首页 > 最新文献

Ground water最新文献

英文 中文
Applying the Quadrant Method for Pumping-Trace Metal Correlations in Variable Time, Low-Data Systems. 在可变时间、低数据系统中应用象限法进行抽水-痕量金属相关性分析。
Pub Date : 2024-12-20 DOI: 10.1111/gwat.13458
Zachary D Tomlinson, Kato T Dee, Megan E Elwood Madden, Andrew S Elwood Madden

Due to increasing global demand for fresh water, it is increasingly necessary to understand how aquifer pumping affects groundwater chemistry. However, comprehensive predictive relationships between pumping and groundwater quality have yet to be developed, as the available data, which are often collected over inconsistent time intervals, are poorly suited for long-term historical correlation studies. For example, we needed an adequate statistical method to better understand relationships between pumping rate and water quality in the City of Norman (OK, USA). Here we used the interval-scaled change in mean pumping rate combined with the Quadrant method to examine correlations between pumping rates and changes in trace metal concentrations. We found that correlations vary across the study area and are likely dependent on a variety of factors specific to each well. Comparing the Quadrant method to the commonly used Kendall's tau correlation, which requires different assumptions about aquifer behavior, the methods produced similar correlations when sample sizes were large and the time interval between samples was relatively short. Sample sizes were then artificially restricted to determine correlation reproducibility. Despite being less reproducible overall, the Quadrant method was more reproducible when there were large time intervals between samples and very small sample sizes (n ~ 4), but not as reproducible as significant (p ≤ 0.1) Kendall's tau correlations. Therefore, the Quadrant method may be useful for further investigating the effects of pumping in cases where Kendall's tau does not produce significant correlations.

由于全球对淡水的需求不断增加,越来越有必要了解含水层抽水如何影响地下水化学。然而,抽水和地下水质量之间的全面预测关系尚未建立,因为现有的数据通常是在不一致的时间间隔内收集的,不适合长期的历史相关性研究。例如,我们需要一种适当的统计方法来更好地理解诺曼市(OK, USA)的抽水速率和水质之间的关系。在这里,我们使用平均泵送速率的间隔尺度变化结合象限方法来检查泵送速率与微量金属浓度变化之间的相关性。我们发现,在整个研究区域,相关性有所不同,可能取决于每口井的各种特定因素。象限法与常用的Kendall’s tau相关(对含水层行为有不同的假设)相比,在样本量大、样本量间隔较短的情况下,两种方法产生了相似的相关性。然后人为地限制样本量以确定相关性的可重复性。尽管总体上可重复性较差,但当样本间隔时间较长且样本量很小(n ~ 4)时,象限方法的可重复性较好,但当Kendall's tau相关性显著(p≤0.1)时,该方法的可重复性较差。因此,象限方法可能有助于进一步研究在肯德尔tau不产生显著相关性的情况下泵送的影响。
{"title":"Applying the Quadrant Method for Pumping-Trace Metal Correlations in Variable Time, Low-Data Systems.","authors":"Zachary D Tomlinson, Kato T Dee, Megan E Elwood Madden, Andrew S Elwood Madden","doi":"10.1111/gwat.13458","DOIUrl":"https://doi.org/10.1111/gwat.13458","url":null,"abstract":"<p><p>Due to increasing global demand for fresh water, it is increasingly necessary to understand how aquifer pumping affects groundwater chemistry. However, comprehensive predictive relationships between pumping and groundwater quality have yet to be developed, as the available data, which are often collected over inconsistent time intervals, are poorly suited for long-term historical correlation studies. For example, we needed an adequate statistical method to better understand relationships between pumping rate and water quality in the City of Norman (OK, USA). Here we used the interval-scaled change in mean pumping rate combined with the Quadrant method to examine correlations between pumping rates and changes in trace metal concentrations. We found that correlations vary across the study area and are likely dependent on a variety of factors specific to each well. Comparing the Quadrant method to the commonly used Kendall's tau correlation, which requires different assumptions about aquifer behavior, the methods produced similar correlations when sample sizes were large and the time interval between samples was relatively short. Sample sizes were then artificially restricted to determine correlation reproducibility. Despite being less reproducible overall, the Quadrant method was more reproducible when there were large time intervals between samples and very small sample sizes (n ~ 4), but not as reproducible as significant (p ≤ 0.1) Kendall's tau correlations. Therefore, the Quadrant method may be useful for further investigating the effects of pumping in cases where Kendall's tau does not produce significant correlations.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Bridging Additives on Wellbore Strengthening in Shallow Unconsolidated Formations. 桥接添加剂对浅层非固结地层井筒加固的影响》(The Impact of Bridging Additives on Wellbore Strengthening in Shallow Unonsolidated Formations.
Pub Date : 2024-12-19 DOI: 10.1111/gwat.13455
Alexis Koulidis, Tessel M Grubben, Martin L van der Schans, Martin Bloemendal, Philip J Vardon

Drilling wells in unconsolidated formations is commonly undertaken to extract drinking water and other applications, such as aquifer thermal energy storage (ATES). To increase the efficiency of an ATES system, the drilling campaigns are targeting greater depths and enlarging the wellbore diameter in the production section to enhance the flow rates. In these cases, wells are more susceptible to collapse. Drilling fluids for shallow formations often have little strengthening properties and, due to single-string well design, come into contact with both the aquifer and the overburden. Drilling fluids and additives are experimentally investigated to be used to improve wellbore stability in conditions simulating field conditions in unconsolidated aquifers with a hydraulic conductivity of around 10 m/d. The impact on wellbore stability is evaluated using a new experimental setup in which the filtration rate is measured, followed by the use of a fall cone penetrometer augmented with an accelerometer to directly test the wellbore strengthening, and imaging with a scanning electron microscope (SEM) to investigate the (micro)structure of the filter cakes produced. Twelve drilling fluids are investigated with different concentrations of bentonite, polyanionic cellulose (PAC), Xanthan Gum, calcium carbonate (CaCO3), and aluminum chloride hexahydrate ([Al(H2O)6]Cl3). The filtration results indicate that calcium carbonate, average dp <20 μm, provides pore throat bridging and filter cake formation after approximately 2 min, compared to almost instantaneous discharge when using conventional drilling fluids. The drilling fluid containing 2% [Al(H2O)6]Cl3 forms a thick (4 mm) yet permeable filter cake, resulting in high filtration losses. The fall cone results show a decrease of cone penetration depth up to 20.78%, and a 40.27% increase in deceleration time while penetrating the sample with CaCO3 compared with conventional drilling fluid containing bentonite and PAC, indicating a significant strengthening effect. The drilling fluids that contain CaCO3, therefore, show high promise for field implementation.

在松散地层中钻井通常用于提取饮用水和其他应用,如含水层热能储存(ATES)。为了提高ATES系统的效率,钻井作业的目标是更大的深度,扩大生产段的井眼直径,以提高流量。在这种情况下,油井更容易坍塌。用于浅层地层的钻井液通常具有很少的强化性能,并且由于单柱井设计,会同时接触到含水层和覆盖层。通过实验研究,钻井液和添加剂可以在模拟现场条件下提高松散含水层的井筒稳定性,其水力导流率约为10 m/d。通过一种新的实验装置来评估对井筒稳定性的影响,该装置测量了过滤速率,然后使用带有加速度计的降锥穿透仪直接测试井筒强化效果,并使用扫描电子显微镜(SEM)成像来研究所产生的滤饼的(微观)结构。研究了12种钻井液中不同浓度的膨润土、聚阴离子纤维素(PAC)、黄原胶、碳酸钙(CaCO3)和六水氯化铝([Al(H2O)6]Cl3)。过滤结果表明,碳酸钙(平均dp 2O)6]Cl3)形成厚(4 mm)但具有渗透性的滤饼,导致过滤损失大。结果表明,与常规含膨润土和PAC的钻井液相比,CaCO3对降锥的侵彻深度降低了20.78%,减速时间增加了40.27%,强化效果显著。因此,含有CaCO3的钻井液具有很高的应用前景。
{"title":"The Impact of Bridging Additives on Wellbore Strengthening in Shallow Unconsolidated Formations.","authors":"Alexis Koulidis, Tessel M Grubben, Martin L van der Schans, Martin Bloemendal, Philip J Vardon","doi":"10.1111/gwat.13455","DOIUrl":"https://doi.org/10.1111/gwat.13455","url":null,"abstract":"<p><p>Drilling wells in unconsolidated formations is commonly undertaken to extract drinking water and other applications, such as aquifer thermal energy storage (ATES). To increase the efficiency of an ATES system, the drilling campaigns are targeting greater depths and enlarging the wellbore diameter in the production section to enhance the flow rates. In these cases, wells are more susceptible to collapse. Drilling fluids for shallow formations often have little strengthening properties and, due to single-string well design, come into contact with both the aquifer and the overburden. Drilling fluids and additives are experimentally investigated to be used to improve wellbore stability in conditions simulating field conditions in unconsolidated aquifers with a hydraulic conductivity of around 10 m/d. The impact on wellbore stability is evaluated using a new experimental setup in which the filtration rate is measured, followed by the use of a fall cone penetrometer augmented with an accelerometer to directly test the wellbore strengthening, and imaging with a scanning electron microscope (SEM) to investigate the (micro)structure of the filter cakes produced. Twelve drilling fluids are investigated with different concentrations of bentonite, polyanionic cellulose (PAC), Xanthan Gum, calcium carbonate (CaCO<sub>3</sub>), and aluminum chloride hexahydrate ([Al(H<sub>2</sub>O)<sub>6</sub>]Cl<sub>3</sub>). The filtration results indicate that calcium carbonate, average d<sub>p</sub> <20 μm, provides pore throat bridging and filter cake formation after approximately 2 min, compared to almost instantaneous discharge when using conventional drilling fluids. The drilling fluid containing 2% [Al(H<sub>2</sub>O)<sub>6</sub>]Cl<sub>3</sub> forms a thick (4 mm) yet permeable filter cake, resulting in high filtration losses. The fall cone results show a decrease of cone penetration depth up to 20.78%, and a 40.27% increase in deceleration time while penetrating the sample with CaCO<sub>3</sub> compared with conventional drilling fluid containing bentonite and PAC, indicating a significant strengthening effect. The drilling fluids that contain CaCO<sub>3</sub>, therefore, show high promise for field implementation.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the Influence of Coastal Site Characteristics on PFAS in Situ Remediation. 模拟海岸带场地特征对PFAS原位修复的影响。
Pub Date : 2024-12-11 DOI: 10.1111/gwat.13456
Grant R Carey, Anthony Danko, Anh Le-Tuan Pham, Keir Soderberg, Beth Hoagland, Brent Sleep

The potential performance of a hypothetical colloidal-activated carbon (CAC) in situ remedy for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater in coastal zones was evaluated using estimated hydrogeologic and geochemical parameters for a coastal site in the United States. With these parameters, a reactive transport model (ISR-MT3DMS) was used to assess the effects of tidal fluctuations and near-shore geochemistry on CAC performance. The average near-shore ionic strength of 84 mM at the site was conservatively estimated to result in an increase in the adsorption of PFOA to CAC by about 50% relative to non-coastal sites with ionic strength <10 mM. The modeling also confirmed the hypothesis that tidally induced groundwater flow reversals near the shore would result in the accumulation of PFOA at the downgradient edge of the CAC zone. Slow desorption of PFOA from this downgradient CAC boundary may sustain downgradient plume concentrations above a strict cleanup criterion (e.g., USEPA MCL of 0.004 μg/L), for decades; however, there was still a large PFOA mass flux reduction (>99.9%) achieved after several decades at the shore. CAC longevity was substantially greater for PFOS with a similar source concentration; however, the higher PFOS distribution coefficient (Kd) in soil downgradient from the CAC zone resulted in substantially longer flushing times. It is recommended that short-term remedial action objectives for CAC remedies at coastal sites be based on mass flux reduction targets over a period of several decades, given the demonstrated challenges in trying to achieve very low cleanup criteria downgradient of a CAC zone in the short term.

利用美国一个沿海地点的估计水文地质和地球化学参数,评估了一种假设的胶体活性炭(CAC)对沿海地区地下水中全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的原位补救方法的潜在性能。利用这些参数,采用反应输运模型(ISR-MT3DMS)评估潮汐波动和近岸地球化学对CAC性能的影响。据保守估计,该地点的平均近岸离子强度为84 mM,在岸上几十年后,与非沿海地点(离子强度为99.9%)相比,PFOA对CAC的吸附增加了约50%。源浓度相似的全氟辛烷磺酸的CAC寿命要长得多;然而,在CAC区向下梯度的土壤中,PFOS分布系数(Kd)越高,冲刷时间就越长。鉴于试图在短期内达到极低的沉降率清除标准所面临的挑战,建议沿海场址的沉降率补救措施的短期补救行动目标应以几十年期间减少质量通量的目标为基础。
{"title":"Modeling the Influence of Coastal Site Characteristics on PFAS in Situ Remediation.","authors":"Grant R Carey, Anthony Danko, Anh Le-Tuan Pham, Keir Soderberg, Beth Hoagland, Brent Sleep","doi":"10.1111/gwat.13456","DOIUrl":"https://doi.org/10.1111/gwat.13456","url":null,"abstract":"<p><p>The potential performance of a hypothetical colloidal-activated carbon (CAC) in situ remedy for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater in coastal zones was evaluated using estimated hydrogeologic and geochemical parameters for a coastal site in the United States. With these parameters, a reactive transport model (ISR-MT3DMS) was used to assess the effects of tidal fluctuations and near-shore geochemistry on CAC performance. The average near-shore ionic strength of 84 mM at the site was conservatively estimated to result in an increase in the adsorption of PFOA to CAC by about 50% relative to non-coastal sites with ionic strength <10 mM. The modeling also confirmed the hypothesis that tidally induced groundwater flow reversals near the shore would result in the accumulation of PFOA at the downgradient edge of the CAC zone. Slow desorption of PFOA from this downgradient CAC boundary may sustain downgradient plume concentrations above a strict cleanup criterion (e.g., USEPA MCL of 0.004 μg/L), for decades; however, there was still a large PFOA mass flux reduction (>99.9%) achieved after several decades at the shore. CAC longevity was substantially greater for PFOS with a similar source concentration; however, the higher PFOS distribution coefficient (K<sub>d</sub>) in soil downgradient from the CAC zone resulted in substantially longer flushing times. It is recommended that short-term remedial action objectives for CAC remedies at coastal sites be based on mass flux reduction targets over a period of several decades, given the demonstrated challenges in trying to achieve very low cleanup criteria downgradient of a CAC zone in the short term.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the Hydrogeological Structure of a Small Danish Island Using Transient Electromagnetic Methods. 利用瞬态电磁方法绘制丹麦小岛的水文地质结构图。
Pub Date : 2024-11-09 DOI: 10.1111/gwat.13452
Paul McLachlan, Mathias Ø Vang, Jesper B Pedersen, Rune Kraghede, Anders V Christiansen

Small island communities often rely on groundwater as their primary source of fresh water. However, the limited land area and high proportion of coastal zones pose unique challenges to groundwater management. A detailed understanding of the subsurface structure can provide valuable insights into aquifer structure, groundwater vulnerability, saltwater intrusion, and the location of water resources. These insights can guide groundwater management strategies, for example, pollution regulation, promotion of sustainable agriculture, establishment of coastal buffer zones, and re-naturalization of land cover. Ordinarily, structural characterization relies on geological mapping and boreholes, however, such approaches can have insufficient spatial resolution to aid groundwater management. In this study, transient electromagnetic (TEM) methods are used to map the subsurface of a small, 13.2 km2, Danish Island. The approach successfully identified two previously unknown paleochannels, where the interface between Quaternary aquifer units and an underlying Paleogene Clay aquiclude had maximum depths of 100 and 160 m below sea level. Before this, the interface was assumed to be 15 to 25 m below sea level: therefore, these paleochannels present substantial potential groundwater resources. Resolving geological heterogeneity within the Quaternary deposits was less successful and future work will focus on addressing these limitations. Nonetheless, in several locations, evidence of saltwater intrusion was observed within the Quaternary units. This work demonstrates how TEM mapping can identify water resources, define aquifer boundaries, and aid water management decisions. Such approaches could be applied in other areas, particularly small islands, where similar groundwater challenges exist.

小岛屿社区通常依赖地下水作为淡水的主要来源。然而,有限的土地面积和高比例的沿海地区给地下水管理带来了独特的挑战。详细了解地下结构可以为含水层结构、地下水脆弱性、盐水入侵和水资源位置提供有价值的信息。这些见解可以指导地下水管理策略,例如污染监管、促进可持续农业、建立沿海缓冲区和恢复土地植被。通常情况下,结构表征依赖于地质绘图和钻孔,但这种方法的空间分辨率可能不足以帮助地下水管理。本研究采用瞬态电磁(TEM)方法绘制了一个面积为 13.2 平方公里的丹麦小岛的地下结构图。该方法成功确定了两条之前未知的古河道,其中第四纪含水层单元与下层古新统粘土含水层之间的界面最大深度为海平面以下 100 米和 160 米。在此之前,该界面被假定为海平面以下 15 至 25 米:因此,这些古河道蕴藏着巨大的潜在地下水资源。解决第四纪沉积物内部地质异质性的工作不太成功,今后的工作将重点解决这些限制因素。不过,在一些地方,第四纪单元内观察到了盐水入侵的证据。这项工作展示了 TEM 测绘如何识别水资源、确定含水层边界以及帮助水资源管理决策。这种方法可应用于存在类似地下水挑战的其他地区,特别是小岛屿。
{"title":"Mapping the Hydrogeological Structure of a Small Danish Island Using Transient Electromagnetic Methods.","authors":"Paul McLachlan, Mathias Ø Vang, Jesper B Pedersen, Rune Kraghede, Anders V Christiansen","doi":"10.1111/gwat.13452","DOIUrl":"https://doi.org/10.1111/gwat.13452","url":null,"abstract":"<p><p>Small island communities often rely on groundwater as their primary source of fresh water. However, the limited land area and high proportion of coastal zones pose unique challenges to groundwater management. A detailed understanding of the subsurface structure can provide valuable insights into aquifer structure, groundwater vulnerability, saltwater intrusion, and the location of water resources. These insights can guide groundwater management strategies, for example, pollution regulation, promotion of sustainable agriculture, establishment of coastal buffer zones, and re-naturalization of land cover. Ordinarily, structural characterization relies on geological mapping and boreholes, however, such approaches can have insufficient spatial resolution to aid groundwater management. In this study, transient electromagnetic (TEM) methods are used to map the subsurface of a small, 13.2 km<sup>2</sup>, Danish Island. The approach successfully identified two previously unknown paleochannels, where the interface between Quaternary aquifer units and an underlying Paleogene Clay aquiclude had maximum depths of 100 and 160 m below sea level. Before this, the interface was assumed to be 15 to 25 m below sea level: therefore, these paleochannels present substantial potential groundwater resources. Resolving geological heterogeneity within the Quaternary deposits was less successful and future work will focus on addressing these limitations. Nonetheless, in several locations, evidence of saltwater intrusion was observed within the Quaternary units. This work demonstrates how TEM mapping can identify water resources, define aquifer boundaries, and aid water management decisions. Such approaches could be applied in other areas, particularly small islands, where similar groundwater challenges exist.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpreting Step-Drawdown Pumping Test Undergoing Confined-Unconfined Conversion with Well Loss. 解释正在进行封闭-非封闭转换(井损)的阶梯式降压抽水试验。
Pub Date : 2024-11-04 DOI: 10.1111/gwat.13450
Lu Zhang, Hua Zhao, Ling Wang, Jianmei Liu, Qi Zhu, Na Li, Zhang Wen, Yizhao Wang, Dian Wang

The step-drawdown pumping test often experiences a transition from confined to unconfined conditions due to the continuously increasing pumping rate. However, the current well hydraulics model has not accurately interpreted this phenomenon. In this study, we developed an analytical solution to address the confined-unconfined conversion in step-drawdown pumping tests based on Girinskii's potential and superposition theory. Additionally, a field step-drawdown pumping test featuring confined-unconfined conversion was conducted to apply the proposed analytical solution. The particle swarm optimization algorithm was employed to simultaneously estimate multiple parameters. The results demonstrate that the newly proposed solution provides a better fit to the observed drawdown in the pumping well compared to previous models. The hydrogeological parameters (K, S), well loss coefficient (B), and critical time for confined-unconfined conversion (tc) were estimated to be K = 7.15 m/d, S = 6.65 × 10-5, B = 7.48 × 10-6, and tc = 1152 min, respectively. Neglecting the confined-unconfined conversion in step-drawdown pumping tests leads to underestimation of drawdown inside the pumping well due to an overestimation of the aquifer thickness. After the conversion from confined to unconfined conditions, the estimated well loss coefficient decreased by 88% compared to its pre-conversion value. This highlights the necessity of adjusting the well loss coefficient in the step-drawdown pumping test model to account for confined-unconfined conversion. In summary, this study introduces a new method for interpreting parameters in step-drawdown pumping tests and provides field validation for its effectiveness.

由于抽水速率不断增加,阶梯式抽水试验经常会经历从封闭条件到非封闭条件的过渡。然而,目前的油井水力学模型并不能准确解释这一现象。在本研究中,我们根据吉林斯基电位和叠加理论,开发了一种分析方法来解决阶梯式下抽测试中的致密-非致密转换问题。此外,为了应用所提出的分析解决方案,我们还进行了以封闭-非封闭转换为特征的现场步降抽水试验。采用粒子群优化算法同时估算多个参数。结果表明,与之前的模型相比,新提出的解决方案能更好地拟合抽水井中观测到的抽水情况。据估算,水文地质参数(K、S)、井损系数(B)和封闭-非封闭转换临界时间(tc)分别为 K = 7.15 m/d、S = 6.65 × 10-5、B = 7.48 × 10-6、tc = 1152 min。在阶梯式降水抽水试验中忽略承压-非承压转换,会因高估含水层厚度而低估抽水井内的降水量。从封闭条件转换为非封闭条件后,估计的水井损失系数比转换前的值降低了 88%。这突出表明,有必要调整梯级降水抽水试验模型中的水井损失系数,以考虑承压-非承压转换。总之,本研究介绍了一种解释阶梯式降水抽水试验参数的新方法,并对其有效性进行了实地验证。
{"title":"Interpreting Step-Drawdown Pumping Test Undergoing Confined-Unconfined Conversion with Well Loss.","authors":"Lu Zhang, Hua Zhao, Ling Wang, Jianmei Liu, Qi Zhu, Na Li, Zhang Wen, Yizhao Wang, Dian Wang","doi":"10.1111/gwat.13450","DOIUrl":"https://doi.org/10.1111/gwat.13450","url":null,"abstract":"<p><p>The step-drawdown pumping test often experiences a transition from confined to unconfined conditions due to the continuously increasing pumping rate. However, the current well hydraulics model has not accurately interpreted this phenomenon. In this study, we developed an analytical solution to address the confined-unconfined conversion in step-drawdown pumping tests based on Girinskii's potential and superposition theory. Additionally, a field step-drawdown pumping test featuring confined-unconfined conversion was conducted to apply the proposed analytical solution. The particle swarm optimization algorithm was employed to simultaneously estimate multiple parameters. The results demonstrate that the newly proposed solution provides a better fit to the observed drawdown in the pumping well compared to previous models. The hydrogeological parameters (K, S), well loss coefficient (B), and critical time for confined-unconfined conversion (t<sub>c</sub>) were estimated to be K = 7.15 m/d, S = 6.65 × 10<sup>-5</sup>, B = 7.48 × 10<sup>-6</sup>, and t<sub>c</sub> = 1152 min, respectively. Neglecting the confined-unconfined conversion in step-drawdown pumping tests leads to underestimation of drawdown inside the pumping well due to an overestimation of the aquifer thickness. After the conversion from confined to unconfined conditions, the estimated well loss coefficient decreased by 88% compared to its pre-conversion value. This highlights the necessity of adjusting the well loss coefficient in the step-drawdown pumping test model to account for confined-unconfined conversion. In summary, this study introduces a new method for interpreting parameters in step-drawdown pumping tests and provides field validation for its effectiveness.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating ERT and SP Techniques for Characterizing Aquifers and Surface-Groundwater Interactions. 整合 ERT 和 SP 技术,确定含水层和地表-地下水相互作用的特征。
Pub Date : 2024-10-24 DOI: 10.1111/gwat.13444
Md Lal Mamud, Robert M Holt, Craig J Hickey, Andrew M O'Reilly, Leti T Wodajo, Parsa Bakhtiari Rad, Md Abdus Samad

This study enhances the understanding of riverbank filtration and improves management of the Mississippi River valley alluvial (MRVA) aquifer during a managed aquifer recharge (MAR) pilot project at Shellmound, MS. Using high-resolution electrical resistivity tomography (ERT) and self-potential (SP) geophysical methods, we characterized the heterogeneous MRVA aquifer and monitored groundwater flow near a pumping well. ERT was used to provide detailed spatial characterization, filling gaps left by airborne electromagnetic (AEM) data and soil boring logs, while SP techniques were used to monitor groundwater flow, predict drawdown trends, and investigate surface-groundwater interactions. Results showed that SP signals were influenced by groundwater flow, river infiltration, and water mixing due to pumping disturbance of natural geochemical stratification, with significant river interaction observed after 1 h of pumping. The integration of ERT and SP methods revealed lithologic heterogeneity, explaining greater drawdowns on the northern side of the well and increased flow from the riverside. This comprehensive approach offers valuable insights into aquifer management and sustainability.

这项研究加深了人们对河岸过滤的了解,并改善了密西西比河流域冲积(MRVA)含水层在密西西比州贝壳丘(Shellmound)管理性含水层补给(MAR)试点项目期间的管理。利用高分辨率电阻率层析成像 (ERT) 和自电位 (SP) 地球物理方法,我们确定了异质 MRVA 含水层的特征,并监测了抽水井附近的地下水流。ERT 用于提供详细的空间特征,填补机载电磁(AEM)数据和土壤钻孔记录留下的空白,而 SP 技术则用于监测地下水流、预测缩减趋势以及研究地表水与地下水之间的相互作用。结果表明,由于抽水干扰了自然地球化学分层,SP 信号受到地下水流、河流入渗和水体混合的影响,抽水 1 小时后观察到明显的河流相互作用。ERT和SP方法的整合揭示了岩性的异质性,解释了水井北侧水位下降较多和河水流量增加的原因。这种综合方法为含水层管理和可持续性提供了宝贵的见解。
{"title":"Integrating ERT and SP Techniques for Characterizing Aquifers and Surface-Groundwater Interactions.","authors":"Md Lal Mamud, Robert M Holt, Craig J Hickey, Andrew M O'Reilly, Leti T Wodajo, Parsa Bakhtiari Rad, Md Abdus Samad","doi":"10.1111/gwat.13444","DOIUrl":"https://doi.org/10.1111/gwat.13444","url":null,"abstract":"<p><p>This study enhances the understanding of riverbank filtration and improves management of the Mississippi River valley alluvial (MRVA) aquifer during a managed aquifer recharge (MAR) pilot project at Shellmound, MS. Using high-resolution electrical resistivity tomography (ERT) and self-potential (SP) geophysical methods, we characterized the heterogeneous MRVA aquifer and monitored groundwater flow near a pumping well. ERT was used to provide detailed spatial characterization, filling gaps left by airborne electromagnetic (AEM) data and soil boring logs, while SP techniques were used to monitor groundwater flow, predict drawdown trends, and investigate surface-groundwater interactions. Results showed that SP signals were influenced by groundwater flow, river infiltration, and water mixing due to pumping disturbance of natural geochemical stratification, with significant river interaction observed after 1 h of pumping. The integration of ERT and SP methods revealed lithologic heterogeneity, explaining greater drawdowns on the northern side of the well and increased flow from the riverside. This comprehensive approach offers valuable insights into aquifer management and sustainability.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linked Data-Driven, Physics-Based Modeling of Pumping-Induced Subsidence with Application to Bangkok, Thailand. 关联数据驱动的、基于物理学的抽水诱发沉降建模,并应用于泰国曼谷。
Pub Date : 2024-10-11 DOI: 10.1111/gwat.13443
Jenny T Soonthornrangsan, Mark Bakker, Femke C Vossepoel

Research into land subsidence caused by groundwater withdrawal is hindered by the availability of measured heads, subsidence, and forcings. In this paper, a parsimonious, linked data-driven and physics-based approach is introduced to simulate pumping-induced subsidence; the approach is intended to be applied at observation well nests. Time series analysis using response functions is applied to simulate heads in aquifers. The heads in the clay layers are simulated with a one-dimensional diffusion model, using the heads in the aquifers as boundary conditions. Finally, simulated heads in the layers are used to model land subsidence. The developed approach is applied to the city of Bangkok, Thailand, where relatively short time series of head and subsidence measurements are available at or near 23 well nests; an estimate of basin-wide pumping is available for a longer period. Despite the data scarcity, data-driven time series models at observation wells successfully simulate groundwater dynamics in aquifers with an average root mean square error (RMSE) of 2.8 m, relative to an average total range of 21 m. Simulated subsidence matches sparse (and sometimes very noisy) land subsidence measurements reasonably well with an average RMSE of 1.6 cm/year, relative to an average total range of 5.4 cm/year. Performance is not good at eight out of 23 locations, most likely because basin-wide pumping is not representative of localized pumping. Overall, this study demonstrates the potential of a parsimonious, linked data-driven, and physics-based approach to model pumping-induced subsidence in areas with limited data.

对地下水抽取引起的地面沉降的研究,因无法获得测量水头、沉降和作用力而受到阻碍。本文介绍了一种以数据为驱动、以物理学为基础的简化关联方法,用于模拟抽水引起的沉降;该方法旨在应用于观测井窝。利用响应函数的时间序列分析来模拟含水层中的水头。以含水层中的水头为边界条件,用一维扩散模型模拟粘土层中的水头。最后,利用各层中的模拟水头来模拟土地沉降。所开发的方法适用于泰国曼谷市,该市有 23 个井窝或其附近相对较短的水头和沉降测量时间序列;有较长时期的全流域抽水估算数据。尽管数据稀缺,但观测井的数据驱动时间序列模型成功地模拟了含水层的地下水动态,平均均方根误差(RMSE)为 2.8 米,而平均总范围为 21 米。模拟的沉降与稀疏(有时噪声很大)的土地沉降测量结果相当吻合,平均均方根误差为 1.6 厘米/年,而平均总误差范围为 5.4 厘米/年。在 23 个地点中,有 8 个地点的测量结果并不理想,这很可能是因为全流域的抽水情况并不能代表局部地区的抽水情况。总之,这项研究表明,在数据有限的地区,采用一种简便、数据链接驱动、基于物理学的方法来模拟抽水引起的沉降是有潜力的。
{"title":"Linked Data-Driven, Physics-Based Modeling of Pumping-Induced Subsidence with Application to Bangkok, Thailand.","authors":"Jenny T Soonthornrangsan, Mark Bakker, Femke C Vossepoel","doi":"10.1111/gwat.13443","DOIUrl":"https://doi.org/10.1111/gwat.13443","url":null,"abstract":"<p><p>Research into land subsidence caused by groundwater withdrawal is hindered by the availability of measured heads, subsidence, and forcings. In this paper, a parsimonious, linked data-driven and physics-based approach is introduced to simulate pumping-induced subsidence; the approach is intended to be applied at observation well nests. Time series analysis using response functions is applied to simulate heads in aquifers. The heads in the clay layers are simulated with a one-dimensional diffusion model, using the heads in the aquifers as boundary conditions. Finally, simulated heads in the layers are used to model land subsidence. The developed approach is applied to the city of Bangkok, Thailand, where relatively short time series of head and subsidence measurements are available at or near 23 well nests; an estimate of basin-wide pumping is available for a longer period. Despite the data scarcity, data-driven time series models at observation wells successfully simulate groundwater dynamics in aquifers with an average root mean square error (RMSE) of 2.8 m, relative to an average total range of 21 m. Simulated subsidence matches sparse (and sometimes very noisy) land subsidence measurements reasonably well with an average RMSE of 1.6 cm/year, relative to an average total range of 5.4 cm/year. Performance is not good at eight out of 23 locations, most likely because basin-wide pumping is not representative of localized pumping. Overall, this study demonstrates the potential of a parsimonious, linked data-driven, and physics-based approach to model pumping-induced subsidence in areas with limited data.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ground water
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1