Pub Date : 2025-02-01Epub Date: 2025-01-05DOI: 10.1016/j.foodres.2024.115557
Zhenheng Liu, Gaofeng Dong, Jing Liu, Lei Wang, Qiuming Chen, Zhaojun Wang, Maomao Zeng, Zhiyong He, Jie Chen, Weiyao Hu, Hongyang Pan
The aim of this study was to isolate strains with excellent fermentation performance from pickles, thus enhancing the quality of rapid, low-salt fermented mustard leaves (Brassica juncea var. multiceps) through process optimization and inoculation fermentation. A high-throughput screening method for acid-producing strains was developed, significantly improving screening efficiency. Lactiplantibacillus plantarum CS8 and Saccharomyces cerevisiae CX1, were selected for their superior fermentation performance and used in subsequent fermentation. Four fermentation methods (spontaneous fermentation, optimized spontaneous fermentation, co-fermentation, and two-phase fermentation) were compared for fermenting fresh mustard leaves at 30 °C for 5 days. Compared to spontaneous fermentation, the other methods resulted in lower pH, higher acid production, and reduced nitrite content, thereby enhancing food safety. Significant variations in metabolites (volatiles, organic acids, and free amino acids) were observed among the groups, with the two-phase fermentation method showing the most favorable changes. Sensory evaluation and microbial community analysis further indicated that the two-phase fermentation achieved higher scores for flavor, taste and overall acceptability, while also shortening the fermentation period and improving both flavor and safety. Therefore, inoculation with these two strains using the two-phase fermentation method can efficiently produce high-quality pickle products in a short time. This research contributes to the industrial production of fermented vegetables, enhancing both pickle quality and economic benefits.
{"title":"Screening of strains from pickles and evaluation of characteristics of different methods of fast and low salt fermented mustard leaves (Brassica juncea var. multiceps).","authors":"Zhenheng Liu, Gaofeng Dong, Jing Liu, Lei Wang, Qiuming Chen, Zhaojun Wang, Maomao Zeng, Zhiyong He, Jie Chen, Weiyao Hu, Hongyang Pan","doi":"10.1016/j.foodres.2024.115557","DOIUrl":"10.1016/j.foodres.2024.115557","url":null,"abstract":"<p><p>The aim of this study was to isolate strains with excellent fermentation performance from pickles, thus enhancing the quality of rapid, low-salt fermented mustard leaves (Brassica juncea var. multiceps) through process optimization and inoculation fermentation. A high-throughput screening method for acid-producing strains was developed, significantly improving screening efficiency. Lactiplantibacillus plantarum CS8 and Saccharomyces cerevisiae CX1, were selected for their superior fermentation performance and used in subsequent fermentation. Four fermentation methods (spontaneous fermentation, optimized spontaneous fermentation, co-fermentation, and two-phase fermentation) were compared for fermenting fresh mustard leaves at 30 °C for 5 days. Compared to spontaneous fermentation, the other methods resulted in lower pH, higher acid production, and reduced nitrite content, thereby enhancing food safety. Significant variations in metabolites (volatiles, organic acids, and free amino acids) were observed among the groups, with the two-phase fermentation method showing the most favorable changes. Sensory evaluation and microbial community analysis further indicated that the two-phase fermentation achieved higher scores for flavor, taste and overall acceptability, while also shortening the fermentation period and improving both flavor and safety. Therefore, inoculation with these two strains using the two-phase fermentation method can efficiently produce high-quality pickle products in a short time. This research contributes to the industrial production of fermented vegetables, enhancing both pickle quality and economic benefits.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115557"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-20DOI: 10.1016/j.foodres.2025.115799
Yunmei Luo, Yuhao Zhou, Nan Xiao, Xinan Xie, Lu Li
The effect of partial gelatinization (PG) treatment on the structural, gelatinization, and retrogradation characteristics of maize starch (MS)-dietary fiber (pectin, PE; konjac glucomannan, KG) complex was conducted. The result suggests that PG treatment shows an obvious effect in improving thermal stability, decreasing the viscoelastic, inhibiting starch gelatinization and retrogradation of the MS-PE/KG complex. The decreased breakdown viscosity, storage modulus, apparent viscosity, setback value, and hardness value could confirm these results. Furthermore, PG treatment had a better effect on inhibiting the gelatinization and retrogradation of the MS-0.3 %PE complex than other complexes. This result was proved by reduced setback value (by 78.96 %) and hardness value (by 54.46 % and 44.00 % during cold storage at 1 and 14 days, respectively). 0.3 %PE interacts with starch molecules through hydrogen bonding and electrostatic forces during PG treatment forming a strong starch granule structure to impede starch gelatinization and retrogradation. Moreover, the lighter iodine staining, the obvious coating thin layer, and the thicker fluorescence layer have appeared in the MS-PE/KG complex. The relative crystallinity and the short-range order degree of the MS-PE/KG complex were significantly decreased. The current findings provide the theoretical basis for MS modification to improve the quality and prolong the shelf-life of starch-based foods.
{"title":"Partial gelatinization treatment affects the structural, gelatinization, and retrogradation characteristics of maize starch-dietary fiber complexes.","authors":"Yunmei Luo, Yuhao Zhou, Nan Xiao, Xinan Xie, Lu Li","doi":"10.1016/j.foodres.2025.115799","DOIUrl":"10.1016/j.foodres.2025.115799","url":null,"abstract":"<p><p>The effect of partial gelatinization (PG) treatment on the structural, gelatinization, and retrogradation characteristics of maize starch (MS)-dietary fiber (pectin, PE; konjac glucomannan, KG) complex was conducted. The result suggests that PG treatment shows an obvious effect in improving thermal stability, decreasing the viscoelastic, inhibiting starch gelatinization and retrogradation of the MS-PE/KG complex. The decreased breakdown viscosity, storage modulus, apparent viscosity, setback value, and hardness value could confirm these results. Furthermore, PG treatment had a better effect on inhibiting the gelatinization and retrogradation of the MS-0.3 %PE complex than other complexes. This result was proved by reduced setback value (by 78.96 %) and hardness value (by 54.46 % and 44.00 % during cold storage at 1 and 14 days, respectively). 0.3 %PE interacts with starch molecules through hydrogen bonding and electrostatic forces during PG treatment forming a strong starch granule structure to impede starch gelatinization and retrogradation. Moreover, the lighter iodine staining, the obvious coating thin layer, and the thicker fluorescence layer have appeared in the MS-PE/KG complex. The relative crystallinity and the short-range order degree of the MS-PE/KG complex were significantly decreased. The current findings provide the theoretical basis for MS modification to improve the quality and prolong the shelf-life of starch-based foods.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"202 ","pages":"115799"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Specific spoilage organisms (SSOs) are the key factors affecting the deterioration of large yellow croaker. This study investigated the antibacterial activity and mechanism of Zinc oxide nanoparticles (ZnO-NPs) against Shewanella putrefaciens. The effects of different concentrations of ZnO-NPs (0.5, 1, 2 mg/mL) combined with seawater slurry ice preservation on storage quality and microbial community of large yellow croaker were further investigated. The results showed that ZnO-NPs had a strong antibacterial effect on Shewanella putrefaciens, which destroyed the integrity of the cell membrane, resulting in nucleic acid leakage and increased electrical conductivity. In addition, ZnO-NPs could effectively inhibit the proliferation of microorganisms, slow down the rate of lipid oxidation, delay the rise of pH value and total volatile basic nitrogen, and maintain the color of fish. Among them, 2 mg/mL ZnO-NPs treatment showed the best preservation effect on large yellow croaker. High-throughput sequencing results showed that Pseudoalteromonas and Shewanella became the dominant spoilage bacteria with the extension of storage time. ZnO-NPs significantly reduced the relative abundance of dominant spoilage bacteria and changed the microbial composition of fish. Inhibition of the growth of SSOs was important for delaying spoilage and prolonging the shelf-life of large yellow croaker. Therefore, ZnO-NPs combined with seawater slurry ice preservation could be used as a new storage method, which provides a new idea for food quality and safety control.
{"title":"Antibacterial activity of zinc oxide nanoparticles against Shewanella putrefaciens and its application in preservation of large yellow croaker (Pseudosciaena crocea).","authors":"Mengqing Liu, Yuhan Mo, Zheyun Dong, Huicheng Yang, Bangchu Lin, Yongyong Li, Yongjiang Lou, Shiqian Fu","doi":"10.1016/j.foodres.2024.115642","DOIUrl":"10.1016/j.foodres.2024.115642","url":null,"abstract":"<p><p>Specific spoilage organisms (SSOs) are the key factors affecting the deterioration of large yellow croaker. This study investigated the antibacterial activity and mechanism of Zinc oxide nanoparticles (ZnO-NPs) against Shewanella putrefaciens. The effects of different concentrations of ZnO-NPs (0.5, 1, 2 mg/mL) combined with seawater slurry ice preservation on storage quality and microbial community of large yellow croaker were further investigated. The results showed that ZnO-NPs had a strong antibacterial effect on Shewanella putrefaciens, which destroyed the integrity of the cell membrane, resulting in nucleic acid leakage and increased electrical conductivity. In addition, ZnO-NPs could effectively inhibit the proliferation of microorganisms, slow down the rate of lipid oxidation, delay the rise of pH value and total volatile basic nitrogen, and maintain the color of fish. Among them, 2 mg/mL ZnO-NPs treatment showed the best preservation effect on large yellow croaker. High-throughput sequencing results showed that Pseudoalteromonas and Shewanella became the dominant spoilage bacteria with the extension of storage time. ZnO-NPs significantly reduced the relative abundance of dominant spoilage bacteria and changed the microbial composition of fish. Inhibition of the growth of SSOs was important for delaying spoilage and prolonging the shelf-life of large yellow croaker. Therefore, ZnO-NPs combined with seawater slurry ice preservation could be used as a new storage method, which provides a new idea for food quality and safety control.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115642"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-02DOI: 10.1016/j.foodres.2024.115663
Kailin Ye, Jiafeng Chen, Xinyu Zhang, Jiaming Qi, Zihan Qin, Jinmei Wang
The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods. The amphiphilic gum arabic (GA), soy hull polysaccharides (SHP) and their emulsions containing ginger essential oil were used to induce the NaCl to migrate to the droplet surface with the technique of spray drying. The formation mechanism, microstructure, size distribution, powder properties and sensory evaluation of the hollowed salt particles were investigated. It was found that both the SHP and its emulsion showed excellent interfacial activity at air/water (A/W) interface, resulting in good interface migration of the solutes to the droplet surface; therefore, salt particles with desired spherical hollow architecture were obtained. Whereas the formations of hollow salt particles in the samples of GA and its emulsion were worse due to their poor interfacial activities. The salt hollow particles prepared with SHP emulsions were monodisperse and had the smallest particle size (9.7 ± 0.3 μm). Their powder properties including flowability, solubility and adhesiveness showed the best among the samples. It was proved by the sensory evaluation that these salt particles received the highest score and exerted effective function in saltiness enhancement and flavor retaining. These findings could provide a new strategy for salt reduction in solid foods.
{"title":"Fabrication and saltiness enhancement of salt hollow particles by interface migration.","authors":"Kailin Ye, Jiafeng Chen, Xinyu Zhang, Jiaming Qi, Zihan Qin, Jinmei Wang","doi":"10.1016/j.foodres.2024.115663","DOIUrl":"10.1016/j.foodres.2024.115663","url":null,"abstract":"<p><p>The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods. The amphiphilic gum arabic (GA), soy hull polysaccharides (SHP) and their emulsions containing ginger essential oil were used to induce the NaCl to migrate to the droplet surface with the technique of spray drying. The formation mechanism, microstructure, size distribution, powder properties and sensory evaluation of the hollowed salt particles were investigated. It was found that both the SHP and its emulsion showed excellent interfacial activity at air/water (A/W) interface, resulting in good interface migration of the solutes to the droplet surface; therefore, salt particles with desired spherical hollow architecture were obtained. Whereas the formations of hollow salt particles in the samples of GA and its emulsion were worse due to their poor interfacial activities. The salt hollow particles prepared with SHP emulsions were monodisperse and had the smallest particle size (9.7 ± 0.3 μm). Their powder properties including flowability, solubility and adhesiveness showed the best among the samples. It was proved by the sensory evaluation that these salt particles received the highest score and exerted effective function in saltiness enhancement and flavor retaining. These findings could provide a new strategy for salt reduction in solid foods.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115663"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-02DOI: 10.1016/j.foodres.2024.115611
Jeongeun Kwon, Dasom Shin, Geon Woo Park, Gunyoung Lee, Eunju Lee, Hui-Seung Kang
Authentication of gelatin sources are required for cultural beliefs and food integrity. This paper describes a sensitive and rapid detection of gelatin sources using liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The specific peptide markers were adopted to accurately identify bovine and porcine gelatin in pharmaceutical capsules and jellies. Multiple reaction monitoring (MRM) was employed to identify and quantify over five specific peptide markers, each characterized by its unique precursor and product ion transitions. The developed method was validated at three concentration levels in gelatin-containing products to assess its accuracy and precision. The recovery (accuracy) of the proposed method was between 80 % and 107 %, and relative standard deviation (precision) was in the range of 5.16-9.97 %. Linearity was obtained ≥ 0.99 (R2). To ensure the accuracy of ingredient labeling, the LC-MS/MS results were compared with those obtained from PCR assays. The LC-MS/MS method demonstrated exceptional sensitivity, reliably detecting gelatin adulteration at concentrations as low as 0.01 %. The developed LC-MS/MS method provides a rapid and accurate results for authenticating gelatin sources in various food products within 4 hours.
{"title":"A comprehensive quantitative LC-MS/MS method for rapid gelatin source identification in food products: Comparison with PCR.","authors":"Jeongeun Kwon, Dasom Shin, Geon Woo Park, Gunyoung Lee, Eunju Lee, Hui-Seung Kang","doi":"10.1016/j.foodres.2024.115611","DOIUrl":"10.1016/j.foodres.2024.115611","url":null,"abstract":"<p><p>Authentication of gelatin sources are required for cultural beliefs and food integrity. This paper describes a sensitive and rapid detection of gelatin sources using liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The specific peptide markers were adopted to accurately identify bovine and porcine gelatin in pharmaceutical capsules and jellies. Multiple reaction monitoring (MRM) was employed to identify and quantify over five specific peptide markers, each characterized by its unique precursor and product ion transitions. The developed method was validated at three concentration levels in gelatin-containing products to assess its accuracy and precision. The recovery (accuracy) of the proposed method was between 80 % and 107 %, and relative standard deviation (precision) was in the range of 5.16-9.97 %. Linearity was obtained ≥ 0.99 (R<sup>2</sup>). To ensure the accuracy of ingredient labeling, the LC-MS/MS results were compared with those obtained from PCR assays. The LC-MS/MS method demonstrated exceptional sensitivity, reliably detecting gelatin adulteration at concentrations as low as 0.01 %. The developed LC-MS/MS method provides a rapid and accurate results for authenticating gelatin sources in various food products within 4 hours.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115611"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-03DOI: 10.1016/j.foodres.2024.115567
Zoe Giannioti, Alberto Roncone, Luana Bontempo
Isotope Ratio Mass Spectrometry (IRMS) is a promising tool in organic authentication cases. Premium-priced Italian rice varieties (Carnaroli, Arborio, Baldo) are used in cuisines worldwide for their unique qualitative properties. Organic authentication of rice by morphological assessment is unfeasible, while its market availability at different refining stages (brown, white) further increases the data variability. In this study, bulk and compound-specific (CS) - IRMS analysis of nine rice amino acids (AAs), by elemental analyser (EA) - IRMS and gas chromatography (GC) - combustion (C) - IRMS, respectively, were applied in order to explore their organic authentication potential in cases involving different rice varieties and refining types. The individual and interactive effects of the different variables were assessed on the δ13CAAs, δ15NAAs, δ13Cbulk and δ15Nbulk, and the sample classification was attempted by linear discriminant analysis (LDA) and decision tree analysis (DTA). Organic authentication of brown rice was achieved by CS-IRMS. Generic rice was differentiated from all Italian organic and conventional varieties (δ15Nleucine < 2.5 ‰). The δ13C values of glutamic acid, glycine, phenylalanine and proline, significantly contributed to the complete LDA separation of conventional Arborio, conventional Carnaroli and organic Carnaroli samples. This study showcases the interplay between refining type, variety and cultivation, which should be considered in cases of organic authentication by IRMS methods.
{"title":"Unveiling diversity in amino acid stable isotope profiles for classifying rice varieties, refining types and cultivation systems.","authors":"Zoe Giannioti, Alberto Roncone, Luana Bontempo","doi":"10.1016/j.foodres.2024.115567","DOIUrl":"10.1016/j.foodres.2024.115567","url":null,"abstract":"<p><p>Isotope Ratio Mass Spectrometry (IRMS) is a promising tool in organic authentication cases. Premium-priced Italian rice varieties (Carnaroli, Arborio, Baldo) are used in cuisines worldwide for their unique qualitative properties. Organic authentication of rice by morphological assessment is unfeasible, while its market availability at different refining stages (brown, white) further increases the data variability. In this study, bulk and compound-specific (CS) - IRMS analysis of nine rice amino acids (AAs), by elemental analyser (EA) - IRMS and gas chromatography (GC) - combustion (C) - IRMS, respectively, were applied in order to explore their organic authentication potential in cases involving different rice varieties and refining types. The individual and interactive effects of the different variables were assessed on the δ<sup>13</sup>C<sub>AAs</sub>, δ<sup>15</sup>N<sub>AAs</sub>, δ<sup>13</sup>C<sub>bulk</sub> and δ<sup>15</sup>N<sub>bulk</sub>, and the sample classification was attempted by linear discriminant analysis (LDA) and decision tree analysis (DTA). Organic authentication of brown rice was achieved by CS-IRMS. Generic rice was differentiated from all Italian organic and conventional varieties (δ<sup>15</sup>N<sub>leucine</sub> < 2.5 ‰). The δ<sup>13</sup>C values of glutamic acid, glycine, phenylalanine and proline, significantly contributed to the complete LDA separation of conventional Arborio, conventional Carnaroli and organic Carnaroli samples. This study showcases the interplay between refining type, variety and cultivation, which should be considered in cases of organic authentication by IRMS methods.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115567"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-02DOI: 10.1016/j.foodres.2024.115547
Afusat Yinka Aregbe, Bismillah Mubeen, YuQing Xiong, Yongkun Ma
Recently, there has been a growing demand for plant-based beverages that meet nutritional and health needs and have an appealing taste. This study investigated the impact of fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 on the nutritional quality and aroma compound profile of a sea buckthorn-based cereal beverage. The mixed starter fermented samples, specifically S-APTD (SBCB inoculated with A. pasteurianus, and T. delbrueckii D1-3), showed significant increases in protein and free amino acid (FAA) content, recording values of 9.02 ± 0.01 mg/g and 5468.33 ± 20.31 µg/g, respectively. Proanthocyanidin and β-carotene contents were significantly higher in the mixed SBCB compared to the control, particularly in samples containing A. pasteurianus. Interestingly, the fermentation process also resulted in the reduction and absence of butanoic acid, which was higher in the control, and the complete degradation of phthalates present in the control. Phenylethyl alcohol emerged as the dominant alcohol in SBCB, particularly in the mixed starter fermented samples, while lactic acid was the most prevalent acid in the mixed starter samples except S-APLA (SBCB inoculated with A. pasteurianus and Lactobacillus acidophilus). Ultimately, a functional beverage with enhanced nutritional value and an improved aroma profile can be developed through fermentation with these strains.
最近,人们对植物性饮料的需求不断增长,这些饮料既满足营养和健康需求,又有吸引人的味道。本研究研究了乳杆菌、巴氏醋酸杆菌和德尔布鲁氏环乳杆菌D1-3发酵对沙棘谷物饮料营养品质和香气化合物的影响。混合发酵剂发酵样品,特别是S-APTD(接种巴氏杆菌的SBCB和delbrueckii T. D1-3)的蛋白质和游离氨基酸(FAA)含量显著增加,分别为9.02±0.01 mg/g和5468.33±20.31µg/g。混合SBCB的原花青素和β-胡萝卜素含量显著高于对照,特别是含有巴氏芽孢杆菌的样品。有趣的是,发酵过程还导致丁酸的减少和缺失,这在对照组中是更高的,并且在对照组中存在的邻苯二甲酸酯完全降解。苯乙醇是SBCB的主要酒精,特别是在混合发酵剂发酵样品中,而乳酸是混合发酵剂样品中最常见的酸,除了S-APLA(接种了巴氏杆菌和嗜酸乳杆菌的SBCB)。最终,通过这些菌株的发酵,可以开发出具有增强营养价值和改善香气特征的功能性饮料。
{"title":"Fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 improves nutritional quality and volatile profile of sea buckthorn-based cereal beverage.","authors":"Afusat Yinka Aregbe, Bismillah Mubeen, YuQing Xiong, Yongkun Ma","doi":"10.1016/j.foodres.2024.115547","DOIUrl":"10.1016/j.foodres.2024.115547","url":null,"abstract":"<p><p>Recently, there has been a growing demand for plant-based beverages that meet nutritional and health needs and have an appealing taste. This study investigated the impact of fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 on the nutritional quality and aroma compound profile of a sea buckthorn-based cereal beverage. The mixed starter fermented samples, specifically S-APTD (SBCB inoculated with A. pasteurianus, and T. delbrueckii D1-3), showed significant increases in protein and free amino acid (FAA) content, recording values of 9.02 ± 0.01 mg/g and 5468.33 ± 20.31 µg/g, respectively. Proanthocyanidin and β-carotene contents were significantly higher in the mixed SBCB compared to the control, particularly in samples containing A. pasteurianus. Interestingly, the fermentation process also resulted in the reduction and absence of butanoic acid, which was higher in the control, and the complete degradation of phthalates present in the control. Phenylethyl alcohol emerged as the dominant alcohol in SBCB, particularly in the mixed starter fermented samples, while lactic acid was the most prevalent acid in the mixed starter samples except S-APLA (SBCB inoculated with A. pasteurianus and Lactobacillus acidophilus). Ultimately, a functional beverage with enhanced nutritional value and an improved aroma profile can be developed through fermentation with these strains.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115547"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-13DOI: 10.1016/j.foodres.2025.115746
Young Sung Jung, Davin Jang, Mi-Seon Kim, Chi Heung Cho, Hyunbin Seong, Sang-Ho Yoo, Dong-Ho Seo, Dae-Ok Kim
This study investigated the effect of glycosylation on the antioxidant capacities of luteolin by analyzing the differences in in vitro bioaccessibility, bioavailability, and bioactivity based on glucose anomers. Luteolin, luteolin 4'-O-alpha-glucoside (L4αG), and luteolin 4'-O-beta-glucoside (L4βG) were used to obtain clear and direct research results, excluding the influence of complex food matrices. L4αG exhibited lower water solubility, digestive stability, and aglycone-releasing ability compared to L4βG. However, L4αG most effectively alleviated intracellular oxidative stress in H2O2-induced Caco-2 cells by inhibiting the mitogen-activated protein kinases and activating nuclear factor erythroid-2-related factor signaling pathways. The findings suggested that the alpha-anomer of glucose in L4αG significantly (p < 0.05) enhanced intracellular antioxidant capacity by activating the cellular antioxidant enzyme systems rather than acting as an exogenous scavenger compared to L4βG. This study highlights a new approach for exploring natural antioxidants based on flavonoid aglycones with high cell affinity and electron-donating capacity.
本研究通过分析木犀草素在体外生物可及性、生物利用度和生物活性方面的差异,探讨糖基化对木犀草素抗氧化能力的影响。采用木犀草素、木犀草素4′- o - α -葡萄糖苷(L4αG)和木犀草素4′- o - β -葡萄糖苷(L4βG),排除复杂食物基质的影响,获得清晰直接的研究结果。与L4βG相比,L4αG具有较低的水溶性、消化稳定性和苷元释放能力。而L4αG通过抑制丝裂原活化蛋白激酶和激活核因子-红细胞-2相关因子信号通路,最有效地缓解h2o2诱导的Caco-2细胞内氧化应激。结果表明,L4αG中葡萄糖的α -异聚物显著(p
{"title":"Differences in in vitro bioavailability, bioaccessibility, and antioxidant capacity depending on linkage type of luteolin 4'-O-glucosides.","authors":"Young Sung Jung, Davin Jang, Mi-Seon Kim, Chi Heung Cho, Hyunbin Seong, Sang-Ho Yoo, Dong-Ho Seo, Dae-Ok Kim","doi":"10.1016/j.foodres.2025.115746","DOIUrl":"10.1016/j.foodres.2025.115746","url":null,"abstract":"<p><p>This study investigated the effect of glycosylation on the antioxidant capacities of luteolin by analyzing the differences in in vitro bioaccessibility, bioavailability, and bioactivity based on glucose anomers. Luteolin, luteolin 4'-O-alpha-glucoside (L4αG), and luteolin 4'-O-beta-glucoside (L4βG) were used to obtain clear and direct research results, excluding the influence of complex food matrices. L4αG exhibited lower water solubility, digestive stability, and aglycone-releasing ability compared to L4βG. However, L4αG most effectively alleviated intracellular oxidative stress in H<sub>2</sub>O<sub>2</sub>-induced Caco-2 cells by inhibiting the mitogen-activated protein kinases and activating nuclear factor erythroid-2-related factor signaling pathways. The findings suggested that the alpha-anomer of glucose in L4αG significantly (p < 0.05) enhanced intracellular antioxidant capacity by activating the cellular antioxidant enzyme systems rather than acting as an exogenous scavenger compared to L4βG. This study highlights a new approach for exploring natural antioxidants based on flavonoid aglycones with high cell affinity and electron-donating capacity.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"202 ","pages":"115746"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research aims to evaluate the phenolic composition, antioxidant and enzyme inhibition activities of fermented Rubus chingii Hu wine, and explore the correlation between them. TPC (Total Phenolic content) and TFC (Total Flavonoid content) increased rapidly from 0 h to 72 h, followed by a slight decrease in TPC and a significant decrease in TFC. Fermentation could significantly increase the antioxidant activity and α-amylase/α-glucosidase enzyme inhibitory activity of Rubus chingii Hu. A total of 39 polyphenols and organic acids in fermented Rubus chingii Hu were identified by UPLC-ESI-Q-TOF-MS/MS and 11 of them were quantitatively analyzed. After fermentation, the contents of all the detected polyphenol compounds, except for quercetin and ellagic acid, significantly increased (p < 0.05). Correlation analysis showed that protocatechuic acid and catechin played an important role in the antioxidant activity of fermented Rubus chingii Hu, while protocatechuic acid and hypericin played an important role in the α-amylase inhibition activity. This study indicated that Rubus chingii Hu could be applided as a potential meterial for the wine production, and has the potential to be a functional food for promoting health.
{"title":"Polyphenol compounds contributing to the improved bioactivities of fermented Rubus chingii Hu.","authors":"Yuhan Cheng, Yuting Wang, Tongji Yuan, Jianhua Xie, Qiang Yu, Yi Chen","doi":"10.1016/j.foodres.2024.115218","DOIUrl":"https://doi.org/10.1016/j.foodres.2024.115218","url":null,"abstract":"<p><p>This research aims to evaluate the phenolic composition, antioxidant and enzyme inhibition activities of fermented Rubus chingii Hu wine, and explore the correlation between them. TPC (Total Phenolic content) and TFC (Total Flavonoid content) increased rapidly from 0 h to 72 h, followed by a slight decrease in TPC and a significant decrease in TFC. Fermentation could significantly increase the antioxidant activity and α-amylase/α-glucosidase enzyme inhibitory activity of Rubus chingii Hu. A total of 39 polyphenols and organic acids in fermented Rubus chingii Hu were identified by UPLC-ESI-Q-TOF-MS/MS and 11 of them were quantitatively analyzed. After fermentation, the contents of all the detected polyphenol compounds, except for quercetin and ellagic acid, significantly increased (p < 0.05). Correlation analysis showed that protocatechuic acid and catechin played an important role in the antioxidant activity of fermented Rubus chingii Hu, while protocatechuic acid and hypericin played an important role in the α-amylase inhibition activity. This study indicated that Rubus chingii Hu could be applided as a potential meterial for the wine production, and has the potential to be a functional food for promoting health.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"197 Pt 1","pages":"115218"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}