Polycyclic Aromatic Hydrocarbons (PAHs) exposure leads to disorders reported in female infertility patients. Our hypothesis is that PAHs accumulate in granulosa cells (Gc) according to body mass index (BMI) and directly affects its functions. All 16 high-priority PAHs were in human FF, Gc and blood plasma with the highest concentration in Gc (GC-MS/MS). Their highest concentration was in obese Gc, except for acenaphthene and acenaphthylene, and positively correlated with BMI. In FF, we noted only positive correlation between naphthalene and BMI, whereas in blood plasma positive correlation between naphthalene, acenaphthene, pyrene and BMI. Phenanthrene and naphthalene but not fluoranthene inhibited totally steroidogenesis (ELISA), CYP19A1 mRNA expression (real-time PCR) and increased oxidative stress index and catalase expression in Gc independently on BMI. While all studied PAHs decreased Gc proliferation (BrdU assay) and viability (Cell Count kit-8 assay). Thus, Gc PAHs concentrations are positively correlated with BMI and alter ovarian functions.
{"title":"Polycyclic aromatic hydrocarbons in human granulosa cells: first in vivo presence and positive correlation with body mass index and in vitro ovarian cell steroidogenesis regulation.","authors":"Patrycja Kurowska, Lucille Berthet, Christelle Ramé, Małgorzata Węgiel, Anna Maślanka, Fabrice Guérif, Pascal Froment, Agnieszka Rak, Joelle Dupont","doi":"10.1016/j.etap.2024.104611","DOIUrl":"10.1016/j.etap.2024.104611","url":null,"abstract":"<p><p>Polycyclic Aromatic Hydrocarbons (PAHs) exposure leads to disorders reported in female infertility patients. Our hypothesis is that PAHs accumulate in granulosa cells (Gc) according to body mass index (BMI) and directly affects its functions. All 16 high-priority PAHs were in human FF, Gc and blood plasma with the highest concentration in Gc (GC-MS/MS). Their highest concentration was in obese Gc, except for acenaphthene and acenaphthylene, and positively correlated with BMI. In FF, we noted only positive correlation between naphthalene and BMI, whereas in blood plasma positive correlation between naphthalene, acenaphthene, pyrene and BMI. Phenanthrene and naphthalene but not fluoranthene inhibited totally steroidogenesis (ELISA), CYP19A1 mRNA expression (real-time PCR) and increased oxidative stress index and catalase expression in Gc independently on BMI. While all studied PAHs decreased Gc proliferation (BrdU assay) and viability (Cell Count kit-8 assay). Thus, Gc PAHs concentrations are positively correlated with BMI and alter ovarian functions.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104611"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-01DOI: 10.1016/j.etap.2024.104598
Giuseppe De Marco, Antonio Cristaldi, Maria Concetta Eliso, Gea Oliveri Conti, Mariachiara Galati, Barbara Billè, Mery Terranova, Vincenzo Parrino, Tiziana Cappello, Margherita Ferrante, Maria Maisano
The growing usage of glucocorticoids for a variety of diseases raises concerns since these drugs, including the anti-inflammatory dexamethasone (DEX), are frequently found in the environment. The impact of DEX was evaluated on mussels Mytilus galloprovincialis (Lamarck, 1819) by exposure to environmental concentrations (C1: 4 ng/L; C2: 40 ng/L; C3: 400 ng/L; C4: 2000 ng/L), and sampling at 3 (T3), 6 (T6), and 12 (T12) days. A multi-biomarker approach was applied on gills, involved in gas exchange, feed filtering, and osmoregulation. A dose- and time-dependent uptake of DEX was recorded, besides haemocyte infiltration, increased neutral and acid mucopolysaccharides, and a general pro-oxidant effect witnessed by lipid peroxidation and altered antioxidant system. Metabolomics revealed rise in protein turnover and energy demand by fluctuations in free amino acids (alanine, glycine) and energy-related metabolites (succinate, ATP/ADP). It is necessary to reduce DEX dosage from the environment by recovery strategies and effective eco-pharmacovigilance programs.
糖皮质激素越来越多地用于治疗各种疾病,这引起了人们的关注,因为这些药物,包括抗炎药物地塞米松(DEX),经常在环境中发现。通过暴露于环境浓度(C1: 4ng/L;C2: 40 ng / L;C3: 400 ng / L;C4: 2000 ng/L),并在3 (T3), 6 (T6)和12 (T12)天取样。多生物标志物的方法应用于鳃,涉及气体交换,饲料过滤和渗透调节。DEX的剂量和时间依赖性摄取记录,除了血细胞浸润外,中性和酸性粘多糖增加,以及脂质过氧化和抗氧化系统改变的一般促氧化作用。代谢组学显示,由于游离氨基酸(丙氨酸、甘氨酸)和能量相关代谢物(琥珀酸盐、ATP/ADP)的波动,蛋白质周转和能量需求增加。有必要通过恢复策略和有效的生态药物警戒计划从环境中减少DEX的剂量。
{"title":"Cellular pathway disturbances elicited by realistic dexamethasone concentrations in gills of mussel Mytilus galloprovincialis as assessed by a multi-biomarker approach.","authors":"Giuseppe De Marco, Antonio Cristaldi, Maria Concetta Eliso, Gea Oliveri Conti, Mariachiara Galati, Barbara Billè, Mery Terranova, Vincenzo Parrino, Tiziana Cappello, Margherita Ferrante, Maria Maisano","doi":"10.1016/j.etap.2024.104598","DOIUrl":"10.1016/j.etap.2024.104598","url":null,"abstract":"<p><p>The growing usage of glucocorticoids for a variety of diseases raises concerns since these drugs, including the anti-inflammatory dexamethasone (DEX), are frequently found in the environment. The impact of DEX was evaluated on mussels Mytilus galloprovincialis (Lamarck, 1819) by exposure to environmental concentrations (C1: 4 ng/L; C2: 40 ng/L; C3: 400 ng/L; C4: 2000 ng/L), and sampling at 3 (T3), 6 (T6), and 12 (T12) days. A multi-biomarker approach was applied on gills, involved in gas exchange, feed filtering, and osmoregulation. A dose- and time-dependent uptake of DEX was recorded, besides haemocyte infiltration, increased neutral and acid mucopolysaccharides, and a general pro-oxidant effect witnessed by lipid peroxidation and altered antioxidant system. Metabolomics revealed rise in protein turnover and energy demand by fluctuations in free amino acids (alanine, glycine) and energy-related metabolites (succinate, ATP/ADP). It is necessary to reduce DEX dosage from the environment by recovery strategies and effective eco-pharmacovigilance programs.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104598"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-11DOI: 10.1016/j.etap.2024.104610
Yun-A Ryu, Cheol Young Choi, Ju-Chan Kang, Jun-Hwan Kim
Starry flounders (Platichthys stellatus, mean weight 105 ± 14 g, mean total length 20.2 ± 0.7 cm) were exposed to hexavalent chromium concentrations of 0, 5, 10, 20, 40, and 80 mg Cr6 +/L for 96 hours. The half-lethal concentration (LC50) of P. stellatus induced by acute exposure to waterborne hexavalent chromium for 96 hours was found to be 58.84 mg Cr6+/L. In hematological parameters, red blood cell counts (RBCs), hemoglobin and hematocrit were significantly increased (P < 0.05). Major plasma components also changed significantly due to exposure to waterborne hexavalent chromium. Calcium in plasma inorganic components significantly increased, and glucose and cholesterol in plasma organic components also showed significant increases (P < 0.05). Plasma enzyme components such as AST, ALT and ALP were significantly increased (P < 0.05) at high levels of waterborne hexavalent chromium exposure. The results of this study suggest that acute exposure to waterborne hexavalent chromium in P. stellatus affects survival rates, hematological properties and plasma components.
{"title":"Effects on lethal concentration 50 % hematological parameters and plasma components of Starry flounder, Platichthys stellatus exposed to hexavalent chromium.","authors":"Yun-A Ryu, Cheol Young Choi, Ju-Chan Kang, Jun-Hwan Kim","doi":"10.1016/j.etap.2024.104610","DOIUrl":"10.1016/j.etap.2024.104610","url":null,"abstract":"<p><p>Starry flounders (Platichthys stellatus, mean weight 105 ± 14 g, mean total length 20.2 ± 0.7 cm) were exposed to hexavalent chromium concentrations of 0, 5, 10, 20, 40, and 80 mg Cr<sup>6 +</sup>/L for 96 hours. The half-lethal concentration (LC<sub>50</sub>) of P. stellatus induced by acute exposure to waterborne hexavalent chromium for 96 hours was found to be 58.84 mg Cr<sup>6+</sup>/L. In hematological parameters, red blood cell counts (RBCs), hemoglobin and hematocrit were significantly increased (P < 0.05). Major plasma components also changed significantly due to exposure to waterborne hexavalent chromium. Calcium in plasma inorganic components significantly increased, and glucose and cholesterol in plasma organic components also showed significant increases (P < 0.05). Plasma enzyme components such as AST, ALT and ALP were significantly increased (P < 0.05) at high levels of waterborne hexavalent chromium exposure. The results of this study suggest that acute exposure to waterborne hexavalent chromium in P. stellatus affects survival rates, hematological properties and plasma components.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104610"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-18DOI: 10.1016/j.etap.2024.104614
Roberto Catania, Rodrigo Cupertino Bernardes, Marta Bonforte, Lívia Maria Negrini Ferreira, Maria Augusta Pereira Lima, Dariusz Teper, Lucia Zappalà, Gaetana Mazzeo
Ground-nesting solitary bees are the most abundant bee species in the xeric areas of the world, but the effects of agrochemicals on them have been little studied. Herein, we evaluated the topical toxicity of an insecticide, a herbicide, and an essential oil on Mediterranean ground-nesting bees (Andrena impunctata, A. nigroolivacea, A. stabiana, and A. vetula), and on the managed Apis mellifera, Bombus terrestris, and Osmia bicornis. We tested the lethal effects of commercial formulations of acetamiprid, glyphosate and a biopesticide based on sweet orange essential oil, and evaluated the locomotor behaviours of managed bees exposed to the same treatments. Although potential differences in pre-experimental conditions of wild bees may have influenced susceptibility, smaller bees, based on the measurements of weight, body length, and inter-tegular distance, were more susceptible to agrochemicals than the larger ones. For the majority of the tested species, acetamiprid was the most toxic compound. Treated bees also showed neuronal symptoms after acetamiprid exposure and locomotor alterations that varied among species and agrochemicals. Our results show how the susceptibility of bees varies between species in relation to their body size, highlighting the need for additional model species in current bee risk assessments.
{"title":"Susceptibility of solitary bees to agrochemicals highlights gaps in bee risk assessment.","authors":"Roberto Catania, Rodrigo Cupertino Bernardes, Marta Bonforte, Lívia Maria Negrini Ferreira, Maria Augusta Pereira Lima, Dariusz Teper, Lucia Zappalà, Gaetana Mazzeo","doi":"10.1016/j.etap.2024.104614","DOIUrl":"10.1016/j.etap.2024.104614","url":null,"abstract":"<p><p>Ground-nesting solitary bees are the most abundant bee species in the xeric areas of the world, but the effects of agrochemicals on them have been little studied. Herein, we evaluated the topical toxicity of an insecticide, a herbicide, and an essential oil on Mediterranean ground-nesting bees (Andrena impunctata, A. nigroolivacea, A. stabiana, and A. vetula), and on the managed Apis mellifera, Bombus terrestris, and Osmia bicornis. We tested the lethal effects of commercial formulations of acetamiprid, glyphosate and a biopesticide based on sweet orange essential oil, and evaluated the locomotor behaviours of managed bees exposed to the same treatments. Although potential differences in pre-experimental conditions of wild bees may have influenced susceptibility, smaller bees, based on the measurements of weight, body length, and inter-tegular distance, were more susceptible to agrochemicals than the larger ones. For the majority of the tested species, acetamiprid was the most toxic compound. Treated bees also showed neuronal symptoms after acetamiprid exposure and locomotor alterations that varied among species and agrochemicals. Our results show how the susceptibility of bees varies between species in relation to their body size, highlighting the need for additional model species in current bee risk assessments.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104614"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142873669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-26DOI: 10.1016/j.etap.2024.104624
Mariane A P Silva, Lorena I M Carvalho, Maria Vitória Destro, Leandro G Braz, Mariana G Braz
Waste anesthetic gases (WAGs) are trace-concentration inhaled anesthetics that exist worldwide because they are released into the ambient air of operating rooms (ORs) and post-anesthesia care units. WAGs cause indoor contamination, especially in ORs lacking proper scavenging systems, and occupational exposure, while promoting climate change through greenhouse gas/ozone-depleting effects. Despite these controversial features, WAGs continue to pose occupational health hazards. Occupational exposure to WAGs has been linked to oxidative stress and cytotoxic, genotoxic and mutagenic potential. This review aims to analyze and update the literature on WAG monitoring, the impact of WAGs on occupationally exposed personnel and their effect on the environment. The awareness of exposed professionals in human and veterinary medicine is crucial. The implementation of biomonitoring practices and WAG occupational exposure limiting policies is needed. Promoting a sustainable healthcare system is also important for mitigating the impact of WAGs on global warming.
{"title":"From indoors to outdoors: Impact of waste anesthetic gases on occupationally exposed professionals and related environmental hazards - A narrative review and update.","authors":"Mariane A P Silva, Lorena I M Carvalho, Maria Vitória Destro, Leandro G Braz, Mariana G Braz","doi":"10.1016/j.etap.2024.104624","DOIUrl":"10.1016/j.etap.2024.104624","url":null,"abstract":"<p><p>Waste anesthetic gases (WAGs) are trace-concentration inhaled anesthetics that exist worldwide because they are released into the ambient air of operating rooms (ORs) and post-anesthesia care units. WAGs cause indoor contamination, especially in ORs lacking proper scavenging systems, and occupational exposure, while promoting climate change through greenhouse gas/ozone-depleting effects. Despite these controversial features, WAGs continue to pose occupational health hazards. Occupational exposure to WAGs has been linked to oxidative stress and cytotoxic, genotoxic and mutagenic potential. This review aims to analyze and update the literature on WAG monitoring, the impact of WAGs on occupationally exposed personnel and their effect on the environment. The awareness of exposed professionals in human and veterinary medicine is crucial. The implementation of biomonitoring practices and WAG occupational exposure limiting policies is needed. Promoting a sustainable healthcare system is also important for mitigating the impact of WAGs on global warming.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104624"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neonicotinoid insecticides (NNIs) are the fastest-growing class in agricultural protection. They target nicotinic acetylcholine receptors (nAChR) in pests, stimulating the nervous system at low doses and causing paralysis and death at higher concentrations. NNIs are used in crop protection, seed treatment, forestry, agriculture, and flea control in domestic cattle. Effective at lower concentrations and offering long-term control, NNIs are favoured for their systemic activity. However, due to their water solubility, mobility, and moderate persistence, NNIs easily contaminate adjacent aquatic environments via runoff, leaching, or spray drift. While less toxic to vertebrates, their widespread use poses threats to aquatic and terrestrial organisms, causing neurotoxicity, nephrotoxicity, cytotoxicity, genotoxicity, immunotoxicity, hepatotoxicity, endocrine disruption, and reproductive malformations. This review synthesizes research to address knowledge gaps on the environmental impact of NNIs and proposes policies to mitigate their harmful effects on aquatic non-target species.
{"title":"Evaluating the impact of neonicotinoids on aquatic non-target species: A comprehensive review.","authors":"Ahamadul Hoque Mandal, Auroshree Sadhu, Surajit Ghosh, Nimai Chandra Saha, Camilla Mossotto, Paolo Pastorino, Shubhajit Saha, Caterina Faggio","doi":"10.1016/j.etap.2024.104606","DOIUrl":"10.1016/j.etap.2024.104606","url":null,"abstract":"<p><p>Neonicotinoid insecticides (NNIs) are the fastest-growing class in agricultural protection. They target nicotinic acetylcholine receptors (nAChR) in pests, stimulating the nervous system at low doses and causing paralysis and death at higher concentrations. NNIs are used in crop protection, seed treatment, forestry, agriculture, and flea control in domestic cattle. Effective at lower concentrations and offering long-term control, NNIs are favoured for their systemic activity. However, due to their water solubility, mobility, and moderate persistence, NNIs easily contaminate adjacent aquatic environments via runoff, leaching, or spray drift. While less toxic to vertebrates, their widespread use poses threats to aquatic and terrestrial organisms, causing neurotoxicity, nephrotoxicity, cytotoxicity, genotoxicity, immunotoxicity, hepatotoxicity, endocrine disruption, and reproductive malformations. This review synthesizes research to address knowledge gaps on the environmental impact of NNIs and proposes policies to mitigate their harmful effects on aquatic non-target species.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104606"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-26DOI: 10.1016/j.etap.2024.104596
L M M Mattos, R N Silva, L G Santos, L Giovanini, V S Cruz, N M B Barreto, D Perrone, A L S Santos, M D Pereira
Oxidative stress plays a crucial role in various pathological conditions. This study introduces an enhanced model using hydrogen peroxide (H2O2)-induced stress in Galleria mellonella larvae, offering a cost-effective and ethically sound alternative for oxidative stress research. The model bridges in vitro and in vivo studies to identify biomarkers like lipid peroxidation, protein carbonylation, hemocyte count, and antioxidant enzyme activities. Our results show that while G. mellonella larvae tolerated high doses of H2O2, increased susceptibility occurred with prolonged toxicosis and higher concentrations. Acute H2O2 exposure (5.0 M/1st day) led to elevated lipid and protein oxidation and decreased superoxide dismutase activity and hemocyte count, while catalase activity and total antioxidant capacity increased. Despite these defenses, the larvae's antioxidant capacity was insufficient under severe oxidative stress, reducing survival. This study highlights G. mellonella larvae as a promising model for examining reactive oxygen species (ROS)-induced oxidative stress.
{"title":"Harnessing H<sub>2</sub>O<sub>2</sub>-induced susceptibility in Galleria mellonella larvae: A robust model for exploring oxidative stress and biomarkers.","authors":"L M M Mattos, R N Silva, L G Santos, L Giovanini, V S Cruz, N M B Barreto, D Perrone, A L S Santos, M D Pereira","doi":"10.1016/j.etap.2024.104596","DOIUrl":"10.1016/j.etap.2024.104596","url":null,"abstract":"<p><p>Oxidative stress plays a crucial role in various pathological conditions. This study introduces an enhanced model using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced stress in Galleria mellonella larvae, offering a cost-effective and ethically sound alternative for oxidative stress research. The model bridges in vitro and in vivo studies to identify biomarkers like lipid peroxidation, protein carbonylation, hemocyte count, and antioxidant enzyme activities. Our results show that while G. mellonella larvae tolerated high doses of H<sub>2</sub>O<sub>2</sub>, increased susceptibility occurred with prolonged toxicosis and higher concentrations. Acute H<sub>2</sub>O<sub>2</sub> exposure (5.0 M/1st day) led to elevated lipid and protein oxidation and decreased superoxide dismutase activity and hemocyte count, while catalase activity and total antioxidant capacity increased. Despite these defenses, the larvae's antioxidant capacity was insufficient under severe oxidative stress, reducing survival. This study highlights G. mellonella larvae as a promising model for examining reactive oxygen species (ROS)-induced oxidative stress.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104596"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veterinary antibiotics are widely spread in the environment, however, the knowledge about their impact on soil key species is still limited. This study evaluated the short-term and long-term effects of tetracycline (TC), ciprofloxacin (CIP) and sulfamethoxazole (SMX) (1-500 mg kg) on earthworm Dendrobaena veneta by measuring multiple parameters (survival, growth, reproduction, behavior and biochemical responses). Neither antibiotic induced acute toxicity and low mortality was observed after chronic exposure. TC and CIP had a negligible effect on the earthworm's weight from the 6th week of exposure, SMX inhibited the earthworm growth when was present in the range of 50-500 mg kg-1. In parallel, SMX reduced earthworm reproduction at environmentally relevant concentrations. Antibiotics altered superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and gluthathione-S-transferase (GST) activities and induced lipid peroxidation. Overall, earthworms showed no apparent acute response at environmentally relevant concentrations except for avoidance behavior; after long-term exposure earthworms experienced biochemical, physiological, and reproductive impairments and reduced survival at high soil contamination.
{"title":"Comprehensive tetracycline, ciprofloxacin and sulfamethoxazole toxicity evaluation to earthworm Dendrobaena veneta through life-cycle, behavioral and biochemical parameters.","authors":"Jūratė Žaltauskaitė, Diana Miškelytė, Gintarė Sujetovienė, Austra Dikšaitytė, Giedrė Kacienė, Irena Januškaitienė, Renata Dagiliūtė","doi":"10.1016/j.etap.2024.104609","DOIUrl":"10.1016/j.etap.2024.104609","url":null,"abstract":"<p><p>Veterinary antibiotics are widely spread in the environment, however, the knowledge about their impact on soil key species is still limited. This study evaluated the short-term and long-term effects of tetracycline (TC), ciprofloxacin (CIP) and sulfamethoxazole (SMX) (1-500 mg kg) on earthworm Dendrobaena veneta by measuring multiple parameters (survival, growth, reproduction, behavior and biochemical responses). Neither antibiotic induced acute toxicity and low mortality was observed after chronic exposure. TC and CIP had a negligible effect on the earthworm's weight from the 6th week of exposure, SMX inhibited the earthworm growth when was present in the range of 50-500 mg kg<sup>-1</sup>. In parallel, SMX reduced earthworm reproduction at environmentally relevant concentrations. Antibiotics altered superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and gluthathione-S-transferase (GST) activities and induced lipid peroxidation. Overall, earthworms showed no apparent acute response at environmentally relevant concentrations except for avoidance behavior; after long-term exposure earthworms experienced biochemical, physiological, and reproductive impairments and reduced survival at high soil contamination.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104609"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1016/j.etap.2024.104616
Carine Baggiotto, Marciano Friedrich, Vania Lucia Loro, Tiele Medianeira Rizzetti, Renato Zanella, Jossiele Wesz Leitemperger, Bárbara Estevao Clasen, Rosana de Cassia De Souza Schneider, Francisco Rossarolla Forgiarini
Potato (Solanum tuberosum) cultivation faces the challenge of excessive pesticide use. During processing, the disposal of large volumes of contaminated water into water bodies can result in severe environmental damage, such as fish deaths. This study aimed to evaluate the toxicological effects of chemical compounds present in the effluent from a potato-processing industry using the test organism Cyprinus carpio. The liver, gills, muscles, and brain were analyzed for biochemical parameters such as catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), and lipid peroxidation (TBARS). The highest quantities of pesticides found in the effluent were atrazine, azoxystrobin, fipronil, flutolanil, imidacloprid, tebuconazole, and thiamethoxam. Fish were exposed to the effluent for 7, 14, and 28 days in the laboratory. The CAT enzyme increased activity in the gills at 7 (p-value=0.000) and 14 days (p-value=0.003). Lipid peroxidation showed an increase in the gills at seven days (p-value=0.0281) and in the liver at 7 (p-value=0.000) and 14 days (p-value=0.000). There was also a significant increase (p-value=0.000) in AChE activity in the muscle at all periods. This result highlights the environmental risk and toxicity of potato effluent containing pesticide residues, which can cause biochemical damage to C. carpio and other living organisms.
{"title":"Toxicity assessment of effluent from a potato-processing industry in Cyprinus carpio.","authors":"Carine Baggiotto, Marciano Friedrich, Vania Lucia Loro, Tiele Medianeira Rizzetti, Renato Zanella, Jossiele Wesz Leitemperger, Bárbara Estevao Clasen, Rosana de Cassia De Souza Schneider, Francisco Rossarolla Forgiarini","doi":"10.1016/j.etap.2024.104616","DOIUrl":"10.1016/j.etap.2024.104616","url":null,"abstract":"<p><p>Potato (Solanum tuberosum) cultivation faces the challenge of excessive pesticide use. During processing, the disposal of large volumes of contaminated water into water bodies can result in severe environmental damage, such as fish deaths. This study aimed to evaluate the toxicological effects of chemical compounds present in the effluent from a potato-processing industry using the test organism Cyprinus carpio. The liver, gills, muscles, and brain were analyzed for biochemical parameters such as catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), and lipid peroxidation (TBARS). The highest quantities of pesticides found in the effluent were atrazine, azoxystrobin, fipronil, flutolanil, imidacloprid, tebuconazole, and thiamethoxam. Fish were exposed to the effluent for 7, 14, and 28 days in the laboratory. The CAT enzyme increased activity in the gills at 7 (p-value=0.000) and 14 days (p-value=0.003). Lipid peroxidation showed an increase in the gills at seven days (p-value=0.0281) and in the liver at 7 (p-value=0.000) and 14 days (p-value=0.000). There was also a significant increase (p-value=0.000) in AChE activity in the muscle at all periods. This result highlights the environmental risk and toxicity of potato effluent containing pesticide residues, which can cause biochemical damage to C. carpio and other living organisms.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104616"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1016/j.etap.2024.104617
Gabriela Pustiglione Marinsek, Manuela Agullo Tagliamento, Isabelly Cristina Correia Dos Santos Oliveira, Anna Capaldo, Paloma Kachel Gusso-Choueri, Caio César Ribeiro, Ana Carolina Cruz Feitosa, Denis Moledo de Souza Abessa, Marcos Antônio Oliveira, Renata de Britto Mari
This study investigates the impact of environmentally relevant concentrations of azithromycin on Poecilia reticulata, through biomarkers at different levels. To this end, the somatic indexes of P. reticulata were evaluated, and liver and gill samples were collected and analyzed for biochemical and histopathological alterations. Azithromycin caused significant effects in P. reticulata, such as increased hepatosomatic index, altered redox responses, particularly in gills, indicating oxidative stress, and notable tissue damage in the liver and gills in a dose-dependent response manner. Principal Component Analysis highlighted differences between control and exposed groups, demonstrating the azithromycin's influence on organismal homeostasis. This research underscores the importance of understanding azithromycin action in nontarget organisms of aquatic environments.
{"title":"Assessing azithromycin's ecological toll: Unveiling multifaceted impacts on Poecilia reticulata THROUGH biomarker analysis.","authors":"Gabriela Pustiglione Marinsek, Manuela Agullo Tagliamento, Isabelly Cristina Correia Dos Santos Oliveira, Anna Capaldo, Paloma Kachel Gusso-Choueri, Caio César Ribeiro, Ana Carolina Cruz Feitosa, Denis Moledo de Souza Abessa, Marcos Antônio Oliveira, Renata de Britto Mari","doi":"10.1016/j.etap.2024.104617","DOIUrl":"10.1016/j.etap.2024.104617","url":null,"abstract":"<p><p>This study investigates the impact of environmentally relevant concentrations of azithromycin on Poecilia reticulata, through biomarkers at different levels. To this end, the somatic indexes of P. reticulata were evaluated, and liver and gill samples were collected and analyzed for biochemical and histopathological alterations. Azithromycin caused significant effects in P. reticulata, such as increased hepatosomatic index, altered redox responses, particularly in gills, indicating oxidative stress, and notable tissue damage in the liver and gills in a dose-dependent response manner. Principal Component Analysis highlighted differences between control and exposed groups, demonstrating the azithromycin's influence on organismal homeostasis. This research underscores the importance of understanding azithromycin action in nontarget organisms of aquatic environments.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104617"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}