Supercritical CO2 (sCO2) removes water from brine held in pumice stone at levels well above the solubility of water in sCO2. The higher water removal results from a combination of passive emulsification of water in sCO2 and viscous fingering of sCO2 through the saturated pumice. This leads to higher levels of salt deposition than that expected from solubility considerations alone. These deposits could impact the injectivity of sCO2 as well as its movement in the subsurface. The finding that the water concentration in sCO2 is not necessarily capped at the solubility limit should influence the parametrization of injection models.
{"title":"Enhanced Removal of Brine From Porous Structures by Supercritical CO<sub>2</sub>.","authors":"Iris Beatriz Vega Erramuspe, Osei Asafu-Adjaye, Melissa Rojas-Márquez, Brian Via, Bhima Sastri, Sujit Banerjee","doi":"10.1111/gwat.13434","DOIUrl":"10.1111/gwat.13434","url":null,"abstract":"<p><p>Supercritical CO<sub>2</sub> (sCO<sub>2</sub>) removes water from brine held in pumice stone at levels well above the solubility of water in sCO<sub>2</sub>. The higher water removal results from a combination of passive emulsification of water in sCO<sub>2</sub> and viscous fingering of sCO<sub>2</sub> through the saturated pumice. This leads to higher levels of salt deposition than that expected from solubility considerations alone. These deposits could impact the injectivity of sCO<sub>2</sub> as well as its movement in the subsurface. The finding that the water concentration in sCO<sub>2</sub> is not necessarily capped at the solubility limit should influence the parametrization of injection models.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":"76-79"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-16DOI: 10.1111/gwat.13432
Mark Bakker, Bram Bot
Many sedimentary aquifers consist of small layers of coarser and finer material. When groundwater flow in these aquifers is modeled, the hydraulic conductivity may be simulated as homogeneous but anisotropic throughout the aquifer. In practice, the anisotropy factor, the ratio of the horizontal divided by the vertical hydraulic conductivity, is often set to 10. Here, numerical experiments are conducted to determine the effective anisotropy of an aquifer consisting of 400 horizontal layers of which the homogeneous and isotropic hydraulic conductivity varies over two orders of magnitude. Groundwater flow is simulated to a partially penetrating canal and a partially penetrating well. Numerical experiments are conducted for 1000 random realizations of the 400 layers, by varying the sequence of the layers, not their conductivity. It is demonstrated that the effective anisotropy of the homogeneous model is a model parameter that depends on the flow field. For example, the effective anisotropy for flow to a partially penetrating canal differs from the effective anisotropy for flow to a partially penetrating well in an aquifer consisting of the exact same 400 layers. The effective anisotropy also depends on the sequence of the layers. The effective anisotropy values of the 1000 realizations range from roughly 5 to 50 for the considered situations. A factor of 10 represents a median value (a reasonable value to start model calibration for the conductivity variations considered here). The median is similar to the equivalent anisotropy, defined as the arithmetic mean of the hydraulic conductivities divided by the harmonic mean.
{"title":"The Effective Vertical Anisotropy of Layered Aquifers.","authors":"Mark Bakker, Bram Bot","doi":"10.1111/gwat.13432","DOIUrl":"10.1111/gwat.13432","url":null,"abstract":"<p><p>Many sedimentary aquifers consist of small layers of coarser and finer material. When groundwater flow in these aquifers is modeled, the hydraulic conductivity may be simulated as homogeneous but anisotropic throughout the aquifer. In practice, the anisotropy factor, the ratio of the horizontal divided by the vertical hydraulic conductivity, is often set to 10. Here, numerical experiments are conducted to determine the effective anisotropy of an aquifer consisting of 400 horizontal layers of which the homogeneous and isotropic hydraulic conductivity varies over two orders of magnitude. Groundwater flow is simulated to a partially penetrating canal and a partially penetrating well. Numerical experiments are conducted for 1000 random realizations of the 400 layers, by varying the sequence of the layers, not their conductivity. It is demonstrated that the effective anisotropy of the homogeneous model is a model parameter that depends on the flow field. For example, the effective anisotropy for flow to a partially penetrating canal differs from the effective anisotropy for flow to a partially penetrating well in an aquifer consisting of the exact same 400 layers. The effective anisotropy also depends on the sequence of the layers. The effective anisotropy values of the 1000 realizations range from roughly 5 to 50 for the considered situations. A factor of 10 represents a median value (a reasonable value to start model calibration for the conductivity variations considered here). The median is similar to the equivalent anisotropy, defined as the arithmetic mean of the hydraulic conductivities divided by the harmonic mean.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":"68-75"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-06-25DOI: 10.1111/gwat.13426
Mariam Ouf, Peter R Jørgensen, Klaus Mosthaf, Massimo Rolle
This study advances a methodology to estimate effective apertures of fractures in glacial tills based on dye tracer infiltration tests and numerical simulations. The approach uses the visible penetration depth of the dye tracer along fracture flow paths as primary information to calculate effective fracture apertures. Further data used in the calculation are the dye tracer input concentration and retardation, the duration of the tracer injection, and the hydraulic gradient applied to control the infiltrating water fluxes. The method does not require measurement of hydraulic conductivity for the fractured till and enables direct observation of flow and transport patterns within the fractures (e.g., uniform flow and dye tracer distribution, channeling due to aperture variability, and presence of biogenic macropores in fractures). The approach was successfully verified by using the estimated effective fracture aperture values in Large Undisturbed Columns (LUCs) to consistently simulate both the observed LUC effluent breakthrough of a conservative bromide tracer and the water fluxes with the hydraulic gradient applied in the experiments. Sensitivity analyses revealed that estimation of small effective fracture apertures (<10 μm) required accurate determination of the dye tracer retardation factor. By contrast, in the case of larger effective apertures (>20 μm), the sensitivity of the estimated effective fracture aperture to variations in the porous material and solute transport parameters was low compared to the dominant sensitivity to the water flow through the fractures (cubic relation between flow and aperture). The proposed approach may be extended beyond laboratory applications and assist in characterizing field-scale fracture networks.
{"title":"Estimation of Effective Fracture Aperture in Glacial Tills by Analysis of Dye Tracer Penetration.","authors":"Mariam Ouf, Peter R Jørgensen, Klaus Mosthaf, Massimo Rolle","doi":"10.1111/gwat.13426","DOIUrl":"10.1111/gwat.13426","url":null,"abstract":"<p><p>This study advances a methodology to estimate effective apertures of fractures in glacial tills based on dye tracer infiltration tests and numerical simulations. The approach uses the visible penetration depth of the dye tracer along fracture flow paths as primary information to calculate effective fracture apertures. Further data used in the calculation are the dye tracer input concentration and retardation, the duration of the tracer injection, and the hydraulic gradient applied to control the infiltrating water fluxes. The method does not require measurement of hydraulic conductivity for the fractured till and enables direct observation of flow and transport patterns within the fractures (e.g., uniform flow and dye tracer distribution, channeling due to aperture variability, and presence of biogenic macropores in fractures). The approach was successfully verified by using the estimated effective fracture aperture values in Large Undisturbed Columns (LUCs) to consistently simulate both the observed LUC effluent breakthrough of a conservative bromide tracer and the water fluxes with the hydraulic gradient applied in the experiments. Sensitivity analyses revealed that estimation of small effective fracture apertures (<10 μm) required accurate determination of the dye tracer retardation factor. By contrast, in the case of larger effective apertures (>20 μm), the sensitivity of the estimated effective fracture aperture to variations in the porous material and solute transport parameters was low compared to the dominant sensitivity to the water flow through the fractures (cubic relation between flow and aperture). The proposed approach may be extended beyond laboratory applications and assist in characterizing field-scale fracture networks.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":"25-40"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Numerical modeling of the recovery of moisture by injecting warm air in the unsaturated zone in a 100 m × 100 m plot of agricultural land in Kuwait, a country located in an arid environment, was conducted to provide "proof of concept" of the technique. If technically and economically feasible, it will be a potential additional source of water that could be exploited for farming activities and other uses. The COMSOL software was used to develop the model and, based on the results of the scenario runs, the effects of different hydraulic and operational parameters, including that of well spacing, on moisture recovery were assessed. In general, the results suggested that the recovery should increase with the increase in the hydraulic conductivity of the unsaturated zone, the amount of heat input, and the pressure differential between the unsaturated zone and the well head. Within the period examined (0 to 11 days), the recovery decreases with the increase in the soil moisture content, possibly due to the fall in relative permeability to moisture-rich air with the increased water contents in the pore spaces, although the effects may change over a longer period as water contents decrease with moisture recovery. The moisture recovery from the unsaturated zone through the injection of warm air appears to be a feasible proposition from this study that should be demonstrated through a pilot scale experiment in the field.
{"title":"Numerical Modeling of Recovery of Moisture from the Unsaturated Zone: A Feasibility Study.","authors":"Amitabha Mukhopadhyay, Adnan Akber, Harish Bhandary","doi":"10.1111/gwat.13436","DOIUrl":"10.1111/gwat.13436","url":null,"abstract":"<p><p>Numerical modeling of the recovery of moisture by injecting warm air in the unsaturated zone in a 100 m × 100 m plot of agricultural land in Kuwait, a country located in an arid environment, was conducted to provide \"proof of concept\" of the technique. If technically and economically feasible, it will be a potential additional source of water that could be exploited for farming activities and other uses. The COMSOL software was used to develop the model and, based on the results of the scenario runs, the effects of different hydraulic and operational parameters, including that of well spacing, on moisture recovery were assessed. In general, the results suggested that the recovery should increase with the increase in the hydraulic conductivity of the unsaturated zone, the amount of heat input, and the pressure differential between the unsaturated zone and the well head. Within the period examined (0 to 11 days), the recovery decreases with the increase in the soil moisture content, possibly due to the fall in relative permeability to moisture-rich air with the increased water contents in the pore spaces, although the effects may change over a longer period as water contents decrease with moisture recovery. The moisture recovery from the unsaturated zone through the injection of warm air appears to be a feasible proposition from this study that should be demonstrated through a pilot scale experiment in the field.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":"116-129"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-23DOI: 10.1111/gwat.13442
Ronny Figueroa, Etienne Bresciani
Numerical modeling offers a valuable alternative to analytical solutions for pumping test analysis. However, little is known about how discretization impacts results accuracy and runtime. This study presents a systematic method for defining the spatiotemporal discretization of pumping test numerical models based on dimensionless parameters. Two types of analysis are considered: one where observations are made in the pumping well, and another one where observations are made in different wells. The influence of the discretization parameters on results accuracy and runtime is investigated and an optimal set of parameters is determined that minimizes runtime while maintaining the maximum error under 1% for an "average" aquifer. Lower runtimes are achieved when the analysis focuses on the pumping well, which is attributed to the steady-state analytical solution approximating drawdown in the well in the numerical scheme employed. Additional tests demonstrate the robustness of the derived set of parameters in different configurations.
{"title":"A Close-to-Optimal Discretization Strategy for Pumping Test Numerical Simulation.","authors":"Ronny Figueroa, Etienne Bresciani","doi":"10.1111/gwat.13442","DOIUrl":"10.1111/gwat.13442","url":null,"abstract":"<p><p>Numerical modeling offers a valuable alternative to analytical solutions for pumping test analysis. However, little is known about how discretization impacts results accuracy and runtime. This study presents a systematic method for defining the spatiotemporal discretization of pumping test numerical models based on dimensionless parameters. Two types of analysis are considered: one where observations are made in the pumping well, and another one where observations are made in different wells. The influence of the discretization parameters on results accuracy and runtime is investigated and an optimal set of parameters is determined that minimizes runtime while maintaining the maximum error under 1% for an \"average\" aquifer. Lower runtimes are achieved when the analysis focuses on the pumping well, which is attributed to the steady-state analytical solution approximating drawdown in the well in the numerical scheme employed. Additional tests demonstrate the robustness of the derived set of parameters in different configurations.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":"105-115"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-23DOI: 10.1111/gwat.13433
Michael N Fienen, Jeremy T White, Mohamed Hayek
In this paper, we review the derivation of the Gauss-Levenberg-Marquardt (GLM) algorithm and its extension to ensemble parameter estimation. We explore the use of graphical methods to provide insights into how the algorithm works in practice and discuss the implications of both algorithm tuning parameters and objective function construction in performance. Some insights include understanding the control of both parameter trajectory and step size for GLM as a function of tuning parameters. Furthermore, for the iterative Ensemble Smoother (iES), we discuss the importance of noise on observations and show how iES can cope with non-unique outcomes based on objective function construction. These insights are valuable for modelers using PEST, PEST++, or similar parameter estimation tools.
{"title":"Parameter ESTimation With the Gauss-Levenberg-Marquardt Algorithm: An Intuitive Guide.","authors":"Michael N Fienen, Jeremy T White, Mohamed Hayek","doi":"10.1111/gwat.13433","DOIUrl":"10.1111/gwat.13433","url":null,"abstract":"<p><p>In this paper, we review the derivation of the Gauss-Levenberg-Marquardt (GLM) algorithm and its extension to ensemble parameter estimation. We explore the use of graphical methods to provide insights into how the algorithm works in practice and discuss the implications of both algorithm tuning parameters and objective function construction in performance. Some insights include understanding the control of both parameter trajectory and step size for GLM as a function of tuning parameters. Furthermore, for the iterative Ensemble Smoother (iES), we discuss the importance of noise on observations and show how iES can cope with non-unique outcomes based on objective function construction. These insights are valuable for modelers using PEST, PEST++, or similar parameter estimation tools.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":"93-104"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-13DOI: 10.1111/gwat.13437
Karli M Rogers, Jennifer B Fair, Nathaniel P Hitt, Karmann G Kessler, Zachary A Kelly, Martin Briggs
Streamflow records are biased toward large streams and rivers, yet small headwater streams are often the focus of ecological research in response to climate change. Conventional flow measurement instruments such as acoustic Doppler velocimeters (ADVs) do not perform well during low-flow conditions in small streams, truncating the development of rating curves during critical baseflow conditions dominated by groundwater inflow. We revisited an instantaneous solute tracer injection method as an alternative to ADVs based on paired measurements to compare their precision, efficiency, and feasibility within headwater streams across a range of flow conditions. We show that the precision of discharge measurements using salt dilution by slug injection and ADV methods were comparable overall, but salt dilution was more precise during the lowest flows and required less time to implement. Often, headwater streams were at or below the depth threshold where ADV measurements could even be attempted and transects were complicated by coarse bed material and cobbles. We discuss the methodological benefits and limitations of salt dilution by slug injection and conclude that the method could facilitate a proliferation of streamflow observation across headwater stream networks that are highly undersampled compared to larger streams.
{"title":"Utility of an Instantaneous Salt Dilution Method for Measuring Streamflow in Headwater Streams.","authors":"Karli M Rogers, Jennifer B Fair, Nathaniel P Hitt, Karmann G Kessler, Zachary A Kelly, Martin Briggs","doi":"10.1111/gwat.13437","DOIUrl":"10.1111/gwat.13437","url":null,"abstract":"<p><p>Streamflow records are biased toward large streams and rivers, yet small headwater streams are often the focus of ecological research in response to climate change. Conventional flow measurement instruments such as acoustic Doppler velocimeters (ADVs) do not perform well during low-flow conditions in small streams, truncating the development of rating curves during critical baseflow conditions dominated by groundwater inflow. We revisited an instantaneous solute tracer injection method as an alternative to ADVs based on paired measurements to compare their precision, efficiency, and feasibility within headwater streams across a range of flow conditions. We show that the precision of discharge measurements using salt dilution by slug injection and ADV methods were comparable overall, but salt dilution was more precise during the lowest flows and required less time to implement. Often, headwater streams were at or below the depth threshold where ADV measurements could even be attempted and transects were complicated by coarse bed material and cobbles. We discuss the methodological benefits and limitations of salt dilution by slug injection and conclude that the method could facilitate a proliferation of streamflow observation across headwater stream networks that are highly undersampled compared to larger streams.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":"80-92"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantifying lacustrine groundwater discharge (LGD) is important for understanding the dynamics of lake ecosystems and their expansion. This study focuses on Lake Qinghai, employing radium isotope models to evaluate the contributions of both shallow and deep groundwater. The data indicate that the activity of 223Ra and 224Ra demonstrates a pronounced gradient, decreasing from the shoreline to the center of Lake Qinghai. Additionally, vertical stratification characteristics were observed. The spatial distribution of radium isotope activity suggests that there is discharge of both shallow and deep groundwater into the lake. Deep groundwater migrates slowly and its apparent age reflects the time elapsed since the water became enriched in Ra and was isolated from the source, in the study system this age is estimated to be 10.1 d. In contrast, shallow groundwater displayed varied apparent ages in different regions: 7.9 d in the north, 13.1 d in the south, and 7.4 d in the southeastern area of the lake. The LGDs of shallow groundwater discharge in the north, south, and southeast areas of Lake Qinghai were estimated by 224Ra as 1.89 × 106 to 2.69 × 106 m3/d, 3.25 × 106 to 3.99 × 106 m3/d, and 4.51 × 106 to 6.33 × 106 m3/d, respectively. For deep groundwater, the LGD was 0.16 × 106 to 0.29 × 106 m3/d. Annually, the total LGD fluxes of shallow and deep groundwater are 27.86 × 108 to 37.59 × 108 m3/year and 0.58 × 108 to 1.06 × 108 m3/year, respectively. This study is the first to evaluate shallow and deep groundwater discharge around the lake. Understanding these discharge dynamics is essential for developing effective management strategies to preserve lake environments.
{"title":"Applying <sup>224</sup>Ra and <sup>223</sup>Ra to Trace Lateral Groundwater Discharge into Lake Qinghai, China.","authors":"Weigang Su, Yujun Ma, Qiugui Wang","doi":"10.1111/gwat.13461","DOIUrl":"https://doi.org/10.1111/gwat.13461","url":null,"abstract":"<p><p>Quantifying lacustrine groundwater discharge (LGD) is important for understanding the dynamics of lake ecosystems and their expansion. This study focuses on Lake Qinghai, employing radium isotope models to evaluate the contributions of both shallow and deep groundwater. The data indicate that the activity of <sup>223</sup>Ra and <sup>224</sup>Ra demonstrates a pronounced gradient, decreasing from the shoreline to the center of Lake Qinghai. Additionally, vertical stratification characteristics were observed. The spatial distribution of radium isotope activity suggests that there is discharge of both shallow and deep groundwater into the lake. Deep groundwater migrates slowly and its apparent age reflects the time elapsed since the water became enriched in Ra and was isolated from the source, in the study system this age is estimated to be 10.1 d. In contrast, shallow groundwater displayed varied apparent ages in different regions: 7.9 d in the north, 13.1 d in the south, and 7.4 d in the southeastern area of the lake. The LGDs of shallow groundwater discharge in the north, south, and southeast areas of Lake Qinghai were estimated by <sup>224</sup>Ra as 1.89 × 10<sup>6</sup> to 2.69 × 10<sup>6</sup> m<sup>3</sup>/d, 3.25 × 10<sup>6</sup> to 3.99 × 10<sup>6</sup> m<sup>3</sup>/d, and 4.51 × 10<sup>6</sup> to 6.33 × 10<sup>6</sup> m<sup>3</sup>/d, respectively. For deep groundwater, the LGD was 0.16 × 10<sup>6</sup> to 0.29 × 10<sup>6</sup> m<sup>3</sup>/d. Annually, the total LGD fluxes of shallow and deep groundwater are 27.86 × 10<sup>8</sup> to 37.59 × 10<sup>8</sup> m<sup>3</sup>/year and 0.58 × 10<sup>8</sup> to 1.06 × 10<sup>8</sup> m<sup>3</sup>/year, respectively. This study is the first to evaluate shallow and deep groundwater discharge around the lake. Understanding these discharge dynamics is essential for developing effective management strategies to preserve lake environments.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammadali Geranmehr, Domenico Bau, Alex S Mayer, Weijiang Yu
Sea water intrusion (SWI) simulators are essential tools to assist the sustainable management of coastal aquifers. These simulators require the solution of coupled variable-density partial differential equations (PDEs), which reproduce the processes of groundwater flow and dissolved salt transport. The solution of these PDEs is typically addressed numerically with the use of density-dependent flow simulators, which are computationally intensive in most practical applications. To this end, model surrogates are generally developed as substitutes for full-scale aquifer models to trade off accuracy in exchange for computational efficiency. Surrogates represent an attractive option to support groundwater management situations in which fast simulators are required to evaluate large sets of alternative pumping strategies. Reduced-order models, a sub-category of surrogate models, are based on the original model equations and may provide quite accurate results at a small fraction of computational cost. In this study, a variable-density flow reduced-order model based on proper orthogonal decomposition (POD) and utilizing a fully coupled flow and solute-transport model is implemented with a finite-difference (FD) approach for simulating SWI in coastal aquifers. The accuracy and computational efficiency of the FD-POD approach for both homogeneous and-more realistic-heterogeneous systems are investigated using test cases based on the classic Henry's problem (Henry 1964). The findings demonstrate that the combined FD-POD approach is effective in terms of both accuracy and computational gain and can accommodate the output of the most popular variable-density flow models, such as those from USGS's MODFLOW family.
{"title":"A Reduced Order Model for Sea Water Intrusion Simulation Using Proper Orthogonal Decomposition.","authors":"Mohammadali Geranmehr, Domenico Bau, Alex S Mayer, Weijiang Yu","doi":"10.1111/gwat.13462","DOIUrl":"https://doi.org/10.1111/gwat.13462","url":null,"abstract":"<p><p>Sea water intrusion (SWI) simulators are essential tools to assist the sustainable management of coastal aquifers. These simulators require the solution of coupled variable-density partial differential equations (PDEs), which reproduce the processes of groundwater flow and dissolved salt transport. The solution of these PDEs is typically addressed numerically with the use of density-dependent flow simulators, which are computationally intensive in most practical applications. To this end, model surrogates are generally developed as substitutes for full-scale aquifer models to trade off accuracy in exchange for computational efficiency. Surrogates represent an attractive option to support groundwater management situations in which fast simulators are required to evaluate large sets of alternative pumping strategies. Reduced-order models, a sub-category of surrogate models, are based on the original model equations and may provide quite accurate results at a small fraction of computational cost. In this study, a variable-density flow reduced-order model based on proper orthogonal decomposition (POD) and utilizing a fully coupled flow and solute-transport model is implemented with a finite-difference (FD) approach for simulating SWI in coastal aquifers. The accuracy and computational efficiency of the FD-POD approach for both homogeneous and-more realistic-heterogeneous systems are investigated using test cases based on the classic Henry's problem (Henry 1964). The findings demonstrate that the combined FD-POD approach is effective in terms of both accuracy and computational gain and can accommodate the output of the most popular variable-density flow models, such as those from USGS's MODFLOW family.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}