首页 > 最新文献

Ground water最新文献

英文 中文
Enhanced Removal of Brine From Porous Structures by Supercritical CO2. 超临界二氧化碳增强多孔结构对盐水的去除。
Pub Date : 2024-07-24 DOI: 10.1111/gwat.13434
Iris Beatriz Vega Erramuspe, Osei Asafu-Adjaye, Melissa Rojas-Márquez, Brian Via, Bhima Sastri, Sujit Banerjee

Supercritical CO2 (sCO2) removes water from brine held in pumice stone at levels well above the solubility of water in sCO2. The higher water removal results from a combination of passive emulsification of water in sCO2 and viscous fingering of sCO2 through the saturated pumice. This leads to higher levels of salt deposition than that expected from solubility considerations alone. These deposits could impact the injectivity of sCO2 as well as its movement in the subsurface. The finding that the water concentration in sCO2 is not necessarily capped at the solubility limit should influence the parametrization of injection models.

超临界二氧化碳 (sCO2) 能从浮石中的盐水中去除水分,其去除率远高于水在 sCO2 中的溶解度。水在 sCO2 中的被动乳化和 sCO2 在饱和浮石中的粘性指状作用共同导致了较高的水去除率。这导致盐沉积的程度高于仅从溶解度考虑所预期的程度。这些沉积物可能会影响 sCO2 的注入能力及其在地下的移动。发现 sCO2 中的水浓度不一定在溶解度极限时封顶,这应影响注入模型的参数化。
{"title":"Enhanced Removal of Brine From Porous Structures by Supercritical CO<sub>2</sub>.","authors":"Iris Beatriz Vega Erramuspe, Osei Asafu-Adjaye, Melissa Rojas-Márquez, Brian Via, Bhima Sastri, Sujit Banerjee","doi":"10.1111/gwat.13434","DOIUrl":"https://doi.org/10.1111/gwat.13434","url":null,"abstract":"<p><p>Supercritical CO<sub>2</sub> (sCO<sub>2</sub>) removes water from brine held in pumice stone at levels well above the solubility of water in sCO<sub>2</sub>. The higher water removal results from a combination of passive emulsification of water in sCO<sub>2</sub> and viscous fingering of sCO<sub>2</sub> through the saturated pumice. This leads to higher levels of salt deposition than that expected from solubility considerations alone. These deposits could impact the injectivity of sCO<sub>2</sub> as well as its movement in the subsurface. The finding that the water concentration in sCO<sub>2</sub> is not necessarily capped at the solubility limit should influence the parametrization of injection models.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter ESTimation With the Gauss-Levenberg-Marquardt Algorithm: An Intuitive Guide. 使用高斯-莱文伯格-马夸特算法进行参数ESTimation:直观指南
Pub Date : 2024-07-23 DOI: 10.1111/gwat.13433
Michael N Fienen, Jeremy T White, Mohamed Hayek

In this paper, we review the derivation of the Gauss-Levenberg-Marquardt (GLM) algorithm and its extension to ensemble parameter estimation. We explore the use of graphical methods to provide insights into how the algorithm works in practice and discuss the implications of both algorithm tuning parameters and objective function construction in performance. Some insights include understanding the control of both parameter trajectory and step size for GLM as a function of tuning parameters. Furthermore, for the iterative Ensemble Smoother (iES), we discuss the importance of noise on observations and show how iES can cope with non-unique outcomes based on objective function construction. These insights are valuable for modelers using PEST, PEST++, or similar parameter estimation tools.

在本文中,我们回顾了高斯-莱文伯格-马夸特(GLM)算法的推导及其在集合参数估计中的扩展。我们探讨了图形方法的使用,以深入了解算法在实践中是如何运行的,并讨论了算法调整参数和目标函数构造对性能的影响。其中的一些启示包括,我们理解了作为调整参数函数的 GLM 参数轨迹和步长的控制。此外,对于迭代集合平滑器(iES),我们讨论了噪声对观测结果的重要性,并展示了 iES 如何在目标函数构造的基础上应对非唯一结果。这些见解对于使用 PEST、PEST++ 或类似参数估计工具的建模人员很有价值。
{"title":"Parameter ESTimation With the Gauss-Levenberg-Marquardt Algorithm: An Intuitive Guide.","authors":"Michael N Fienen, Jeremy T White, Mohamed Hayek","doi":"10.1111/gwat.13433","DOIUrl":"https://doi.org/10.1111/gwat.13433","url":null,"abstract":"<p><p>In this paper, we review the derivation of the Gauss-Levenberg-Marquardt (GLM) algorithm and its extension to ensemble parameter estimation. We explore the use of graphical methods to provide insights into how the algorithm works in practice and discuss the implications of both algorithm tuning parameters and objective function construction in performance. Some insights include understanding the control of both parameter trajectory and step size for GLM as a function of tuning parameters. Furthermore, for the iterative Ensemble Smoother (iES), we discuss the importance of noise on observations and show how iES can cope with non-unique outcomes based on objective function construction. These insights are valuable for modelers using PEST, PEST++, or similar parameter estimation tools.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Expert Participation to Evaluate the Accuracy of Hand-Drawn Water-Table Maps. 利用专家参与评估手绘水表地图的准确性。
Pub Date : 2024-07-18 DOI: 10.1111/gwat.13431
Sarah Kathleen Marshall, Luk J M Peeters, Okke Batelaan, Saskia Noorduijn, Tanah Velterop

Water-table maps are fundamental to hydrogeological studies and a manual, hand-drawn method is still commonly used to produce them. Despite this, the accuracy and variability of such maps have received little attention in international literature. In a unique experiment, 63 groundwater professionals drew water-table equipotential contours based on the same dataset of point measurements and were asked to infer flow directions and predict groundwater elevations at predefined locations. The root mean squared error (RMSE) for the average map calibration data was 10.5 m, which is accuracy comparable to numerical groundwater models. This study confirmed that to produce hand-drawn water-table maps, practitioners seek to not only fit the spatial data, but also to conform to their own cognitive model of hydrogeological concepts and processes. The calibration accuracy increased with experience; from a RMSE of 13.3 m for practitioners with 0-3 years of experience to a RMSE of 9.2 m for those with four or more years. Despite considerable variability in the style of the hand-drawn water-table maps, the maps were consistent in their representation of the dominant regional groundwater flow directions. There was less consensus, however, in predicting the direction of surface water-groundwater interaction for a stream reach. Hand-drawn water-table mapping remains useful and valid, especially as a starting point for hydrogeological conceptualization, yet further work is required to resolve issues around transparency, repeatability, and reproducibility.

地下水位图是水文地质研究的基础,目前仍普遍采用手工绘制的方法制作地下水位图。尽管如此,此类地图的准确性和可变性却很少受到国际文献的关注。在一项独特的实验中,63 名地下水专业人员根据相同的点测量数据集绘制了水位等势线,并被要求推断水流方向和预测预定地点的地下水位。地图校准数据的平均均方根误差 (RMSE) 为 10.5 米,精度与数值地下水模型相当。这项研究证实,在绘制手绘水位图时,从业人员不仅要符合空间数据,还要符合自己对水文地质概念和过程的认知模型。校准精度随着经验的增加而提高;具有 0-3 年经验的从业人员的均方根误差为 13.3 米,而具有四年或四年以上经验的从业人员的均方根误差为 9.2 米。尽管手绘水位图的风格差异很大,但这些地图在表示区域地下水主要流向方面是一致的。不过,在预测溪流河段地表水与地下水相互作用的方向方面,共识较少。手绘水位图仍然有用且有效,尤其是作为水文地质概念化的起点,但需要进一步努力解决透明度、可重复性和可再现性方面的问题。
{"title":"Using Expert Participation to Evaluate the Accuracy of Hand-Drawn Water-Table Maps.","authors":"Sarah Kathleen Marshall, Luk J M Peeters, Okke Batelaan, Saskia Noorduijn, Tanah Velterop","doi":"10.1111/gwat.13431","DOIUrl":"https://doi.org/10.1111/gwat.13431","url":null,"abstract":"<p><p>Water-table maps are fundamental to hydrogeological studies and a manual, hand-drawn method is still commonly used to produce them. Despite this, the accuracy and variability of such maps have received little attention in international literature. In a unique experiment, 63 groundwater professionals drew water-table equipotential contours based on the same dataset of point measurements and were asked to infer flow directions and predict groundwater elevations at predefined locations. The root mean squared error (RMSE) for the average map calibration data was 10.5 m, which is accuracy comparable to numerical groundwater models. This study confirmed that to produce hand-drawn water-table maps, practitioners seek to not only fit the spatial data, but also to conform to their own cognitive model of hydrogeological concepts and processes. The calibration accuracy increased with experience; from a RMSE of 13.3 m for practitioners with 0-3 years of experience to a RMSE of 9.2 m for those with four or more years. Despite considerable variability in the style of the hand-drawn water-table maps, the maps were consistent in their representation of the dominant regional groundwater flow directions. There was less consensus, however, in predicting the direction of surface water-groundwater interaction for a stream reach. Hand-drawn water-table mapping remains useful and valid, especially as a starting point for hydrogeological conceptualization, yet further work is required to resolve issues around transparency, repeatability, and reproducibility.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of Effective Fracture Aperture in Glacial Tills by Analysis of Dye Tracer Penetration. 通过分析染料示踪剂渗透估算冰川丘陵的有效断裂孔径。
Pub Date : 2024-06-25 DOI: 10.1111/gwat.13426
Mariam Ouf, Peter R Jørgensen, Klaus Mosthaf, Massimo Rolle

This study advances a methodology to estimate effective apertures of fractures in glacial tills based on dye tracer infiltration tests and numerical simulations. The approach uses the visible penetration depth of the dye tracer along fracture flow paths as primary information to calculate effective fracture apertures. Further data used in the calculation are the dye tracer input concentration and retardation, the duration of the tracer injection, and the hydraulic gradient applied to control the infiltrating water fluxes. The method does not require measurement of hydraulic conductivity for the fractured till and enables direct observation of flow and transport patterns within the fractures (e.g., uniform flow and dye tracer distribution, channeling due to aperture variability, and presence of biogenic macropores in fractures). The approach was successfully verified by using the estimated effective fracture aperture values in Large Undisturbed Columns (LUCs) to consistently simulate both the observed LUC effluent breakthrough of a conservative bromide tracer and the water fluxes with the hydraulic gradient applied in the experiments. Sensitivity analyses revealed that estimation of small effective fracture apertures (<10 μm) required accurate determination of the dye tracer retardation factor. By contrast, in the case of larger effective apertures (>20 μm), the sensitivity of the estimated effective fracture aperture to variations in the porous material and solute transport parameters was low compared to the dominant sensitivity to the water flow through the fractures (cubic relation between flow and aperture). The proposed approach may be extended beyond laboratory applications and assist in characterizing field-scale fracture networks.

本研究基于染料示踪剂渗透试验和数值模拟,提出了一种估算冰川堆积物裂缝有效孔径的方法。该方法将染料示踪剂沿裂缝流动路径的可见渗透深度作为计算有效裂缝孔径的主要信息。计算中使用的其他数据包括染料示踪剂的输入浓度和延迟、示踪剂注入的持续时间以及用于控制渗透水流量的水力梯度。该方法不需要测量断裂耕层的水力传导性,可直接观察断裂内的水流和传输模式(例如,均匀水流和染料示踪剂分布、孔隙变化导致的渠化以及断裂中生物大孔的存在)。通过使用估算的大型未扰动柱(LUC)中的有效裂缝孔径值,成功地验证了该方法,该方法能够稳定地模拟观测到的大型未扰动柱中保守溴化物示踪剂的流出突破,以及实验中应用的水力梯度下的水通量。灵敏度分析表明,在估算小的有效裂缝孔径(20 μm)时,估算的有效裂缝孔径对多孔材料和溶质迁移参数变化的灵敏度较低,而对通过裂缝的水流量(流量与孔径之间的立方关系)的灵敏度则占主导地位。所提出的方法可在实验室应用之外进行推广,并有助于确定实地尺度断裂网络的特征。
{"title":"Estimation of Effective Fracture Aperture in Glacial Tills by Analysis of Dye Tracer Penetration.","authors":"Mariam Ouf, Peter R Jørgensen, Klaus Mosthaf, Massimo Rolle","doi":"10.1111/gwat.13426","DOIUrl":"https://doi.org/10.1111/gwat.13426","url":null,"abstract":"<p><p>This study advances a methodology to estimate effective apertures of fractures in glacial tills based on dye tracer infiltration tests and numerical simulations. The approach uses the visible penetration depth of the dye tracer along fracture flow paths as primary information to calculate effective fracture apertures. Further data used in the calculation are the dye tracer input concentration and retardation, the duration of the tracer injection, and the hydraulic gradient applied to control the infiltrating water fluxes. The method does not require measurement of hydraulic conductivity for the fractured till and enables direct observation of flow and transport patterns within the fractures (e.g., uniform flow and dye tracer distribution, channeling due to aperture variability, and presence of biogenic macropores in fractures). The approach was successfully verified by using the estimated effective fracture aperture values in Large Undisturbed Columns (LUCs) to consistently simulate both the observed LUC effluent breakthrough of a conservative bromide tracer and the water fluxes with the hydraulic gradient applied in the experiments. Sensitivity analyses revealed that estimation of small effective fracture apertures (<10 μm) required accurate determination of the dye tracer retardation factor. By contrast, in the case of larger effective apertures (>20 μm), the sensitivity of the estimated effective fracture aperture to variations in the porous material and solute transport parameters was low compared to the dominant sensitivity to the water flow through the fractures (cubic relation between flow and aperture). The proposed approach may be extended beyond laboratory applications and assist in characterizing field-scale fracture networks.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Uncertainty Due to Fault Timing: A Multimodel Case Study from the Perth Basin. 断层时间引起的结构不确定性:珀斯盆地多模型案例研究。
Pub Date : 2024-06-20 DOI: 10.1111/gwat.13429
Kerry Bardot, Martin Lesueur, Adam J Siade, Simon C Lang, James L McCallum

Faults can fundamentally change a groundwater flow regime and represent a major source of uncertainty in groundwater studies. Much research has been devoted to uncertainty around their location and their barrier-conduit behavior. However, fault timing is one aspect of fault uncertainty that appears to be somewhat overlooked. Many faulted models feature consistent layer offsets, thereby presuming that block faulting has occurred recently and almost instantaneously. Additionally, barrier and/or conduit behavior is often shown to extend vertically through all layers when a fault may in fact terminate well below-ground surface. In this study, we create three plausible geological interpretations for a transect in the Perth Basin. Adjacent boreholes show stratigraphic offsets and thickening which indicate faulting; however, fault timing is unknown. Flow modeling demonstrates that the model with the most recent faulting shows profoundly different flow patterns due to aquifer juxtaposition. Additionally, multiple realizations with stochastically generated parameter sets for layer, fault core, and fault damage zone conductivity show that fault timing influences flow more than layer or fault zone conductivity. Finally, fault conduit behavior that penetrates aquitards has significant implications for transport, while fault barrier behavior has surprisingly little. This research advocates for adequate data collection where faults may cause breaches in aquitards due to layer offsets or conduit behavior in the damage zone. It also promotes the use of multiple geological models to address structural uncertainty, and highlights some of the hurdles in doing so such as computational expense and the availability of seamless geological-flow modeling workflows.

断层可以从根本上改变地下水流状态,是地下水研究中不确定因素的主要来源。有关断层位置的不确定性及其阻挡-导流行为的研究已经很多。然而,断层时间是断层不确定性的一个方面,似乎在某种程度上被忽视了。许多断层模型都具有一致的断层层偏移,从而假定块状断层是最近发生的,而且几乎是瞬间发生的。此外,障碍物和/或导管行为通常显示为垂直延伸至所有地层,而实际上断层的终点可能远低于地表。在本研究中,我们为珀斯盆地的一个横断面创建了三种看似合理的地质解释。相邻钻孔显示的地层偏移和增厚表明存在断层,但断层发生的时间尚不清楚。水流模型显示,由于含水层并置,最新断层模型显示出截然不同的水流模式。此外,利用随机生成的地层、断层核心和断层破坏带电导率参数集进行的多次实测表明,断层时间比地层或断层带电导率对水流的影响更大。最后,穿透含水层的断层导管行为对输运有重大影响,而断层阻挡行为的影响则小得令人吃惊。这项研究主张,在断层可能因地层偏移或破坏带的导管行为而导致含水层破裂的地方,应充分收集数据。它还提倡使用多种地质模型来解决结构不确定性问题,并强调了这样做的一些障碍,如计算费用和无缝地质-水流建模工作流程的可用性。
{"title":"Structural Uncertainty Due to Fault Timing: A Multimodel Case Study from the Perth Basin.","authors":"Kerry Bardot, Martin Lesueur, Adam J Siade, Simon C Lang, James L McCallum","doi":"10.1111/gwat.13429","DOIUrl":"10.1111/gwat.13429","url":null,"abstract":"<p><p>Faults can fundamentally change a groundwater flow regime and represent a major source of uncertainty in groundwater studies. Much research has been devoted to uncertainty around their location and their barrier-conduit behavior. However, fault timing is one aspect of fault uncertainty that appears to be somewhat overlooked. Many faulted models feature consistent layer offsets, thereby presuming that block faulting has occurred recently and almost instantaneously. Additionally, barrier and/or conduit behavior is often shown to extend vertically through all layers when a fault may in fact terminate well below-ground surface. In this study, we create three plausible geological interpretations for a transect in the Perth Basin. Adjacent boreholes show stratigraphic offsets and thickening which indicate faulting; however, fault timing is unknown. Flow modeling demonstrates that the model with the most recent faulting shows profoundly different flow patterns due to aquifer juxtaposition. Additionally, multiple realizations with stochastically generated parameter sets for layer, fault core, and fault damage zone conductivity show that fault timing influences flow more than layer or fault zone conductivity. Finally, fault conduit behavior that penetrates aquitards has significant implications for transport, while fault barrier behavior has surprisingly little. This research advocates for adequate data collection where faults may cause breaches in aquitards due to layer offsets or conduit behavior in the damage zone. It also promotes the use of multiple geological models to address structural uncertainty, and highlights some of the hurdles in doing so such as computational expense and the availability of seamless geological-flow modeling workflows.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ground water
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1