噬系固化合物;AUTACs:靶向自噬嵌合体;autotac:靶向自噬的嵌合体AMPK:腺苷5'-单磷酸(AMP)活化蛋白激酶;BiFC:双分子荧光互补;BafA1:巴霉素A1;CD274/PD-L1/B7-H1: CD274分子;CQ:氯喹;CGAS:环GMP-AMP合成酶;DAPI: 4 ' 6-diamino-2-phenylindole;FITC:异硫氰酸荧光素异构体;GFP:绿色荧光蛋白;GZMB:颗粒酶B;包含IHC:免疫组织化学;ICB:免疫检查点封锁;柯:淘汰赛;KD:平衡解离常数;LYTAC:溶酶体靶向嵌合体;LIR: lc3相互作用区;MAP1LC3/LC3:微管相关蛋白1轻链3;微尺度热泳;活化T细胞核因子;NFKB/NF-kB:核因子κ B;NSCLC:非小细胞肺癌;PDCD1:程序性细胞死亡1;靶向嵌合体蛋白水解的PROTACs研究PRF1: perforin 1;体育:磷脂酰乙醇胺;PHA:植物凝集素;PMA:佛博尔12-肉豆蔻酸酯13-乙酸酯;STAT:转录的信号转换器和激活器;SPR:表面等离子体共振;TILs:肿瘤浸润淋巴细胞;TME:肿瘤微环境。
{"title":"Baicalein tethers CD274/PD-L1 for autophagic degradation to boost antitumor immunity.","authors":"Bingjie Hao, Shumeng Lin, Haipeng Liu, Junfang Xu, Li Chen, Tiansheng Zheng, Wen Zhang, Yifang Dang, Russel J Reiter, Chaoqun Li, Hong Zhai, Qing Xia, Lihong Fan","doi":"10.1080/15548627.2024.2439657","DOIUrl":"https://doi.org/10.1080/15548627.2024.2439657","url":null,"abstract":"<p><p>Immune checkpoint inhibitors, especially those targeting CD274/PD-L1yield powerful clinical therapeutic efficacy. Thoughmuch progress has been made in the development of antibody-basedCD274 drugs, chemical compounds applied for CD274degradation remain largely unavailable. Herein,baicalein, a monomer of traditional Chinese medicine, isscreened and validated to target CD274 and induces itsmacroautophagic/autophagic degradation. Moreover, we demonstrate thatCD274 directly interacts with MAP1LC3B (microtubule associatedprotein 1 light chain 3 beta). Intriguingly, baicalein potentiatesCD274-LC3 interaction to facilitate autophagic-lysosomal degradationof CD274. Importantly, targeted CD274. degradation via baicaleininhibits tumor development by boosting T-cell-mediated antitumorimmunity. Thus, we elucidate a critical role of autophagy-lysosomalpathway in mediating CD274 degradation, and conceptually demonstratethat the design of a molecular \"glue\" that tethers the CD274-LC3interaction is an appealing strategy to develop CD274 inhibitors incancer therapy.<b>Abbreviations</b>: ATTECs: autophagy-tethering compounds; AUTACs: AUtophagy-TArgeting Chimeras; AUTOTACs: AUTOphagy-TArgeting Chimeras; AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; BiFC: bimolecular fluorescence complementation; BafA1: bafilomycin A<sub>1</sub>; CD274/PD-L1/B7-H1: CD274 molecule; CQ: chloroquine; CGAS: cyclic GMP-AMP synthase; DAPI: 4'6-diamino-2-phenylindole; FITC: fluorescein isothiocyanate isomer; GFP: green fluorescent protein; GZMB: granzyme B; IHC: immunohistochemistry; ICB: immune checkpoint blockade; KO: knockout; KD: equilibrium dissociation constant; LYTAC: LYsosome-TArgeting Chimera; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MST: microscale thermophoresis; NFAT: nuclear factor of activated T cells; NFKB/NF-kB: nuclear factor kappa B; NSCLC: non-small-cell lung cancer; PDCD1: programmed cell death 1; PROTACs: PROteolysis TArgeting Chimeras; PRF1: perforin 1; PE: phosphatidylethanolamine; PHA: phytohemagglutinin; PMA: phorbol 12-myristate 13-acetate; STAT: signal transducer and activator of transcription; SPR: surface plasmon resonance; TILs: tumor-infiltrating lymphocyte; TME: tumor microenvironment.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blocking autophagosome closure manifests the roles of mammalian Atg8-family proteins in phagophore formation and expansion during nutrient starvation. 阻断自噬体关闭表明哺乳动物atg8家族蛋白在营养饥饿时吞噬体形成和扩张中的作用。
Pub Date : 2024-12-18 DOI: 10.1080/15548627.2024.2443300
Van Bui, Xinwen Liang, Yansheng Ye, William Giang, Fang Tian, Yoshinori Takahashi, Hong-Gang Wang

Macroautophagy/autophagy, an evolutionarily conserved cellular degradation pathway, involves phagophores that sequester cytoplasmic constituents and mature into autophagosomes for subsequent lysosomal delivery. The ATG8 gene family, comprising the MAP1LC3/LC3 and GABARAP/GBR subfamilies in mammals, encodes ubiquitin-like proteins that are conjugated to phagophore membranes during autophagosome biogenesis. A central question in the field is how Atg8-family proteins are precisely involved in autophagosome formation, which remains controversial and challenging, at least in part due to the short lifespan of phagophores. In this study, we depleted the autophagosome closure regulator VPS37A to arrest autophagy at the vesicle completion step and determined the roles of mammalian Atg8-family proteins (mATG8s) in nutrient starvation-induced autophagosome biogenesis. Our investigation revealed that LC3 loss hinders phagophore formation, while GBR loss impedes both phagophore formation and expansion. The defect in membrane expansion by GBR loss appears to be attributed to compromised recruitment of ATG proteins containing an LC3-interacting region (LIR), including ULK1 and ATG3. Moreover, a combined deficiency of both LC3 and GBR subfamilies nearly completely inhibits phagophore formation, highlighting their redundant regulation of this process. Consequently, cells lacking all mATG8 members exhibit defects in downstream events such as ESCRT recruitment and autophagic flux. Collectively, these findings underscore the critical roles of mammalian Atg8-family proteins in phagophore formation and expansion during autophagy.

巨噬/自噬是一种进化上保守的细胞降解途径,涉及吞噬体隔离细胞质成分并成熟为自噬体,随后用于溶酶体递送。在哺乳动物中,ATG8基因家族包括MAP1LC3/LC3和GABARAP/GBR亚家族,编码泛素样蛋白,在自噬体生物发生过程中结合到吞噬细胞膜上。该领域的一个核心问题是atg8家族蛋白如何精确参与自噬体的形成,这仍然存在争议和挑战,至少部分原因是吞噬体的寿命较短。在本研究中,我们在囊泡完成步骤中耗尽自噬体关闭调节因子VPS37A来阻止自噬,并确定哺乳动物atg8家族蛋白(mATG8s)在营养饥饿诱导的自噬体生物发生中的作用。我们的研究发现,LC3的丢失阻碍了吞噬体的形成,而GBR的丢失既阻碍了吞噬体的形成,也阻碍了吞噬体的扩张。GBR缺失导致的膜扩张缺陷似乎是由于含有lc3相互作用区(LIR)的ATG蛋白招募受损,包括ULK1和ATG3。此外,LC3和GBR亚家族的联合缺乏几乎完全抑制了吞噬体的形成,突出了它们对这一过程的冗余调控。因此,缺乏所有mATG8成员的细胞在下游事件(如ESCRT募集和自噬通量)中表现出缺陷。总之,这些发现强调了哺乳动物atg8家族蛋白在自噬过程中吞噬体形成和扩张中的关键作用。
{"title":"Blocking autophagosome closure manifests the roles of mammalian Atg8-family proteins in phagophore formation and expansion during nutrient starvation.","authors":"Van Bui, Xinwen Liang, Yansheng Ye, William Giang, Fang Tian, Yoshinori Takahashi, Hong-Gang Wang","doi":"10.1080/15548627.2024.2443300","DOIUrl":"10.1080/15548627.2024.2443300","url":null,"abstract":"<p><p>Macroautophagy/autophagy, an evolutionarily conserved cellular degradation pathway, involves phagophores that sequester cytoplasmic constituents and mature into autophagosomes for subsequent lysosomal delivery. The <i>ATG8</i> gene family, comprising the <i>MAP1LC3/LC3</i> and <i>GABARAP/GBR</i> subfamilies in mammals, encodes ubiquitin-like proteins that are conjugated to phagophore membranes during autophagosome biogenesis. A central question in the field is how Atg8-family proteins are precisely involved in autophagosome formation, which remains controversial and challenging, at least in part due to the short lifespan of phagophores. In this study, we depleted the autophagosome closure regulator VPS37A to arrest autophagy at the vesicle completion step and determined the roles of mammalian Atg8-family proteins (mATG8s) in nutrient starvation-induced autophagosome biogenesis. Our investigation revealed that <i>LC3</i> loss hinders phagophore formation, while <i>GBR</i> loss impedes both phagophore formation and expansion. The defect in membrane expansion by <i>GBR</i> loss appears to be attributed to compromised recruitment of ATG proteins containing an LC3-interacting region (LIR), including ULK1 and ATG3. Moreover, a combined deficiency of both <i>LC3</i> and <i>GBR</i> subfamilies nearly completely inhibits phagophore formation, highlighting their redundant regulation of this process. Consequently, cells lacking all <i>mATG8</i> members exhibit defects in downstream events such as ESCRT recruitment and autophagic flux. Collectively, these findings underscore the critical roles of mammalian Atg8-family proteins in phagophore formation and expansion during autophagy.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1