首页 > 最新文献

Autophagy最新文献

英文 中文
Molecular engineering of lysosome-based degraders unveils a rapidly expanding therapeutic strategy. 基于溶酶体的降解物的分子工程揭示了一种快速扩展的治疗策略。
IF 14.3 Pub Date : 2026-02-08 DOI: 10.1080/15548627.2026.2618626
Adele Rivault, Jade Dussart-Gautheret, Rachid Benhida, Anthony R Martin, Patrick Auberger, Arnaud Jacquel, Guillaume Robert

The targeted degradation of oncogenic or misfolded proteins has emerged as a promising therapeutic strategy. While proteolysis-targeting chimeras (PROTACs) and related technologies have successfully hijacked the ubiquitin-proteasome system to eliminate disease-driving proteins, recent advances highlight the lysosome as a powerful alternative degradation route. Lysosome-based degradation strategies offer broader substrate scope, subcellular targeting flexibility, and the ability to degrade proteins beyond the reach of the proteasome. In this review, we provide a comprehensive overview of synthetic molecules and engineered systems designed to traffic target proteins to the lysosome. These include lysosome targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagy-tethering compounds (ATTECs), and other modalities that exploit endogenous trafficking pathways for selective protein clearance. By mapping the current landscape of lysosome-targeting degraders, this article underscores the therapeutic potential of lysosomal proteolysis and outlines future directions for molecular engineering in this rapidly evolving field.

靶向降解致癌蛋白或错误折叠蛋白已成为一种有前途的治疗策略。虽然蛋白水解靶向嵌合体(PROTACs)和相关技术已经成功地劫持了泛素-蛋白酶体系统来消除疾病驱动蛋白,但最近的进展强调溶酶体是一种强大的替代降解途径。基于溶酶体的降解策略提供了更广泛的底物范围,亚细胞靶向灵活性,以及降解蛋白酶体无法达到的蛋白质的能力。在这篇综述中,我们提供了一个全面的概述合成分子和工程系统设计的运输目标蛋白到溶酶体。这些方法包括溶酶体靶向嵌合体(LYTACs)、自噬靶向嵌合体(AUTACs)、自噬捆绑化合物(ATTECs)和其他利用内源性运输途径进行选择性蛋白质清除的模式。通过绘制溶酶体靶向降解物的现状,本文强调了溶酶体蛋白水解的治疗潜力,并概述了分子工程在这一快速发展领域的未来方向。
{"title":"Molecular engineering of lysosome-based degraders unveils a rapidly expanding therapeutic strategy.","authors":"Adele Rivault, Jade Dussart-Gautheret, Rachid Benhida, Anthony R Martin, Patrick Auberger, Arnaud Jacquel, Guillaume Robert","doi":"10.1080/15548627.2026.2618626","DOIUrl":"10.1080/15548627.2026.2618626","url":null,"abstract":"<p><p>The targeted degradation of oncogenic or misfolded proteins has emerged as a promising therapeutic strategy. While proteolysis-targeting chimeras (PROTACs) and related technologies have successfully hijacked the ubiquitin-proteasome system to eliminate disease-driving proteins, recent advances highlight the lysosome as a powerful alternative degradation route. Lysosome-based degradation strategies offer broader substrate scope, subcellular targeting flexibility, and the ability to degrade proteins beyond the reach of the proteasome. In this review, we provide a comprehensive overview of synthetic molecules and engineered systems designed to traffic target proteins to the lysosome. These include lysosome targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagy-tethering compounds (ATTECs), and other modalities that exploit endogenous trafficking pathways for selective protein clearance. By mapping the current landscape of lysosome-targeting degraders, this article underscores the therapeutic potential of lysosomal proteolysis and outlines future directions for molecular engineering in this rapidly evolving field.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-23"},"PeriodicalIF":14.3,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146020317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regorafenib enhances anti-PDCD1/PD-1 therapeutic efficacy in colorectal cancer by promoting SQSTM1/p62-mediated CD274/PD-L1 degradation. Regorafenib通过促进SQSTM1/p62介导的CD274/PD-L1降解来增强抗pdcd1 /PD-1治疗结直肠癌的疗效。
IF 14.3 Pub Date : 2026-02-08 DOI: 10.1080/15548627.2026.2629288
Ming Zhu, Yinjun He, Siqin Lei, Xuan Lai, Chaoyi Chen, Kehong Ye, Dianyang Li, Honghe Zhang, Maode Lai, Weiqin Jiang

Despite the clinical success of PDCD1/PD-1 and CD274/PD-L1 immune checkpoint blockade in multiple cancers, its efficacy in colorectal cancer (CRC) remains limited. Here, we report that the combination of the tyrosine kinase inhibitor regorafenib with PDCD1 blockade enhances anti-tumor immunity in CRC, both in clinical observations and preclinical models. Mechanistically, regorafenib acts as a molecular glue, directly promoting the interaction between CD274 and the selective autophagy receptor SQSTM1/p62, leading to SQSTM1-mediated autophagic degradation of CD274 and restoration of T cell-mediated cytotoxicity. In summary, these findings identify a previously unrecognized role of regorafenib in modulating tumor immune evasion and provide a mechanistic rationale for its combination with PDCD1 inhibitors in CRC treatment.

尽管PDCD1/PD-1和CD274/PD-L1免疫检查点阻断在多种癌症中的临床成功,但其在结直肠癌(CRC)中的疗效仍然有限。在这里,我们报告了酪氨酸激酶抑制剂瑞戈非尼与PDCD1阻断剂的联合使用,在临床观察和临床前模型中增强了CRC的抗肿瘤免疫。从机制上讲,regorafenib作为分子胶,直接促进CD274与选择性自噬受体SQSTM1/p62之间的相互作用,导致SQSTM1介导的CD274自噬降解和T细胞介导的细胞毒性恢复。总之,这些发现确定了瑞非尼在调节肿瘤免疫逃避中的作用,并为其与PDCD1抑制剂联合治疗结直肠癌提供了机制基础。
{"title":"Regorafenib enhances anti-PDCD1/PD-1 therapeutic efficacy in colorectal cancer by promoting SQSTM1/p62-mediated CD274/PD-L1 degradation.","authors":"Ming Zhu, Yinjun He, Siqin Lei, Xuan Lai, Chaoyi Chen, Kehong Ye, Dianyang Li, Honghe Zhang, Maode Lai, Weiqin Jiang","doi":"10.1080/15548627.2026.2629288","DOIUrl":"https://doi.org/10.1080/15548627.2026.2629288","url":null,"abstract":"<p><p>Despite the clinical success of PDCD1/PD-1 and CD274/PD-L1 immune checkpoint blockade in multiple cancers, its efficacy in colorectal cancer (CRC) remains limited. Here, we report that the combination of the tyrosine kinase inhibitor regorafenib with PDCD1 blockade enhances anti-tumor immunity in CRC, both in clinical observations and preclinical models. Mechanistically, regorafenib acts as a molecular glue, directly promoting the interaction between CD274 and the selective autophagy receptor SQSTM1/p62, leading to SQSTM1-mediated autophagic degradation of CD274 and restoration of T cell-mediated cytotoxicity. In summary, these findings identify a previously unrecognized role of regorafenib in modulating tumor immune evasion and provide a mechanistic rationale for its combination with PDCD1 inhibitors in CRC treatment.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146144925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 修正。
IF 14.3 Pub Date : 2026-02-05 DOI: 10.1080/15548627.2025.2609439
{"title":"Correction.","authors":"","doi":"10.1080/15548627.2025.2609439","DOIUrl":"https://doi.org/10.1080/15548627.2025.2609439","url":null,"abstract":"","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-13"},"PeriodicalIF":14.3,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146120719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PRKN activation for mitophagy requires an NME3-regulated phosphatidic acid signal that separates mitochondria from endoplasmic reticulum tethering. PRKN激活线粒体自噬需要nme3调节的磷脂酸信号,该信号将线粒体与内质网系固分离。
IF 14.3 Pub Date : 2026-02-04 DOI: 10.1080/15548627.2026.2623981
Chih-Wei Chen, Ying-Jung Chen, Xiaojing Cuili, Yi-Han Chen, Zee-Fen Chang

PINK1-dependent activation of PRKN/parkin on depolarized mitochondria causes mitophagy. The deficiency of NME3, a nucleoside diphosphate kinase/NDPK on the outer mitochondria membrane (OMM), is associated with a fatal neurodegenerative disorder. Here, we report that NME3 deficiency impairs p-S65-ubiquitin (Ub)-dependent PRKN binding on depolarized mitochondria without involving the loss of Ub phosphorylation by PINK1. Our mechanistic investigation revealed that NME3 interacts with PLD6/MitoPLD to generate phosphatidic acid (PA) from cardiolipin on the OMM of damaged mitochondria after depolarization. This lipid signal is essential for positioning MFN2 nearby PINK1 for phosphorylation of Ub conjugates on MFN2, thus enabling the subsequent amplification of PRKN binding to mitochondria. We provide further evidence that mitochondria-endoplasmic reticulum (Mito-ER) tethering prohibits the proximity of MFN2 with PINK1 and PRKN amplification on mitochondria. Importantly, the loss of NME3-regulated PA signal causes Mito-ER tethering. Overall, our findings suggest that NME3 cooperates with PLD6 to generate PA as a critical step in Mito-ER untethering, allowing MFN2 access to PINK1 for p-S65-poly-Ub-dependent feedforward activation of PRKN.Abbreviation ACTB: actin beta; BDNF brain derived neurotrophic factor; CL: cardiolipin; CRISPR: clustered regularly interspaced short palindromic repeats; DAG: diacylglycerol; ER: endoplasmic reticulum; FCCP: carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone; FRET: Förster resonance energy transfer; IF: immunofluorescence; KO: knockout; KD: knockdown; LPIN1: lipin 1; MERCS: mitochondria-endoplasmic reticulum contact sites; MFN2: mitofusin 2; Mito: mitochondria; OMM: outer mitochondrial membrane; p-Ub: phosphorylated ubiquitin; PA: phosphatidic acid; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PLA: proximity ligation assay; PLD6/MitoPLD: phospholipase D family member 6; PRKN: parkin RBR E3 ubiquitin protein ligase; RA: retinoic acid; RT-qPCR: reverse transcription-quantitative polymerase chain reaction; TEM: transmission electron microscopy; TN-NME3: TOMM20-NΔ-NME3; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I; Ub: ubiquitin; VDAC: voltage dependent anion channel; WB: western blot.

PRKN/parkin在去极化线粒体上依赖pink1的激活导致线粒体自噬。线粒体外膜(OMM)核苷二磷酸激酶/NDPK NME3的缺乏与致命的神经退行性疾病有关。在这里,我们报道NME3缺陷损害p- s65 -泛素(Ub)依赖的PRKN与去极化线粒体的结合,而不涉及PINK1对Ub磷酸化的损失。我们的机制研究表明,NME3与PLD6/MitoPLD相互作用,在去极化后受损线粒体的OMM上从心磷脂产生磷脂酸(PA)。这种脂质信号对于MFN2定位在PINK1附近,使MFN2上的Ub偶联物磷酸化,从而使PRKN结合到线粒体的后续扩增是必不可少的。我们提供了进一步的证据,证明线粒体-内质网(Mito-ER)系结阻止线粒体上PINK1和PRKN扩增的MFN2靠近。重要的是,nme3调节的PA信号的丢失导致Mito-ER系结。总的来说,我们的研究结果表明,NME3与PLD6合作产生PA是Mito-ER解系的关键步骤,允许MFN2进入PINK1,以实现p- s65 -poly- ub依赖性PRKN的前馈激活。缩写ACTB:肌动蛋白;脑源性神经营养因子;CL:心磷脂;CRISPR:聚集规则间隔的短回文重复序列;DAG:甘油二酯;ER:内质网;FCCP:羰基氰化物对(三氟甲氧基)苯腙;FRET: Förster共振能量传递;如果:免疫荧光;柯:淘汰赛;KD:击倒;LPIN1: lipin 1;MERCS:线粒体-内质网接触位点;MFN2:有丝分裂蛋白2;水:线粒体;OMM:线粒体外膜;p-Ub:磷酸化泛素;PA:磷脂酸;PD:帕金森病;PINK1: PTEN诱导激酶1;PLA:近端结扎试验;PLD6/MitoPLD:磷脂酶D家族成员6;PRKN: parkin RBR E3泛素蛋白连接酶;RA:维甲酸;RT-qPCR:逆转录-定量聚合酶链反应;TEM:透射电子显微镜;TN-NME3: TOMM20-NΔ-NME3;TOMM20:线粒体外膜转位酶20;TUBB: I类微管蛋白;乌兰巴托:泛素;VDAC:电压依赖性阴离子通道;WB: western blot。
{"title":"PRKN activation for mitophagy requires an NME3-regulated phosphatidic acid signal that separates mitochondria from endoplasmic reticulum tethering.","authors":"Chih-Wei Chen, Ying-Jung Chen, Xiaojing Cuili, Yi-Han Chen, Zee-Fen Chang","doi":"10.1080/15548627.2026.2623981","DOIUrl":"https://doi.org/10.1080/15548627.2026.2623981","url":null,"abstract":"<p><p>PINK1-dependent activation of PRKN/parkin on depolarized mitochondria causes mitophagy. The deficiency of NME3, a nucleoside diphosphate kinase/NDPK on the outer mitochondria membrane (OMM), is associated with a fatal neurodegenerative disorder. Here, we report that NME3 deficiency impairs p-S65-ubiquitin (Ub)-dependent PRKN binding on depolarized mitochondria without involving the loss of Ub phosphorylation by PINK1. Our mechanistic investigation revealed that NME3 interacts with PLD6/MitoPLD to generate phosphatidic acid (PA) from cardiolipin on the OMM of damaged mitochondria after depolarization. This lipid signal is essential for positioning MFN2 nearby PINK1 for phosphorylation of Ub conjugates on MFN2, thus enabling the subsequent amplification of PRKN binding to mitochondria. We provide further evidence that mitochondria-endoplasmic reticulum (Mito-ER) tethering prohibits the proximity of MFN2 with PINK1 and PRKN amplification on mitochondria. Importantly, the loss of NME3-regulated PA signal causes Mito-ER tethering. Overall, our findings suggest that NME3 cooperates with PLD6 to generate PA as a critical step in Mito-ER untethering, allowing MFN2 access to PINK1 for p-S65-poly-Ub-dependent feedforward activation of PRKN.<b>Abbreviation</b> ACTB: actin beta; BDNF brain derived neurotrophic factor; CL: cardiolipin; CRISPR: clustered regularly interspaced short palindromic repeats; DAG: diacylglycerol; ER: endoplasmic reticulum; FCCP: carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone; FRET: Förster resonance energy transfer; IF: immunofluorescence; KO: knockout; KD: knockdown; LPIN1: lipin 1; MERCS: mitochondria-endoplasmic reticulum contact sites; MFN2: mitofusin 2; Mito: mitochondria; OMM: outer mitochondrial membrane; p-Ub: phosphorylated ubiquitin; PA: phosphatidic acid; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PLA: proximity ligation assay; PLD6/MitoPLD: phospholipase D family member 6; PRKN: parkin RBR E3 ubiquitin protein ligase; RA: retinoic acid; RT-qPCR: reverse transcription-quantitative polymerase chain reaction; TEM: transmission electron microscopy; TN-NME3: TOMM20-NΔ-NME3; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I; Ub: ubiquitin; VDAC: voltage dependent anion channel; WB: western blot.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-19"},"PeriodicalIF":14.3,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146120871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PI4K2A-OSBPL6/ORP6-PS axis mediates lysosomal membrane repair to restore neuronal lipid homeostasis and promote neuronal survival after spinal cord injury. PI4K2A-OSBPL6/ORP6-PS轴介导脊髓损伤后溶酶体膜修复,恢复神经元脂质稳态,促进神经元存活。
IF 14.3 Pub Date : 2026-02-04 DOI: 10.1080/15548627.2026.2619576
Haojie Zhang, Yu Kang, Tianlun Zhao, Daoqiang Huang, Xuantao Hu, Jiawei Di, Yilong Zhang, Yubao Lu, Mudan Huang, Hong Li, Senyu Yao, Bin Liu, Limin Rong
<p><p>Dysfunction of the neuronal macroautophagy/autophagy-lysosome system is a critical contributor to neuronal death following spinal cord injury (SCI), but the underlying mechanisms remain elusive. Our study demonstrated that SCI induced impaired autophagic flux and lysosomal membrane permeabilization (LMP) in neurons. By combining <i>in vivo</i> bulk RNA sequencing with validation experiments, we observed the transient upregulation of the membrane repair factor PI4K2A, which was specifically enriched in lysosomes, after SCI. Crucially, ER-MS and IP-MS analyses revealed an interaction between PI4K2A and the endoplasmic reticulum lipid transfer protein OSBPL6/ORP6. This interaction led to the transport of phosphatidylserine (PS) to damaged lysosomal membranes, promoting LMP repair and subsequently reducing lipid droplet accumulation, which suppressed neuronal death. Furthermore, overexpression of neuronal PI4K2A <i>in vivo</i>, through an OSBPL6- and PS-dependent mechanism, reduced LMP-mediated lipid droplet accumulation and increased neuronal survival, thereby improving functional recovery after SCI. Collectively, our findings establish the PI4K2A-OSBPL6/ORP6-PS axis as a novel and essential mechanism for lysosomal membrane repair in neurons. This pathway is crucial for maintaining neuronal lipid homeostasis and represents a promising therapeutic target for reducing neuronal loss and improving functional recovery after central nervous system trauma.<b>Abbreviations</b>: AIF1/IBA1: allograft inflammatory factor 1; Baf A1: bafilomycin A<sub>1</sub>; BMS: Basso Mouse Scale; CNS: central nervous system; co-IP: co-immunoprecipitation; DEGs: differentially expressed genes; DS5: DS55980254; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HSPA5/GRP78: heat shock protein family A (HSP70) member 5; HT22: hippocampal neuronal cell line; KEGG: Kyoto Encyclopedia of Genes and Genomes; LD: lipid droplet; LC-MS: liquid chromatography-mass spectrometry; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LGALS3/GAL3: lectin, galactoside binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; LPC: lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; MFGE8/lactadherin: milk fat globule EGF and factor V/VIII domain containing; MS: mass spectrometry; NAGLU: alpha-N-acetylglucosaminidase (Sanfilippo disease IIIB); NEFH/NF200: neurofilament, heavy polypeptide; OSBPL6/ORP6: oxysterol binding protein-like 6; OSBPL8/ORP8: oxysterol binding protein-like 8; PC: phosphatidylcholine; PLA2G4A/cPLA2: phospholipase A2, group IVA (cytosolic, calcium dependent); PITT: phosphoinositide-initiated membrane tethering and lipid transport; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PLS-DA: partial least squares discriminant analysis; PS: phosphatidylserine; PtdIns: phosphatidylinositol; PTDSS1: phosphatidylserine synthase 1; PUFAs: polyunsaturated fatty acids; RBFOX3/NeuN:
神经元巨噬/自噬-溶酶体系统功能障碍是脊髓损伤后神经元死亡的重要因素,但其潜在机制尚不清楚。我们的研究表明,脊髓损伤导致神经元自噬通量和溶酶体膜透性(LMP)受损。通过体内大量RNA测序和验证实验相结合,我们观察到脊髓损伤后膜修复因子PI4K2A的短暂上调,该因子在溶酶体中特异性富集。至关重要的是,ER-MS和IP-MS分析揭示了PI4K2A与内质网脂质转移蛋白OSBPL6/ORP6之间的相互作用。这种相互作用导致磷脂酰丝氨酸(PS)转运到受损的溶酶体膜,促进LMP修复,随后减少脂滴积累,从而抑制神经元死亡。此外,神经元PI4K2A在体内的过表达,通过OSBPL6-和ps依赖机制,减少lmp介导的脂滴积累,增加神经元存活,从而改善脊髓损伤后的功能恢复。总之,我们的研究结果表明PI4K2A-OSBPL6/ORP6-PS轴是神经元溶酶体膜修复的一种新的重要机制。这一途径对于维持神经元脂质稳态至关重要,是减少中枢神经系统损伤后神经元损失和改善功能恢复的有希望的治疗靶点。
{"title":"The PI4K2A-OSBPL6/ORP6-PS axis mediates lysosomal membrane repair to restore neuronal lipid homeostasis and promote neuronal survival after spinal cord injury.","authors":"Haojie Zhang, Yu Kang, Tianlun Zhao, Daoqiang Huang, Xuantao Hu, Jiawei Di, Yilong Zhang, Yubao Lu, Mudan Huang, Hong Li, Senyu Yao, Bin Liu, Limin Rong","doi":"10.1080/15548627.2026.2619576","DOIUrl":"10.1080/15548627.2026.2619576","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Dysfunction of the neuronal macroautophagy/autophagy-lysosome system is a critical contributor to neuronal death following spinal cord injury (SCI), but the underlying mechanisms remain elusive. Our study demonstrated that SCI induced impaired autophagic flux and lysosomal membrane permeabilization (LMP) in neurons. By combining &lt;i&gt;in vivo&lt;/i&gt; bulk RNA sequencing with validation experiments, we observed the transient upregulation of the membrane repair factor PI4K2A, which was specifically enriched in lysosomes, after SCI. Crucially, ER-MS and IP-MS analyses revealed an interaction between PI4K2A and the endoplasmic reticulum lipid transfer protein OSBPL6/ORP6. This interaction led to the transport of phosphatidylserine (PS) to damaged lysosomal membranes, promoting LMP repair and subsequently reducing lipid droplet accumulation, which suppressed neuronal death. Furthermore, overexpression of neuronal PI4K2A &lt;i&gt;in vivo&lt;/i&gt;, through an OSBPL6- and PS-dependent mechanism, reduced LMP-mediated lipid droplet accumulation and increased neuronal survival, thereby improving functional recovery after SCI. Collectively, our findings establish the PI4K2A-OSBPL6/ORP6-PS axis as a novel and essential mechanism for lysosomal membrane repair in neurons. This pathway is crucial for maintaining neuronal lipid homeostasis and represents a promising therapeutic target for reducing neuronal loss and improving functional recovery after central nervous system trauma.&lt;b&gt;Abbreviations&lt;/b&gt;: AIF1/IBA1: allograft inflammatory factor 1; Baf A1: bafilomycin A&lt;sub&gt;1&lt;/sub&gt;; BMS: Basso Mouse Scale; CNS: central nervous system; co-IP: co-immunoprecipitation; DEGs: differentially expressed genes; DS5: DS55980254; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HSPA5/GRP78: heat shock protein family A (HSP70) member 5; HT22: hippocampal neuronal cell line; KEGG: Kyoto Encyclopedia of Genes and Genomes; LD: lipid droplet; LC-MS: liquid chromatography-mass spectrometry; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LGALS3/GAL3: lectin, galactoside binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; LPC: lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; MFGE8/lactadherin: milk fat globule EGF and factor V/VIII domain containing; MS: mass spectrometry; NAGLU: alpha-N-acetylglucosaminidase (Sanfilippo disease IIIB); NEFH/NF200: neurofilament, heavy polypeptide; OSBPL6/ORP6: oxysterol binding protein-like 6; OSBPL8/ORP8: oxysterol binding protein-like 8; PC: phosphatidylcholine; PLA2G4A/cPLA2: phospholipase A2, group IVA (cytosolic, calcium dependent); PITT: phosphoinositide-initiated membrane tethering and lipid transport; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PLS-DA: partial least squares discriminant analysis; PS: phosphatidylserine; PtdIns: phosphatidylinositol; PTDSS1: phosphatidylserine synthase 1; PUFAs: polyunsaturated fatty acids; RBFOX3/NeuN:","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-25"},"PeriodicalIF":14.3,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146013866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TGFB-inducible VASN (vasorin) promotes lysosomal acidification. tgfb诱导的VASN (vasorin)促进溶酶体酸化。
IF 14.3 Pub Date : 2026-02-02 DOI: 10.1080/15548627.2026.2626397
Jiong Yan, Yan Zhang, Swati Choksi, Melissa R Mikolaj, Adam Harned, Kedar Narayan, Zheng-Gang Liu

The lysosome is not only a degradative organelle but also an essential platform for signal transduction, such as with MTOR signaling. The reciprocal regulation between the lysosome and MTOR is central to macroautophagy/autophagy and metabolism. MTOR-mediated suppression of lysosomal acidification is important for lysosomal activity, autophagic flux, and cell survival. VASN is a transmembrane glycoprotein whose function is not fully understood. In the present study, we report that VASN is a TGFB-inducible protein and plays a crucial role in positively regulating lysosomal acidification. As a potential mechanism, we demonstrated that VASN localizes to the lysosome, interacts with lysosomal MTOR and STK11IP, and disrupts the binding of STK11IP to MTOR and the V-ATPase, which was recently reported to suppress lysosomal acidification. We found that VASN's function in modulating lysosomal activity is essential for optimal mitophagy induced by TGFB and terminal erythroid differentiation and is critical for the progression of mutant KRAS-driven lung cancer. Overall, our study identified VASN as a novel TGFB-inducible regulator of lysosomal function.

溶酶体不仅是一种可降解的细胞器,也是信号转导的重要平台,如MTOR信号转导。溶酶体和MTOR之间的相互调节是巨噬/自噬和代谢的核心。mtor介导的溶酶体酸化抑制对溶酶体活性、自噬通量和细胞存活是重要的。VASN是一种跨膜糖蛋白,其功能尚不完全清楚。在本研究中,我们报道了VASN是一种tgfb诱导蛋白,在积极调节溶酶体酸化中起着至关重要的作用。作为一种潜在的机制,我们证明了VASN定位于溶酶体,与溶酶体MTOR和STK11IP相互作用,并破坏STK11IP与MTOR和v - atp酶的结合,这最近被报道抑制溶酶体酸化。我们发现VASN调节溶酶体活性的功能对于TGFB诱导的最佳有丝分裂和终末红细胞分化至关重要,并且对于突变型kras驱动的肺癌的进展至关重要。总的来说,我们的研究确定了VASN是一种新的tgfb诱导的溶酶体功能调节剂。
{"title":"TGFB-inducible VASN (vasorin) promotes lysosomal acidification.","authors":"Jiong Yan, Yan Zhang, Swati Choksi, Melissa R Mikolaj, Adam Harned, Kedar Narayan, Zheng-Gang Liu","doi":"10.1080/15548627.2026.2626397","DOIUrl":"https://doi.org/10.1080/15548627.2026.2626397","url":null,"abstract":"<p><p>The lysosome is not only a degradative organelle but also an essential platform for signal transduction, such as with MTOR signaling. The reciprocal regulation between the lysosome and MTOR is central to macroautophagy/autophagy and metabolism. MTOR-mediated suppression of lysosomal acidification is important for lysosomal activity, autophagic flux, and cell survival. VASN is a transmembrane glycoprotein whose function is not fully understood. In the present study, we report that VASN is a TGFB-inducible protein and plays a crucial role in positively regulating lysosomal acidification. As a potential mechanism, we demonstrated that VASN localizes to the lysosome, interacts with lysosomal MTOR and STK11IP, and disrupts the binding of STK11IP to MTOR and the V-ATPase, which was recently reported to suppress lysosomal acidification. We found that VASN's function in modulating lysosomal activity is essential for optimal mitophagy induced by TGFB and terminal erythroid differentiation and is critical for the progression of mutant KRAS-driven lung cancer. Overall, our study identified VASN as a novel TGFB-inducible regulator of lysosomal function.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146108732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A classical anti-autophagic viral protein reshapes mitochondria for immune evasion. 一种经典的抗自噬病毒蛋白重塑线粒体以逃避免疫。
IF 14.3 Pub Date : 2026-02-01 Epub Date: 2025-06-30 DOI: 10.1080/15548627.2025.2522130
Qing Zhu, Chengyu Liang

Viral subversion of macroautophagy/autophagy is a well-established immune evasion strategy, with BCL2 homologs from γ-herpesviruses serving as prototypical inhibitors through BECN1 (beclin 1) sequestration. Yet the full spectrum of their functions remains incompletely understood. In our recent study, we uncovered a non-canonical role for the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded BCL2 homolog (vBCL2) during late lytic replication. Unexpectedly, vBCL2 hijacks the host NDP kinase NME2/NM23-H2 to activate the mitochondrial fission GTPase DNM1L/DRP1, promoting mitochondrial fragmentation. This organelle remodeling dismantles MAVS-mediated antiviral signaling and facilitates virion assembly. A vBCL2 mutant unable to bind NME2 fails to induce fission or complete the viral lifecycle. These findings provide a long-sought answer to why vBCL2 is indispensable during lytic infection, and uncover a new immune evasion strategy centered on mitochondrial control. Our work expands the current view of virus-organelle interactions beyond canonical autophagy control and offers new targets for therapeutic intervention.

病毒破坏巨噬/自噬是一种成熟的免疫逃避策略,来自γ-疱疹病毒的BCL2同源物通过BECN1 (beclin 1)隔离充当原型抑制剂。然而,它们的全部功能仍未被完全了解。在我们最近的研究中,我们发现了卡波西肉瘤相关疱疹病毒(KSHV)编码的BCL2同源物(vBCL2)在后期裂解复制中的非规范作用。出乎意料的是,vBCL2劫持宿主NDP激酶NME2/NM23-H2,激活线粒体裂变GTPase DNM1L/DRP1,促进线粒体断裂。这种细胞器重塑破坏了mavs介导的抗病毒信号,促进了病毒粒子的组装。不能结合NME2的vBCL2突变体不能诱导裂变或完成病毒生命周期。这些发现为为什么vBCL2在溶解性感染中不可或缺提供了一个长期寻求的答案,并揭示了一种以线粒体控制为中心的新的免疫逃避策略。我们的工作扩展了目前关于病毒-细胞器相互作用的观点,超越了典型的自噬控制,并为治疗干预提供了新的靶点。
{"title":"A classical anti-autophagic viral protein reshapes mitochondria for immune evasion.","authors":"Qing Zhu, Chengyu Liang","doi":"10.1080/15548627.2025.2522130","DOIUrl":"10.1080/15548627.2025.2522130","url":null,"abstract":"<p><p>Viral subversion of macroautophagy/autophagy is a well-established immune evasion strategy, with BCL2 homologs from γ-herpesviruses serving as prototypical inhibitors through BECN1 (beclin 1) sequestration. Yet the full spectrum of their functions remains incompletely understood. In our recent study, we uncovered a non-canonical role for the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded BCL2 homolog (vBCL2) during late lytic replication. Unexpectedly, vBCL2 hijacks the host NDP kinase NME2/NM23-H2 to activate the mitochondrial fission GTPase DNM1L/DRP1, promoting mitochondrial fragmentation. This organelle remodeling dismantles MAVS-mediated antiviral signaling and facilitates virion assembly. A vBCL2 mutant unable to bind NME2 fails to induce fission or complete the viral lifecycle. These findings provide a long-sought answer to why vBCL2 is indispensable during lytic infection, and uncover a new immune evasion strategy centered on mitochondrial control. Our work expands the current view of virus-organelle interactions beyond canonical autophagy control and offers new targets for therapeutic intervention.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"429-430"},"PeriodicalIF":14.3,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144509952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coming of age of plant amphisomes. 植物两性体的成熟。
IF 14.3 Pub Date : 2026-02-01 Epub Date: 2025-11-23 DOI: 10.1080/15548627.2025.2589272
Hu-Jiao Lan, Min-Jun Huang, Sebastian Y Bednarek, Jian-Zhong Liu

In metazoans, autophagosomes fuse with late endosomes (LEs)/multivesicular bodies (MVBs) to form a hybrid organelle known as an amphisome. Subsequently upon fusion with lysosomes the contents of amphisomes are degraded. While the formation of metazoan amphisomes has been well established, it has remained an open question whether amphisomes form and deliver their cargo to the central vacuole for degradation in plant cells. In this mini review, we provide an update on recent discoveries in the field of plant autophagy that demonstrate the formation of amphisome-like organelles that are generated through several distinct autophagosome/MVB fusion pathways.Abbreviations: CFS1: FYVE domain-containing protein; CORVET: core vacuole/endosome tethering; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; FYVE: Fab1p, YOTB, Vac1p, and EEA1; FREE1: FYVE domain protein required for endosomal sorting; HOPS: homotypic fusion and protein sorting; LEs: late endosomes; MVBs: multivesicular bodies; PtdIns3P: phosphatidylinositol-3-phosphate; SNAREs: soluble NSF attachment protein receptors; VAPVs: VPS41-associated phagic vacuoles.

在后生动物中,自噬体与晚期核内体(LEs)/多泡体(MVBs)融合形成称为两性体的杂交细胞器。随后,在与溶酶体融合后,两性体的内容物被降解。虽然后生动物两性体的形成已经很好地确定,但两性体是否形成并将其货物运送到植物细胞的中央液泡中进行降解仍然是一个悬而未决的问题。在这篇综述中,我们提供了植物自噬领域的最新发现,这些发现证明了两性体样细胞器的形成是通过几种不同的自噬体/MVB融合途径产生的。
{"title":"Coming of age of plant amphisomes.","authors":"Hu-Jiao Lan, Min-Jun Huang, Sebastian Y Bednarek, Jian-Zhong Liu","doi":"10.1080/15548627.2025.2589272","DOIUrl":"10.1080/15548627.2025.2589272","url":null,"abstract":"<p><p>In metazoans, autophagosomes fuse with late endosomes (LEs)/multivesicular bodies (MVBs) to form a hybrid organelle known as an amphisome. Subsequently upon fusion with lysosomes the contents of amphisomes are degraded. While the formation of metazoan amphisomes has been well established, it has remained an open question whether amphisomes form and deliver their cargo to the central vacuole for degradation in plant cells. In this mini review, we provide an update on recent discoveries in the field of plant autophagy that demonstrate the formation of amphisome-like organelles that are generated through several distinct autophagosome/MVB fusion pathways.<b>Abbreviations</b>: CFS1: FYVE domain-containing protein; CORVET: core vacuole/endosome tethering; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; FYVE: Fab1p, YOTB, Vac1p, and EEA1; FREE1: FYVE domain protein required for endosomal sorting; HOPS: homotypic fusion and protein sorting; LEs: late endosomes; MVBs: multivesicular bodies; PtdIns3P: phosphatidylinositol-3-phosphate; SNAREs: soluble NSF attachment protein receptors; VAPVs: VPS41-associated phagic vacuoles.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"238-244"},"PeriodicalIF":14.3,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12834140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145497750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNX16 functions as a nutrient-sensitive regulator of autophagosomal components recycling. SNX16作为自噬体成分循环的营养敏感调节剂发挥作用。
IF 14.3 Pub Date : 2026-02-01 DOI: 10.1080/15548627.2026.2622466
Huilin Que, Yueguang Rong

In macroautophagy/autophagy, the inner membrane of the autophagosome and its contents are degraded within the autolysosome, while outer membrane proteins are recycled via a process known as autophagosomal components recycling (ACR). ACR is mediated by the recycler complex, powered by dynein-dynactin complexes, and regulated by RAB32-family small GTPases. However, it remains unknown whether ACR is subject to nutrient signal regulation or whether additional molecular components participate in the recycler complex. Our latest research identifies SNX16 as a new component of the recycler complex and reveals that MTORC1 phosphorylates SNX16, enabling SNX16 to function as a nutrient sensor that regulates ACR.

在巨噬/自噬中,自噬体的内膜及其内容物在自噬小体内降解,而外膜蛋白通过称为自噬体成分循环(autophagosomal components recycling, ACR)的过程被回收。ACR由循环复合体介导,动力蛋白-动力蛋白复合体提供动力,并受rab32家族小gtp酶调控。然而,目前尚不清楚ACR是否受营养信号调节或是否有其他分子成分参与回收复合物。我们最新的研究发现SNX16是循环复合体的新组成部分,并揭示MTORC1磷酸化SNX16,使SNX16作为调节ACR的营养传感器发挥作用。
{"title":"SNX16 functions as a nutrient-sensitive regulator of autophagosomal components recycling.","authors":"Huilin Que, Yueguang Rong","doi":"10.1080/15548627.2026.2622466","DOIUrl":"10.1080/15548627.2026.2622466","url":null,"abstract":"<p><p>In macroautophagy/autophagy, the inner membrane of the autophagosome and its contents are degraded within the autolysosome, while outer membrane proteins are recycled via a process known as autophagosomal components recycling (ACR). ACR is mediated by the recycler complex, powered by dynein-dynactin complexes, and regulated by RAB32-family small GTPases. However, it remains unknown whether ACR is subject to nutrient signal regulation or whether additional molecular components participate in the recycler complex. Our latest research identifies SNX16 as a new component of the recycler complex and reveals that MTORC1 phosphorylates SNX16, enabling SNX16 to function as a nutrient sensor that regulates ACR.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-2"},"PeriodicalIF":14.3,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146069497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic enteritis triggered by diet westernization is driven by epithelial ATG16L1-mediated autophagy. 饮食西化引发的慢性肠炎是由上皮细胞atg16l1介导的自噬驱动的。
IF 14.3 Pub Date : 2026-02-01 Epub Date: 2026-01-05 DOI: 10.1080/15548627.2025.2600906
Lisa Mayr, Julian Schwärzler, Laura Scheffauer, Zhigang Rao, Dietmar Rieder, Felix Grabherr, Moritz Meyer, Jakob Scheler, Almina Jukic, Luis Zundel, Verena Wieser, Andreas Zollner, Anna Simonini, Stefanie Auer, Lisa Amann, Maureen Philipp, Johannes Leierer, Richard Hilbe, Günter Weiss, Patrizia Moser, Philip Rosenstiel, Qitao Ran, Richard S Blumberg, Arthur Kaser, Andreas Koeberle, Zlatko Trajanoski, Herbert Tilg, Timon E Adolph

Macroautophagy/autophagy exerts multilayered protective functions in intestinal epithelial cells (IECs) while a loss-of-function genetic variant in ATG16L1 (autophagy related 16 like 1) is associated with risk for developing Crohn disease (CD). Westernization of diet, partly characterized by excess of long-chain fatty acids, contributes to CD, and a metabolic control of intestinal inflammation is emerging. Here, we report an unexpected inflammatory function for ATG16L1-mediated autophagy in Crohn-like metabolic enteritis of mice induced by polyunsaturated fatty acid (PUFA) excess in a western diet. Dietary PUFAs induce ATG16L1-mediated conventional autophagy in IECs, which is required for PUFA-induced chemokine production and metabolic enteritis. By transcriptomic and lipidomic profiling of IECs, we demonstrate that ATG16L1 is required for PUFA-induced inflammatory stress signaling specifically mediated by TLR2 (toll-like receptor 2) and the production of arachidonic acid metabolites. Our study identifies ATG16L1-mediated autophagy in IECs as an inflammatory hub driving metabolic enteritis, which challenges the perception of protective autophagy in the context of diet westernization.Abbreviations: AA: arachidonic acid; ATG16L1: autophagy related 16 like 1; CD: Crohn disease; CXCL1: C-X-C motif chemokine ligand 1; ER: endoplasmic reticulum; GFP: green fluorescent protein; GPX4: glutathione peroxidase 4; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; PUFA: polyunsaturated fatty acid; SDA: stearidonic acid; TLR2: toll-like receptor 2; WT: wild-type.

巨噬/自噬在肠上皮细胞(IECs)中发挥多层保护功能,而ATG16L1(自噬相关16样1)的功能丧失遗传变异与发生克罗恩病(CD)的风险相关。饮食西化,部分特征是长链脂肪酸过量,有助于乳糜泻,肠道炎症的代谢控制正在出现。在这里,我们报道了在西方饮食中过量多不饱和脂肪酸(PUFA)诱导的小鼠克罗恩样代谢性肠炎中atg16l1介导的自噬的意想不到的炎症功能。膳食pufa诱导IECs中atg16l1介导的常规自噬,这是pufa诱导的趋化因子产生和代谢性肠炎所必需的。通过IECs的转录组学和脂质组学分析,我们证明ATG16L1是由TLR2 (toll样受体2)特异性介导的pufa诱导的炎症应激信号通路和花生四烯酸代谢物的产生所必需的。我们的研究确定了IECs中atg16l1介导的自噬是驱动代谢性肠炎的炎症枢纽,这挑战了饮食西化背景下保护性自噬的看法。缩写:AA:花生四烯酸;ATG16L1:自噬相关16样1;CD:克罗恩病;CXCL1: C-X-C基序趋化因子配体1;ER:内质网;GFP:绿色荧光蛋白;GPX4:谷胱甘肽过氧化物酶4;IBD:炎症性肠病;IECs:肠上皮细胞;PTGS2/COX2:前列腺素内过氧化物合成酶2;PUFA:多不饱和脂肪酸;SDA:硬脂酸;TLR2: toll样受体2;WT:野生型。
{"title":"Chronic enteritis triggered by diet westernization is driven by epithelial ATG16L1-mediated autophagy.","authors":"Lisa Mayr, Julian Schwärzler, Laura Scheffauer, Zhigang Rao, Dietmar Rieder, Felix Grabherr, Moritz Meyer, Jakob Scheler, Almina Jukic, Luis Zundel, Verena Wieser, Andreas Zollner, Anna Simonini, Stefanie Auer, Lisa Amann, Maureen Philipp, Johannes Leierer, Richard Hilbe, Günter Weiss, Patrizia Moser, Philip Rosenstiel, Qitao Ran, Richard S Blumberg, Arthur Kaser, Andreas Koeberle, Zlatko Trajanoski, Herbert Tilg, Timon E Adolph","doi":"10.1080/15548627.2025.2600906","DOIUrl":"10.1080/15548627.2025.2600906","url":null,"abstract":"<p><p>Macroautophagy/autophagy exerts multilayered protective functions in intestinal epithelial cells (IECs) while a loss-of-function genetic variant in ATG16L1 (autophagy related 16 like 1) is associated with risk for developing Crohn disease (CD). Westernization of diet, partly characterized by excess of long-chain fatty acids, contributes to CD, and a metabolic control of intestinal inflammation is emerging. Here, we report an unexpected inflammatory function for ATG16L1-mediated autophagy in Crohn-like metabolic enteritis of mice induced by polyunsaturated fatty acid (PUFA) excess in a western diet. Dietary PUFAs induce ATG16L1-mediated conventional autophagy in IECs, which is required for PUFA-induced chemokine production and metabolic enteritis. By transcriptomic and lipidomic profiling of IECs, we demonstrate that ATG16L1 is required for PUFA-induced inflammatory stress signaling specifically mediated by TLR2 (toll-like receptor 2) and the production of arachidonic acid metabolites. Our study identifies ATG16L1-mediated autophagy in IECs as an inflammatory hub driving metabolic enteritis, which challenges the perception of protective autophagy in the context of diet westernization.<b>Abbreviations</b>: AA: arachidonic acid; ATG16L1: autophagy related 16 like 1; CD: Crohn disease; CXCL1: C-X-C motif chemokine ligand 1; ER: endoplasmic reticulum; GFP: green fluorescent protein; GPX4: glutathione peroxidase 4; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; PUFA: polyunsaturated fatty acid; SDA: stearidonic acid; TLR2: toll-like receptor 2; WT: wild-type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"391-408"},"PeriodicalIF":14.3,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12834163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145746304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1