Pub Date : 2024-11-01Epub Date: 2024-09-24DOI: 10.1016/j.foodres.2024.115133
Michel Rocha Baqueta, Matheus Pereira Postigo, Enrique Anastácio Alves, Venancio Ferreira de Moraes Neto, Patrícia Valderrama, Juliana Azevedo Lima Pallone, Paulo Henrique Gonçalves Dias Diniz
The prevention of coffee fraud through the use of digital and intelligence-based technologies is an analytical challenge because depending on the adulterant, visual inspection is unreliable in roasted and ground coffee due to the similarity in color and texture of the materials used. In this work, a 3D-printed apparatus for smartphone image acquisiton is proposed. The digital images are used to authenticate the geographical origin of indigenous canephora coffees produced at Amazon region, Brazil, against canephora coffees from Espírito Santo, Brazil, and to capture the adulteration of indigenous samples. The results evidenced that the technology is favorable to identify the geographical origin and adulteration with multiple substances using smartphone technology. Pure coffees were adulterated with arabica coffee, spent coffee ground, low-quality Canephora coffee, coffee husks, açaí, corn, and soybean in increasing proportions of 10, 20, 30, 40, 50, 60, and 70 %. These adulterants were roasted and grounded similarly to Canephora coffees to mimetize a highly-sophisticated fraud. The images were converted into Red-Green-Blue (RGB) fingerprinting and used as analytical response to construct Data-Driven Soft Independent Modeling of Class Analogy (DD-SIMCA) models. A total of 95 % of all target and non-target samples in the test set were correctely identified, aiding producers and consumers in ensuring accurate labeling and supporting traditional communities economically and culturally. Smartphone-based method demonstrated potential to innovate the coffee safety control representing a new analytical tecnology.
{"title":"Authentication of indigenous Brazilian specialty canephora coffees using smartphone image analysis.","authors":"Michel Rocha Baqueta, Matheus Pereira Postigo, Enrique Anastácio Alves, Venancio Ferreira de Moraes Neto, Patrícia Valderrama, Juliana Azevedo Lima Pallone, Paulo Henrique Gonçalves Dias Diniz","doi":"10.1016/j.foodres.2024.115133","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115133","url":null,"abstract":"<p><p>The prevention of coffee fraud through the use of digital and intelligence-based technologies is an analytical challenge because depending on the adulterant, visual inspection is unreliable in roasted and ground coffee due to the similarity in color and texture of the materials used. In this work, a 3D-printed apparatus for smartphone image acquisiton is proposed. The digital images are used to authenticate the geographical origin of indigenous canephora coffees produced at Amazon region, Brazil, against canephora coffees from Espírito Santo, Brazil, and to capture the adulteration of indigenous samples. The results evidenced that the technology is favorable to identify the geographical origin and adulteration with multiple substances using smartphone technology. Pure coffees were adulterated with arabica coffee, spent coffee ground, low-quality Canephora coffee, coffee husks, açaí, corn, and soybean in increasing proportions of 10, 20, 30, 40, 50, 60, and 70 %. These adulterants were roasted and grounded similarly to Canephora coffees to mimetize a highly-sophisticated fraud. The images were converted into Red-Green-Blue (RGB) fingerprinting and used as analytical response to construct Data-Driven Soft Independent Modeling of Class Analogy (DD-SIMCA) models. A total of 95 % of all target and non-target samples in the test set were correctely identified, aiding producers and consumers in ensuring accurate labeling and supporting traditional communities economically and culturally. Smartphone-based method demonstrated potential to innovate the coffee safety control representing a new analytical tecnology.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115133"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-21DOI: 10.1016/j.foodres.2024.115121
Ji-Hua Mao, Wen-Mei Chen, Yang Wang, Xu-Mei Wang, Yan-Hong Shao, Jun Liu, Zong-Cai Tu
The objective of this study was to investigate the immunomodulatory effects of whey protein isolate (WPI)-galacto-oligosaccharide conjugates following dynamic high-pressure microfluidics pretreatment (DHPM) in cyclophosphamide-induced immunosuppressed mice. DHPM facilitated the conjugation of WPI and galacto-oligosaccharide, and inhibited the generation of fluorescent advanced glycation end products (AGEs) and pentosidine. The conjugates demonstrated a significant immune recovery effect on CTX-induced immunosuppressed mice, as evidenced by the enhancement of IgG antibody levels (from 3.5 to 4.1) and the reduction of the levels of immunosuppressive effector factors TGF-β (from 148.1 to 111.2) and IFN-γ (from 34.4 to 17.9). Furthermore, the conjugates exhibited a notable ability to repair histological lesion in the spleen of CTX-induced immunosuppressed mice. Spleen transcriptomics revealed that the Marco, Klrc3 and Cd209b genes were associated with the immune enhancement activity of the conjugates. Metabolomic analysis identified arginine biosynthesis, sphingolipid metabolism, alanine, aspartate and glutamate metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis as key pathways in the immune enhancement activity of the conjugates. Metabolomics combined with transcriptomics indicated the importance of macrophage activation in the restoration of immunosuppressed mice's immunity by the conjugates. Therefore, the improvement in immunity observed with WPI-galacto-oligosaccharide conjugates may be related to the activation of macrophages.
{"title":"Serum metabolism-transcriptomics investigated into the immunity of whey protein isolate-galacto-oligosaccharide conjugates after dynamic high-pressure microfluidics pretreatment.","authors":"Ji-Hua Mao, Wen-Mei Chen, Yang Wang, Xu-Mei Wang, Yan-Hong Shao, Jun Liu, Zong-Cai Tu","doi":"10.1016/j.foodres.2024.115121","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115121","url":null,"abstract":"<p><p>The objective of this study was to investigate the immunomodulatory effects of whey protein isolate (WPI)-galacto-oligosaccharide conjugates following dynamic high-pressure microfluidics pretreatment (DHPM) in cyclophosphamide-induced immunosuppressed mice. DHPM facilitated the conjugation of WPI and galacto-oligosaccharide, and inhibited the generation of fluorescent advanced glycation end products (AGEs) and pentosidine. The conjugates demonstrated a significant immune recovery effect on CTX-induced immunosuppressed mice, as evidenced by the enhancement of IgG antibody levels (from 3.5 to 4.1) and the reduction of the levels of immunosuppressive effector factors TGF-β (from 148.1 to 111.2) and IFN-γ (from 34.4 to 17.9). Furthermore, the conjugates exhibited a notable ability to repair histological lesion in the spleen of CTX-induced immunosuppressed mice. Spleen transcriptomics revealed that the Marco, Klrc3 and Cd209b genes were associated with the immune enhancement activity of the conjugates. Metabolomic analysis identified arginine biosynthesis, sphingolipid metabolism, alanine, aspartate and glutamate metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis as key pathways in the immune enhancement activity of the conjugates. Metabolomics combined with transcriptomics indicated the importance of macrophage activation in the restoration of immunosuppressed mice's immunity by the conjugates. Therefore, the improvement in immunity observed with WPI-galacto-oligosaccharide conjugates may be related to the activation of macrophages.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115121"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-21DOI: 10.1016/j.foodres.2024.115128
Nima Mohammadi, Marcelo Franchin, Carolina Girotto Pressete, Lusânia Maria Greggi Antunes, Daniel Granato
This study investigates the comprehensive effects of extraction parameters, freeze-drying, and formulation on the chemical composition, colour properties, antioxidant and anti-inflammatory activities, and reactive oxygen species (ROS) generation of blackberry (BB) and elderberry (EB) extracts, as well as their incorporation into gummies. Using response surface methodology, optimal extraction conditions were identified: BB extracts showed optimal results at 325 W and 7.5 min, while EB extracts were optimal at 400 W and 5 min. The EB extracts consistently exhibited higher total phenolic content, total anthocyanin content, and antioxidant capacity than the BB extracts. Over 120 min, BB extracts demonstrated superior antioxidant potential to mitigate human plasma lipid oxidation. Both extracts displayed pH-dependent colour variations and antioxidant capacities, with EB extracts showing greater stability across a broader pH range. Freeze-drying effectively preserved antioxidant capacity, with EB extracts maintaining higher values than BB extracts. In a cellular model of oxidative stress using THP-1, both extracts were non-cytotoxic and reduced intracellular ROS generation, with EB extracts also more effectively inhibiting IL-6 secretion. When incorporated into gummies, these extracts resulted in higher phenolic and anthocyanin content than commercial counterparts, with EB gummies demonstrating superior antioxidant capacity. Sensory evaluations indicated no significant differences in taste, texture, or overall acceptability among the gummy formulations, though colour preferences tended to favour commercial gummies. This study addresses a gap by providing detailed chemical, biological, and sensory assessments of BB and EB extracts in food applications.
{"title":"Green recovery and application of berry anthocyanins in functional gummies: Stability study, plasma and cellular antioxidant and anti-inflammatory activity.","authors":"Nima Mohammadi, Marcelo Franchin, Carolina Girotto Pressete, Lusânia Maria Greggi Antunes, Daniel Granato","doi":"10.1016/j.foodres.2024.115128","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115128","url":null,"abstract":"<p><p>This study investigates the comprehensive effects of extraction parameters, freeze-drying, and formulation on the chemical composition, colour properties, antioxidant and anti-inflammatory activities, and reactive oxygen species (ROS) generation of blackberry (BB) and elderberry (EB) extracts, as well as their incorporation into gummies. Using response surface methodology, optimal extraction conditions were identified: BB extracts showed optimal results at 325 W and 7.5 min, while EB extracts were optimal at 400 W and 5 min. The EB extracts consistently exhibited higher total phenolic content, total anthocyanin content, and antioxidant capacity than the BB extracts. Over 120 min, BB extracts demonstrated superior antioxidant potential to mitigate human plasma lipid oxidation. Both extracts displayed pH-dependent colour variations and antioxidant capacities, with EB extracts showing greater stability across a broader pH range. Freeze-drying effectively preserved antioxidant capacity, with EB extracts maintaining higher values than BB extracts. In a cellular model of oxidative stress using THP-1, both extracts were non-cytotoxic and reduced intracellular ROS generation, with EB extracts also more effectively inhibiting IL-6 secretion. When incorporated into gummies, these extracts resulted in higher phenolic and anthocyanin content than commercial counterparts, with EB gummies demonstrating superior antioxidant capacity. Sensory evaluations indicated no significant differences in taste, texture, or overall acceptability among the gummy formulations, though colour preferences tended to favour commercial gummies. This study addresses a gap by providing detailed chemical, biological, and sensory assessments of BB and EB extracts in food applications.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115128"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-21DOI: 10.1016/j.foodres.2024.115123
Xunyu Song, Jun Sun, Yunshuang Yue, Daotong Li, Fang Chen
The hepatoprotective potential of tomato juice (TJ) has been reported in chronic liver models, and its potential prebiotic properties may be key to its preventative effects. However, the mechanistic role of the gut microbiota and its derived metabolites in ameliorating nonalcoholic steatohepatitis (NASH) via TJ remains unclear. In this study, we explored how TJ regulates gut microbiota and succinic acid (SA) to restore intestinal barrier function and thus suppress NASH progression. TJ supplementation effectively reduced serum lipid concentrations, alleviated endotoxin levels, and suppressed activation of the endotoxin-TLR4-NF-κB pathway in methionine-choline-deficient (MCD) diet-induced NASH mice. TJ restored the MCD diet-induced gut microbiota dysbiosis, increased the abundance of short-chain fatty acid and SA-producing bacteria (Bifidobacterium, Ileibacterium, Odoribacter, and Parasutterella) and enhanced the expression of intestinal barrier-associated proteins (E-cadherin, Claudin-1, MUC-2, and ZO-1). The hepatoprotective and enteroprotective effects of TJ were abolished in an antibiotic-treated mouse model, underscoring the pivotal role of the gut microbiota in the beneficial effects of TJ on NASH. Fecal metabolomics demonstrated that TJ significantly upregulated the tricarboxylic acid cycle, pyruvate metabolism, and butanoate metabolism pathways, increasing levels of butyric acid (BA) and SA-metabolites associated with reduced hepatic steatosis and intestinal damage. We further found that the physiological concentration of SA, rather than BA, could reduce pro-inflammatory cytokines (TNF-α and IL-6) levels and enhance mucin proteins and tight junction markers in the LPS-induced colon cell line LS174T. This study uncovers new mechanisms by which TJ prevents NASH, highlighting the potential of TJ and SA as effective dietary supplements for patients with chronic liver diseases.
{"title":"Microbiota-derived succinic acid mediates attenuating effect of dietary tomato juice supplementation on steatohepatitis through enhancing intestinal barrier.","authors":"Xunyu Song, Jun Sun, Yunshuang Yue, Daotong Li, Fang Chen","doi":"10.1016/j.foodres.2024.115123","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115123","url":null,"abstract":"<p><p>The hepatoprotective potential of tomato juice (TJ) has been reported in chronic liver models, and its potential prebiotic properties may be key to its preventative effects. However, the mechanistic role of the gut microbiota and its derived metabolites in ameliorating nonalcoholic steatohepatitis (NASH) via TJ remains unclear. In this study, we explored how TJ regulates gut microbiota and succinic acid (SA) to restore intestinal barrier function and thus suppress NASH progression. TJ supplementation effectively reduced serum lipid concentrations, alleviated endotoxin levels, and suppressed activation of the endotoxin-TLR4-NF-κB pathway in methionine-choline-deficient (MCD) diet-induced NASH mice. TJ restored the MCD diet-induced gut microbiota dysbiosis, increased the abundance of short-chain fatty acid and SA-producing bacteria (Bifidobacterium, Ileibacterium, Odoribacter, and Parasutterella) and enhanced the expression of intestinal barrier-associated proteins (E-cadherin, Claudin-1, MUC-2, and ZO-1). The hepatoprotective and enteroprotective effects of TJ were abolished in an antibiotic-treated mouse model, underscoring the pivotal role of the gut microbiota in the beneficial effects of TJ on NASH. Fecal metabolomics demonstrated that TJ significantly upregulated the tricarboxylic acid cycle, pyruvate metabolism, and butanoate metabolism pathways, increasing levels of butyric acid (BA) and SA-metabolites associated with reduced hepatic steatosis and intestinal damage. We further found that the physiological concentration of SA, rather than BA, could reduce pro-inflammatory cytokines (TNF-α and IL-6) levels and enhance mucin proteins and tight junction markers in the LPS-induced colon cell line LS174T. This study uncovers new mechanisms by which TJ prevents NASH, highlighting the potential of TJ and SA as effective dietary supplements for patients with chronic liver diseases.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115123"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-27DOI: 10.1016/j.foodres.2024.115151
Beatriz Navajas-Porras, Adriana Delgado-Osorio, Daniel Hinojosa-Nogueira, Silvia Pastoriza, María Del Carmen Almécija-Rodríguez, José Ángel Rufián-Henares, Jesús D Fernandez-Bayo
Black Soldier Fly larvae (BSFL) are a promising and sustainable alternative to obtain proteins. Due to their high growth rate and ability to use different substrates as feeding stocks, BSFL can be also used to valorize food waste. Thus, the aim of this research was to unravel the potential use of Spent Coffee Grounds (SCG) and blood meal alone or mixed as feedstocks for BSFL and the nutritional changes for BSFL meal, especially after simulated human in vitro digestion and fermentation. Chicken feed was used as a control. Chicken feed showed the highest BSFL growth (P < 0.05) compared with blood meal and the mix made of blood meal and SCG; the latter caused the lowest growth. The meal obtained from BSFL fed with blood meal had the highest protein content, as well as the highest levels of short chain fatty acids (SCFAs) produced after in vitro fermentation by the human gut microbiota. On the other hand, the meal from larvae fed with SCG showed higher antioxidant capacity than the others in the DPPH, FRAP and ABTS assays. The digestibility of macronutrients, release of antioxidant capacity and production of SCFAs of the BSFL meal were improved when using these substrates, compared to chicken feed.
{"title":"Improved nutritional and antioxidant properties of black soldier fly larvae reared on spent coffee grounds and blood meal by-products.","authors":"Beatriz Navajas-Porras, Adriana Delgado-Osorio, Daniel Hinojosa-Nogueira, Silvia Pastoriza, María Del Carmen Almécija-Rodríguez, José Ángel Rufián-Henares, Jesús D Fernandez-Bayo","doi":"10.1016/j.foodres.2024.115151","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115151","url":null,"abstract":"<p><p>Black Soldier Fly larvae (BSFL) are a promising and sustainable alternative to obtain proteins. Due to their high growth rate and ability to use different substrates as feeding stocks, BSFL can be also used to valorize food waste. Thus, the aim of this research was to unravel the potential use of Spent Coffee Grounds (SCG) and blood meal alone or mixed as feedstocks for BSFL and the nutritional changes for BSFL meal, especially after simulated human in vitro digestion and fermentation. Chicken feed was used as a control. Chicken feed showed the highest BSFL growth (P < 0.05) compared with blood meal and the mix made of blood meal and SCG; the latter caused the lowest growth. The meal obtained from BSFL fed with blood meal had the highest protein content, as well as the highest levels of short chain fatty acids (SCFAs) produced after in vitro fermentation by the human gut microbiota. On the other hand, the meal from larvae fed with SCG showed higher antioxidant capacity than the others in the DPPH, FRAP and ABTS assays. The digestibility of macronutrients, release of antioxidant capacity and production of SCFAs of the BSFL meal were improved when using these substrates, compared to chicken feed.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115151"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-24DOI: 10.1016/j.foodres.2024.115137
Hequan Zhu, Chunyang Li, Lei Jia, Jiangtao Qiao, Hesham R El-Seedi, Yu Zhang, Hongcheng Zhang
Propolis is a natural immunomodulator with anticancer activity. This study investigated the immunomodulatory mechanism and anti-tumor activity of supercritical CO2 extracts of propolis (SEP) in tumor-bearing immunosuppression mice. We used cyclophosphamide (CTX) to construct the immunosuppressive mice model and then inoculated them with CT26 cells to build the CT26 tumor-bearing immunosuppression mice model. Upon treatment with SEP, tumor proliferation in mice was markedly suppressed, with tumor volumes decreasing from 1881.43 mm3 to 1049.95 mm3 and weights reducing from 2.07 g to 1.13 g. Concurrently, the immune system recovered well, and the spleen and thymus indexes increased significantly. The total T lymphocyte (CD3+ T cell) contents in the spleen and blood recovered from 11.88 % to 21.19 % and 15.32 % to 22.19 %, respectively. In addition, the CD4+ /CD8+ ratio has returned to a healthy level, 3.12 in the spleen and 5.42 in the blood. The levels of IL-1β, IL-6, and TNF-α were increased by 2.17, 2.76, and 7.15 times in the spleen, 2.76, 1.92, and 3.02 times in the serum. Moreover, the western blot results showed that SEP treatment increased the expression of toll-like receptor 4 (TLR4) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p65. These results indicated that SEP activated the immune activity of RAW 264.7 macrophages through the TLR4-mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway to exert immunomodulatory function and inhibit tumor proliferation. This study facilitated the further application of SEP as a potential immunomodulatory and anti-tumor functional food.
{"title":"Supercritical CO<sub>2</sub> extracts of propolis inhibits tumor proliferation and Enhances the immunomodulatory activity via activating the TLR4-MAPK/NF-κB signaling pathway.","authors":"Hequan Zhu, Chunyang Li, Lei Jia, Jiangtao Qiao, Hesham R El-Seedi, Yu Zhang, Hongcheng Zhang","doi":"10.1016/j.foodres.2024.115137","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115137","url":null,"abstract":"<p><p>Propolis is a natural immunomodulator with anticancer activity. This study investigated the immunomodulatory mechanism and anti-tumor activity of supercritical CO<sub>2</sub> extracts of propolis (SEP) in tumor-bearing immunosuppression mice. We used cyclophosphamide (CTX) to construct the immunosuppressive mice model and then inoculated them with CT26 cells to build the CT26 tumor-bearing immunosuppression mice model. Upon treatment with SEP, tumor proliferation in mice was markedly suppressed, with tumor volumes decreasing from 1881.43 mm<sup>3</sup> to 1049.95 mm<sup>3</sup> and weights reducing from 2.07 g to 1.13 g. Concurrently, the immune system recovered well, and the spleen and thymus indexes increased significantly. The total T lymphocyte (CD3<sup>+</sup> T cell) contents in the spleen and blood recovered from 11.88 % to 21.19 % and 15.32 % to 22.19 %, respectively. In addition, the CD4<sup>+</sup> /CD8<sup>+</sup> ratio has returned to a healthy level, 3.12 in the spleen and 5.42 in the blood. The levels of IL-1β, IL-6, and TNF-α were increased by 2.17, 2.76, and 7.15 times in the spleen, 2.76, 1.92, and 3.02 times in the serum. Moreover, the western blot results showed that SEP treatment increased the expression of toll-like receptor 4 (TLR4) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p65. These results indicated that SEP activated the immune activity of RAW 264.7 macrophages through the TLR4-mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway to exert immunomodulatory function and inhibit tumor proliferation. This study facilitated the further application of SEP as a potential immunomodulatory and anti-tumor functional food.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115137"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-21DOI: 10.1016/j.foodres.2024.115134
Francielle Miranda de Matos, Gabriela Boscariol Rasera, Ruann Janser Soares de Castro
Insects are a rich source of proteins and are produced in systems that have lower environmental impact. As an alternative protein source, they can be consumed directly or used as an ingredient in other formulations. Recently, there has been growing interest in utilizing insect proteins as a substrate to obtain bioactive peptides as well as in investigating the maintenance of their biological properties under physiological conditions. This study aimed to evaluate the impact of simulated digestion on the bioactive properties of protein hydrolysates from black crickets (Gryllus assimilis). Following simulated digestion of the hydrolysate obtained through the application of Flavourzyme, the scavenging activities of ABTS and DPPH radicals, and ferric reducing antioxidant power (FRAP) increased by approximately 17 %, 246 %, and 173 %, respectively. For the hydrolysate obtained using the binary combination of Flavourzyme/Neutrase, the inhibitory activities of α-amylase and α-glucosidase after digestion were 47.87 % and 12.73 %, respectively, not significantly (p > 0.05) different from non-digested hydrolysates. The angiotensin-converting enzyme (ACE) inhibitory activity of the sample hydrolyzed with Flavourzyme/Alcalase proteases was 42.22 %, but this property was completely lost after in vitro digestion. Untargeted proteomic analysis allowed the identification of 22 peptides in the <3 kDa fraction of the digested black cricket protein. The LPPLP sequence was considered potentially bioactive for all activities tested in silico.
{"title":"Multifunctional properties of peptides derived from black cricket (Gryllus assimilis) and effects of in vitro digestion simulation on their bioactivities.","authors":"Francielle Miranda de Matos, Gabriela Boscariol Rasera, Ruann Janser Soares de Castro","doi":"10.1016/j.foodres.2024.115134","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115134","url":null,"abstract":"<p><p>Insects are a rich source of proteins and are produced in systems that have lower environmental impact. As an alternative protein source, they can be consumed directly or used as an ingredient in other formulations. Recently, there has been growing interest in utilizing insect proteins as a substrate to obtain bioactive peptides as well as in investigating the maintenance of their biological properties under physiological conditions. This study aimed to evaluate the impact of simulated digestion on the bioactive properties of protein hydrolysates from black crickets (Gryllus assimilis). Following simulated digestion of the hydrolysate obtained through the application of Flavourzyme, the scavenging activities of ABTS and DPPH radicals, and ferric reducing antioxidant power (FRAP) increased by approximately 17 %, 246 %, and 173 %, respectively. For the hydrolysate obtained using the binary combination of Flavourzyme/Neutrase, the inhibitory activities of α-amylase and α-glucosidase after digestion were 47.87 % and 12.73 %, respectively, not significantly (p > 0.05) different from non-digested hydrolysates. The angiotensin-converting enzyme (ACE) inhibitory activity of the sample hydrolyzed with Flavourzyme/Alcalase proteases was 42.22 %, but this property was completely lost after in vitro digestion. Untargeted proteomic analysis allowed the identification of 22 peptides in the <3 kDa fraction of the digested black cricket protein. The LPPLP sequence was considered potentially bioactive for all activities tested in silico.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115134"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patatin is an acidic protein found in potatoes that is commonly used in food and pharmaceutical industries due to its excellent emulsifying and gelation abilities. Pichia pastoris is widely used as a host for recombinant protein production because it can incorporate post-translational modifications. In this study, a patatin titre of 2189.8 mg/L was achieved in a 5 L bioreactor using P. pastoris GS115 with signal peptide mutation, dual promoter construction, co-expression of chaperone proteins and optimised fermentation. To enhance the application of recombinant patatin in the food processing field, the level of N-glycosylation was elevated by genetic engineering. Properties of natural patatin, recombinant patatin and patatinL109T (N-glycosylated modified patatin) were investigated including foaming, hydrophobicity and emulsifying abilities. The functional properties of recombinant patatin were enhanced by introducing N-glycosylation, which also improved the water-holding capacity of its gel. The patatinL109T gel exhibited superior elasticity and water retention properties. The findings provide valuable insight and serve as a reference for the utilisation of recombinant patatin. The established enhancement strategy could be applied to other recombinant proteins.
{"title":"High-level production of patatin in Pichia pastoris and characterization of N-glycosylation modification in food processing properties.","authors":"Lingling Tao, Changtai Zhang, Guoqiang Zhang, Jingwen Zhou","doi":"10.1016/j.foodres.2024.115111","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115111","url":null,"abstract":"<p><p>Patatin is an acidic protein found in potatoes that is commonly used in food and pharmaceutical industries due to its excellent emulsifying and gelation abilities. Pichia pastoris is widely used as a host for recombinant protein production because it can incorporate post-translational modifications. In this study, a patatin titre of 2189.8 mg/L was achieved in a 5 L bioreactor using P. pastoris GS115 with signal peptide mutation, dual promoter construction, co-expression of chaperone proteins and optimised fermentation. To enhance the application of recombinant patatin in the food processing field, the level of N-glycosylation was elevated by genetic engineering. Properties of natural patatin, recombinant patatin and patatin<sup>L109T</sup> (N-glycosylated modified patatin) were investigated including foaming, hydrophobicity and emulsifying abilities. The functional properties of recombinant patatin were enhanced by introducing N-glycosylation, which also improved the water-holding capacity of its gel. The patatin<sup>L109T</sup> gel exhibited superior elasticity and water retention properties. The findings provide valuable insight and serve as a reference for the utilisation of recombinant patatin. The established enhancement strategy could be applied to other recombinant proteins.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115111"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-23DOI: 10.1016/j.foodres.2024.115130
Jéssica Lima de Morais, Fabrícia França Bezerril, Vanessa Bordin Viera, Carlos Eduardo Alves Dantas, Rossana Maria Feitosa de Figueirêdo, Inácia Dos Santos Moreira, Karina Maria Olbrich Dos Santos, Antônio Silvio do Egito, Marcos Dos Santos Lima, Juliana Késsia Barbosa Soares, Maria Elieidy Gomes de Oliveira
This study aimed to assess the impact of adding strawberry and acerola jam, along with Limosilactobacillus mucosae CNPC007, on the technological, nutritional, bioactive, and microbiological properties of Greek-style goat yogurt. Six yogurt formulations were developed: without and with the addition of L. mucosae CNPC007 (CY and PY, respectively), and with 10 % and 15 % jam (CY10, CY15, PY10, and PY15, respectively). The inclusion of jam enriched the yogurt with phenolic compounds and significantly enhanced antioxidant activity, as measured by FRAP and ABTS assays. The highest values were observed after 28 days of storage in the PY15 formulation (0.177 ± 0.01 and 3.43 ± 0.01 µmol TEAC/g, respectively), compared to CY (0.013 ± 0.01 and 0.19 ± 0.01 µmol TEAC/g, respectively) and PY (0.010 ± 0.01 and 0.23 ± 0.01 µmol TEAC/g, respectively). This increase was likely driven by the presence of anthocyanins and flavonoids in the jam, as indicated by heatmap correlation analysis. DPI and EPI were also influenced by the addition of jam and L. mucosae CNPC007, with EPI increasing in the PY10 and PY15 formulations, reaching approximately 40 % after 28 days. The incorporation of jam resulted in a decrease in the L* (<90) and an increase in the b* (>14) color parameters. Additionally, jam-enriched formulations exhibited higher syneresis and lower water retention capacity (WRC) throughout storage compared to control formulations, with average syneresis exceeding 26 % and WRC falling below 75 % after 28 days. In general, all yogurt formulations showed a reduction in lactose, an increase in glucose and galactose, and the production of lactic acid during storage. The lower lactose content observed after 28 days of storage in the PY (0.84 ± 0.01 g/100 g), PY10 (0.82 ± 0.01 g/100 g), and PY15 (0.98 ± 0.01 g/100 g) formulations indicates active sugar metabolism by L. mucosae CNPC007. All formulations met microbiological safety standards, confirming their suitability for consumption. Formulations containing L. mucosae CNPC007 showed viable cell counts exceeding the minimum recommended to produce health benefits (>7 log CFU/g) throughout the 28-day refrigerated storage and after in vitro digestion. These findings underscore the potential of combining tropical fruit jams with probiotics to develop a multifunctional, value-added yogurt product that delivers substantial health benefits to consumers.
{"title":"Incorporation of mixed strawberry and acerola jam into Greek-style goat yogurt with autochthonous adjunct culture of Limosilactobacillus mucosae CNPC007: Impact on technological, nutritional, bioactive, and microbiological properties.","authors":"Jéssica Lima de Morais, Fabrícia França Bezerril, Vanessa Bordin Viera, Carlos Eduardo Alves Dantas, Rossana Maria Feitosa de Figueirêdo, Inácia Dos Santos Moreira, Karina Maria Olbrich Dos Santos, Antônio Silvio do Egito, Marcos Dos Santos Lima, Juliana Késsia Barbosa Soares, Maria Elieidy Gomes de Oliveira","doi":"10.1016/j.foodres.2024.115130","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115130","url":null,"abstract":"<p><p>This study aimed to assess the impact of adding strawberry and acerola jam, along with Limosilactobacillus mucosae CNPC007, on the technological, nutritional, bioactive, and microbiological properties of Greek-style goat yogurt. Six yogurt formulations were developed: without and with the addition of L. mucosae CNPC007 (CY and PY, respectively), and with 10 % and 15 % jam (CY10, CY15, PY10, and PY15, respectively). The inclusion of jam enriched the yogurt with phenolic compounds and significantly enhanced antioxidant activity, as measured by FRAP and ABTS assays. The highest values were observed after 28 days of storage in the PY15 formulation (0.177 ± 0.01 and 3.43 ± 0.01 µmol TEAC/g, respectively), compared to CY (0.013 ± 0.01 and 0.19 ± 0.01 µmol TEAC/g, respectively) and PY (0.010 ± 0.01 and 0.23 ± 0.01 µmol TEAC/g, respectively). This increase was likely driven by the presence of anthocyanins and flavonoids in the jam, as indicated by heatmap correlation analysis. DPI and EPI were also influenced by the addition of jam and L. mucosae CNPC007, with EPI increasing in the PY10 and PY15 formulations, reaching approximately 40 % after 28 days. The incorporation of jam resulted in a decrease in the L* (<90) and an increase in the b* (>14) color parameters. Additionally, jam-enriched formulations exhibited higher syneresis and lower water retention capacity (WRC) throughout storage compared to control formulations, with average syneresis exceeding 26 % and WRC falling below 75 % after 28 days. In general, all yogurt formulations showed a reduction in lactose, an increase in glucose and galactose, and the production of lactic acid during storage. The lower lactose content observed after 28 days of storage in the PY (0.84 ± 0.01 g/100 g), PY10 (0.82 ± 0.01 g/100 g), and PY15 (0.98 ± 0.01 g/100 g) formulations indicates active sugar metabolism by L. mucosae CNPC007. All formulations met microbiological safety standards, confirming their suitability for consumption. Formulations containing L. mucosae CNPC007 showed viable cell counts exceeding the minimum recommended to produce health benefits (>7 log CFU/g) throughout the 28-day refrigerated storage and after in vitro digestion. These findings underscore the potential of combining tropical fruit jams with probiotics to develop a multifunctional, value-added yogurt product that delivers substantial health benefits to consumers.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115130"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-21DOI: 10.1016/j.foodres.2024.115127
Sheng Sun, Xinming Wu, Bin Hu, Mengyu Guo, Xinghai Zhao, Jian Wang
Aiming to address the issue of stored grain pests easily breeding during the process of dried fruits in Xinjiang, this study proposes a method and a device for killing raisin parasitic eggs based on a high-voltage pulsed electric field. A one-way test and a Box-Behnken central combination test were conducted to investigate the effects of high-voltage pulsed electric field strength and frequency on the unhatched rate and larval survival rate of Plodia interpunctella eggs on raisin surfaces. The experimental results were qualitatively and quantitatively analyzed using biooptical microscope observation and incubation at constant temperature and humidity post-treatment. The findings revealed that with an output voltage of 22.8 kV, the delivery speed of 0.024 m/s, and the electric field frequency of 3.8 Hz, the unhatched rate of the eggs was 68.14 % while the survival rate of the larvae was 20.36 %. These results can provide new insights for both theoretical development and system implementation regarding the use of high voltage pulsed electric fields for eliminating raisin surface eggs, as well as providing valuable academic references for field crop diseases and pests control strategies.
{"title":"High voltage pulsed electric field: A novel method for killing parasitic eggs on the surface of raisins.","authors":"Sheng Sun, Xinming Wu, Bin Hu, Mengyu Guo, Xinghai Zhao, Jian Wang","doi":"10.1016/j.foodres.2024.115127","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115127","url":null,"abstract":"<p><p>Aiming to address the issue of stored grain pests easily breeding during the process of dried fruits in Xinjiang, this study proposes a method and a device for killing raisin parasitic eggs based on a high-voltage pulsed electric field. A one-way test and a Box-Behnken central combination test were conducted to investigate the effects of high-voltage pulsed electric field strength and frequency on the unhatched rate and larval survival rate of Plodia interpunctella eggs on raisin surfaces. The experimental results were qualitatively and quantitatively analyzed using biooptical microscope observation and incubation at constant temperature and humidity post-treatment. The findings revealed that with an output voltage of 22.8 kV, the delivery speed of 0.024 m/s, and the electric field frequency of 3.8 Hz, the unhatched rate of the eggs was 68.14 % while the survival rate of the larvae was 20.36 %. These results can provide new insights for both theoretical development and system implementation regarding the use of high voltage pulsed electric fields for eliminating raisin surface eggs, as well as providing valuable academic references for field crop diseases and pests control strategies.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"196 ","pages":"115127"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}