Pub Date : 2024-09-26DOI: 10.1186/s41232-024-00355-0
Hisako Kayama, Kiyoshi Takeda
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
{"title":"Regulation of intestinal epithelial homeostasis by mesenchymal cells.","authors":"Hisako Kayama, Kiyoshi Takeda","doi":"10.1186/s41232-024-00355-0","DOIUrl":"https://doi.org/10.1186/s41232-024-00355-0","url":null,"abstract":"<p><p>The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"42"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Inflammatory respiratory diseases, such as interstitial lung disease (ILD), bronchial asthma (BA), chronic obstructive pulmonary disease (COPD), and respiratory infections, remain significant global health concerns owing to their chronic and severe nature. Emerging as a valuable resource, blood extracellular vesicles (EVs) offer insights into disease pathophysiology and biomarker discovery in these conditions.
Main body: This review explores the advancements in blood EV proteomics for inflammatory respiratory diseases, highlighting their potential as non-invasive diagnostic and prognostic tools. Blood EVs offer advantages over traditional serum or plasma samples. Proteomic analyses of blood EVs have revealed numerous biomarkers that can be used to stratify patients, predict disease progression, and identify candidate therapeutic targets. Blood EV proteomics has identified proteins associated with progressive fibrosis in ILD, offering new avenues of treatment. In BA, eosinophil-derived EVs harbor biomarkers crucial for managing eosinophilic inflammation. Research on COPD has also identified proteins that correlate with lung function. Moreover, EVs play a critical role in respiratory infections such as COVID-19, and disease-associated proteins are encapsulated. Thus, proteomic studies have identified key molecules involved in disease severity and immune responses, underscoring their role in monitoring and guiding therapy.
Conclusion: This review highlights the potential of blood EV proteomics as a non-invasive diagnostic and prognostic tool for inflammatory respiratory diseases, providing a promising avenue for improved patient management and therapeutic development.
背景:炎症性呼吸系统疾病,如间质性肺病(ILD)、支气管哮喘(BA)、慢性阻塞性肺病(COPD)和呼吸道感染,由于其慢性和严重的性质,仍然是全球关注的重大健康问题。血液细胞外囊泡(EVs)作为一种宝贵的资源,为这些疾病的病理生理学和生物标志物的发现提供了见解:这篇综述探讨了血液EV蛋白质组学在治疗呼吸系统炎症性疾病方面的进展,强调了EV作为非侵入性诊断和预后工具的潜力。与传统的血清或血浆样本相比,血液EV具有优势。血液 EV 蛋白组学分析揭示了许多生物标记物,可用于对患者进行分层、预测疾病进展和确定候选治疗靶点。血EV蛋白质组学发现了与ILD进行性纤维化相关的蛋白质,为治疗提供了新途径。在 BA 中,嗜酸性粒细胞衍生的 EV 隐藏着对控制嗜酸性粒细胞炎症至关重要的生物标记物。对慢性阻塞性肺病的研究也发现了与肺功能相关的蛋白质。此外,EVs 在呼吸道感染(如 COVID-19)中发挥着关键作用,疾病相关蛋白质被包裹其中。因此,蛋白质组学研究发现了涉及疾病严重程度和免疫反应的关键分子,强调了它们在监测和指导治疗中的作用:本综述强调了血液 EV 蛋白质组学作为炎症性呼吸系统疾病的非侵入性诊断和预后工具的潜力,为改善患者管理和治疗开发提供了一条前景广阔的途径。
{"title":"Proteomics of blood extracellular vesicles in inflammatory respiratory diseases for biomarker discovery and new insights into pathophysiology.","authors":"Takahiro Kawasaki, Yoshito Takeda, Atsushi Kumanogoh","doi":"10.1186/s41232-024-00351-4","DOIUrl":"https://doi.org/10.1186/s41232-024-00351-4","url":null,"abstract":"<p><strong>Background: </strong>Inflammatory respiratory diseases, such as interstitial lung disease (ILD), bronchial asthma (BA), chronic obstructive pulmonary disease (COPD), and respiratory infections, remain significant global health concerns owing to their chronic and severe nature. Emerging as a valuable resource, blood extracellular vesicles (EVs) offer insights into disease pathophysiology and biomarker discovery in these conditions.</p><p><strong>Main body: </strong>This review explores the advancements in blood EV proteomics for inflammatory respiratory diseases, highlighting their potential as non-invasive diagnostic and prognostic tools. Blood EVs offer advantages over traditional serum or plasma samples. Proteomic analyses of blood EVs have revealed numerous biomarkers that can be used to stratify patients, predict disease progression, and identify candidate therapeutic targets. Blood EV proteomics has identified proteins associated with progressive fibrosis in ILD, offering new avenues of treatment. In BA, eosinophil-derived EVs harbor biomarkers crucial for managing eosinophilic inflammation. Research on COPD has also identified proteins that correlate with lung function. Moreover, EVs play a critical role in respiratory infections such as COVID-19, and disease-associated proteins are encapsulated. Thus, proteomic studies have identified key molecules involved in disease severity and immune responses, underscoring their role in monitoring and guiding therapy.</p><p><strong>Conclusion: </strong>This review highlights the potential of blood EV proteomics as a non-invasive diagnostic and prognostic tool for inflammatory respiratory diseases, providing a promising avenue for improved patient management and therapeutic development.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"38"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mesenchymal stem/stromal cells (MSCs) are distributed in various tissues and are used in clinical applications as a source of transplanted cells because of their easy harvestability. Although MSCs express numerous cell-surface antigens, single-cell analyses have revealed a highly heterogeneous cell population depending on the original tissue and donor conditions, including age and interindividual differences. This heterogeneity leads to differences in their functions, such as multipotency and immunomodulatory effects, making it challenging to effectively treat targeted diseases. The therapeutic efficacy of MSCs is controversial and depends on the implantation site. Thus, there is no established recipe for the transplantation of MSCs (including the type of disease, type of origin, method of cell culture, form of transplanted cells, and site of delivery). Our recent preclinical study identified appropriate MSCs and their suitable transplantation routes in a mouse model of inflammatory bowel disease (IBD). Three-dimensional (3D) cultures of MSCs have been demonstrated to enhance their properties and sustain engraftment at the lesion site. In this note, we explore the methods of MSC transplantation for treating IBDs, especially Crohn's disease, from clinical trials published over the past decade. Given the functional changes in MSCs in 3D culture, we also investigate the clinical trials using 3D constructs of MSCs and explore suitable diseases that might benefit from this approach. Furthermore, we discuss the advantages of the prospective isolation of MSCs in terms of interindividual variability. This note highlights the need to define the method of MSC transplantation, including interindividual variability, the culture period, and the transplantation route.
{"title":"Optimization of transplantation methods using isolated mesenchymal stem/stromal cells: clinical trials of inflammatory bowel diseases as an example.","authors":"Daisuke Hisamatsu, Akimi Ikeba, Taku Yamato, Yo Mabuchi, Mamoru Watanabe, Chihiro Akazawa","doi":"10.1186/s41232-024-00350-5","DOIUrl":"10.1186/s41232-024-00350-5","url":null,"abstract":"<p><p>Mesenchymal stem/stromal cells (MSCs) are distributed in various tissues and are used in clinical applications as a source of transplanted cells because of their easy harvestability. Although MSCs express numerous cell-surface antigens, single-cell analyses have revealed a highly heterogeneous cell population depending on the original tissue and donor conditions, including age and interindividual differences. This heterogeneity leads to differences in their functions, such as multipotency and immunomodulatory effects, making it challenging to effectively treat targeted diseases. The therapeutic efficacy of MSCs is controversial and depends on the implantation site. Thus, there is no established recipe for the transplantation of MSCs (including the type of disease, type of origin, method of cell culture, form of transplanted cells, and site of delivery). Our recent preclinical study identified appropriate MSCs and their suitable transplantation routes in a mouse model of inflammatory bowel disease (IBD). Three-dimensional (3D) cultures of MSCs have been demonstrated to enhance their properties and sustain engraftment at the lesion site. In this note, we explore the methods of MSC transplantation for treating IBDs, especially Crohn's disease, from clinical trials published over the past decade. Given the functional changes in MSCs in 3D culture, we also investigate the clinical trials using 3D constructs of MSCs and explore suitable diseases that might benefit from this approach. Furthermore, we discuss the advantages of the prospective isolation of MSCs in terms of interindividual variability. This note highlights the need to define the method of MSC transplantation, including interindividual variability, the culture period, and the transplantation route.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"37"},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Recent single-cell RNA sequencing (scRNA-seq) analysis revealed the functional heterogeneity and pathogenic cell subsets in immune cells, synovial fibroblasts and bone cells in rheumatoid arthritis (RA). JAK inhibitors which ameliorate joint inflammation and bone destruction in RA, suppress the activation of various types of cells in vitro. However, the key cellular and molecular mechanisms underlying the potent clinical effects of JAK inhibitors on RA remain to be determined. Our aim is to identify a therapeutic target for JAK inhibitors in vivo.
Methods: We performed scRNA-seq analysis of the synovium of collagen-induced arthritis (CIA) mice treated with or without a JAK inhibitor, followed by a computational analysis to identify the drug target cells and signaling pathways. We utilized integrated human RA scRNA-seq datasets and genetically modified mice administered with the JAK inhibitor for the confirmation of our findings.
Results: scRNA-seq analysis revealed that oncostatin M (OSM) driven macrophage-fibroblast interaction is highly activated under arthritic conditions. OSM derived from macrophages, acts on OSM receptor (OSMR)-expressing synovial fibroblasts, activating both inflammatory and tissue-destructive subsets. Inflammatory synovial fibroblasts stimulate macrophages, mainly through IL-6, to exacerbate inflammation. Tissue-destructive synovial fibroblasts promote osteoclast differentiation by producing RANKL to accelerate bone destruction. scRNA-seq analysis also revealed that OSM-signaling in synovial fibroblasts is the main signaling pathway targeted by JAK inhibitors in vivo. Mice specifically lacking OSMR in synovial fibroblasts (Osmr∆Fibro) displayed ameliorated inflammation and joint destruction in arthritis. The JAK inhibitor was effective on the arthritis of the control mice while it had no effect on the arthritis of Osmr∆Fibro mice.
Conclusions: OSM functions as one of the key cytokines mediating pathogenic macrophage-fibroblast interaction. OSM-signaling in synovial fibroblasts is one of the main signaling pathways targeted by JAK inhibitors in vivo. The critical role of fibroblast-OSM signaling in autoimmune arthritis was shown by a combination of mice specifically deficient for OSMR in synovial fibroblasts and administration of the JAK inhibitor. Thus, the OSM-driven synovial macrophage-fibroblast circuit is proven to be a key driver of autoimmune arthritis, serving as a crucial drug target in vivo.
背景:最近的单细胞 RNA 测序(scRNA-seq)分析揭示了类风湿性关节炎(RA)中免疫细胞、滑膜成纤维细胞和骨细胞的功能异质性和致病细胞亚群。JAK 抑制剂可改善类风湿性关节炎的关节炎症和骨质破坏,抑制体外各类细胞的活化。然而,JAK抑制剂对类风湿关节炎产生强大临床效应的关键细胞和分子机制仍有待确定。我们的目标是确定 JAK 抑制剂在体内的治疗靶点:我们对接受或不接受 JAK 抑制剂治疗的胶原诱导性关节炎(CIA)小鼠滑膜进行了 scRNA-seq 分析,随后进行了计算分析,以确定药物靶细胞和信号通路。结果:scRNA-seq分析发现,在关节炎条件下,由oncostatin M(OSM)驱动的巨噬细胞-成纤维细胞相互作用被高度激活。来自巨噬细胞的OSM作用于表达OSM受体(OSMR)的滑膜成纤维细胞,同时激活炎性和组织破坏性亚群。炎症性滑膜成纤维细胞主要通过 IL-6 刺激巨噬细胞,从而加剧炎症。scRNA-seq分析还发现,滑膜成纤维细胞中的OSM信号是JAK抑制剂在体内靶向的主要信号通路。滑膜成纤维细胞中特异性缺乏 OSMR 的小鼠(Osmr∆Fibro)在关节炎中的炎症和关节破坏有所改善。JAK 抑制剂对对照组小鼠的关节炎有效,而对 Osmr∆Fibro 小鼠的关节炎没有影响:结论:OSM是介导致病性巨噬细胞-成纤维细胞相互作用的关键细胞因子之一。滑膜成纤维细胞中的 OSM 信号是 JAK 抑制剂在体内靶向的主要信号通路之一。滑膜成纤维细胞中OSMR特异性缺失的小鼠与JAK抑制剂的联合应用证明了成纤维细胞-OSM信号在自身免疫性关节炎中的关键作用。因此,OSM驱动的滑膜巨噬细胞-成纤维细胞回路被证明是自身免疫性关节炎的关键驱动因素,可作为体内的关键药物靶点。
{"title":"Oncostatin M-driven macrophage-fibroblast circuits as a drug target in autoimmune arthritis.","authors":"Nam Cong-Nhat Huynh, Rui Ling, Masatsugu Komagamine, Tianshu Shi, Masayuki Tsukasaki, Kotaro Matsuda, Kazuo Okamoto, Tatsuo Asano, Ryunosuke Muro, Warunee Pluemsakunthai, George Kollias, Yuko Kaneko, Tsutomu Takeuchi, Sakae Tanaka, Noriko Komatsu, Hiroshi Takayanagi","doi":"10.1186/s41232-024-00347-0","DOIUrl":"10.1186/s41232-024-00347-0","url":null,"abstract":"<p><strong>Background: </strong>Recent single-cell RNA sequencing (scRNA-seq) analysis revealed the functional heterogeneity and pathogenic cell subsets in immune cells, synovial fibroblasts and bone cells in rheumatoid arthritis (RA). JAK inhibitors which ameliorate joint inflammation and bone destruction in RA, suppress the activation of various types of cells in vitro. However, the key cellular and molecular mechanisms underlying the potent clinical effects of JAK inhibitors on RA remain to be determined. Our aim is to identify a therapeutic target for JAK inhibitors in vivo.</p><p><strong>Methods: </strong>We performed scRNA-seq analysis of the synovium of collagen-induced arthritis (CIA) mice treated with or without a JAK inhibitor, followed by a computational analysis to identify the drug target cells and signaling pathways. We utilized integrated human RA scRNA-seq datasets and genetically modified mice administered with the JAK inhibitor for the confirmation of our findings.</p><p><strong>Results: </strong>scRNA-seq analysis revealed that oncostatin M (OSM) driven macrophage-fibroblast interaction is highly activated under arthritic conditions. OSM derived from macrophages, acts on OSM receptor (OSMR)-expressing synovial fibroblasts, activating both inflammatory and tissue-destructive subsets. Inflammatory synovial fibroblasts stimulate macrophages, mainly through IL-6, to exacerbate inflammation. Tissue-destructive synovial fibroblasts promote osteoclast differentiation by producing RANKL to accelerate bone destruction. scRNA-seq analysis also revealed that OSM-signaling in synovial fibroblasts is the main signaling pathway targeted by JAK inhibitors in vivo. Mice specifically lacking OSMR in synovial fibroblasts (Osmr<sup>∆Fibro</sup>) displayed ameliorated inflammation and joint destruction in arthritis. The JAK inhibitor was effective on the arthritis of the control mice while it had no effect on the arthritis of Osmr<sup>∆Fibro</sup> mice.</p><p><strong>Conclusions: </strong>OSM functions as one of the key cytokines mediating pathogenic macrophage-fibroblast interaction. OSM-signaling in synovial fibroblasts is one of the main signaling pathways targeted by JAK inhibitors in vivo. The critical role of fibroblast-OSM signaling in autoimmune arthritis was shown by a combination of mice specifically deficient for OSMR in synovial fibroblasts and administration of the JAK inhibitor. Thus, the OSM-driven synovial macrophage-fibroblast circuit is proven to be a key driver of autoimmune arthritis, serving as a crucial drug target in vivo.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"36"},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mesenchymal stem cells (MSCs) may be effective in treating connective tissue disease and associated organ damage, leveraging their anti-inflammatory and immunoregulatory effects. Moreover, MSCs may possess the ability to produce antiapoptotic, proliferative, growth, angiogenic, and antifibrotic factors. Among MSCs, adipose-derived MSCs (ASCs) stand out for their relative ease of harvesting and abundance. Additionally, studies have indicated that compared with bone marrow-derived MSCs, ASCs have superior immunomodulatory, proangiogenic, antiapoptotic, and antioxidative properties. However, relatively few reviews have focused on the efficacy of ASC therapy in treating connective tissue disease (CTD) and interstitial lung disease (ILD). Therefore, this review aims to evaluate evidence from preclinical studies that investigate the effectiveness of MSC therapy, specifically ASC therapy, in managing CTD and ILD. Moreover, we explore the outcomes of documented clinical trials. We also introduce an innovative approach involving the utilization of pharmacologically primed ASCs in the CTD model to address the current challenges associated with ASC therapy.
{"title":"Adipose-derived mesenchymal stem cell therapy for connective tissue diseases and complications.","authors":"Takuya Kotani, Takashi Saito, Takayasu Suzuka, Shogo Matsuda","doi":"10.1186/s41232-024-00348-z","DOIUrl":"10.1186/s41232-024-00348-z","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) may be effective in treating connective tissue disease and associated organ damage, leveraging their anti-inflammatory and immunoregulatory effects. Moreover, MSCs may possess the ability to produce antiapoptotic, proliferative, growth, angiogenic, and antifibrotic factors. Among MSCs, adipose-derived MSCs (ASCs) stand out for their relative ease of harvesting and abundance. Additionally, studies have indicated that compared with bone marrow-derived MSCs, ASCs have superior immunomodulatory, proangiogenic, antiapoptotic, and antioxidative properties. However, relatively few reviews have focused on the efficacy of ASC therapy in treating connective tissue disease (CTD) and interstitial lung disease (ILD). Therefore, this review aims to evaluate evidence from preclinical studies that investigate the effectiveness of MSC therapy, specifically ASC therapy, in managing CTD and ILD. Moreover, we explore the outcomes of documented clinical trials. We also introduce an innovative approach involving the utilization of pharmacologically primed ASCs in the CTD model to address the current challenges associated with ASC therapy.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"35"},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1186/s41232-024-00345-2
Yasuhiko Nishioka, Jun Araya, Yoshiya Tanaka, Atsushi Kumanogoh
Background: Interstitial lung diseases (ILDs) are a diverse group of conditions characterized by inflammation and fibrosis in the lung. In some patients with ILD, a progressive fibrotic phenotype develops, which is associated with an irreversible decline in lung function and a poor prognosis.
Main body: The pathological mechanisms that underlie this process culminate in fibroblast activation, proliferation, and differentiation into myofibroblasts, which deposit extracellular matrix proteins and result in fibrosis. Upstream of fibroblast activation, epithelial cell injury and immune activation are known initiators of fibrosis progression, with multiple diverse cell types involved. Recent years have seen an increase in our understanding of the complex and interrelated processes that drive fibrosis progression in ILD, in part due to the advent of single-cell RNA sequencing technology and integrative multiomics analyses. Novel pathological mechanisms have been identified, which represent new targets for drugs currently in clinical development. These include phosphodiesterase 4 inhibitors and other molecules that act on intracellular cyclic adenosine monophosphate signaling, as well as inhibitors of the autotaxin-lysophosphatidic acid axis and integrins. Here, we review current knowledge and recent developments regarding the pathological mechanisms that underlie progressive fibrotic ILD, including potential therapeutic targets.
Conclusion: Knowledge of the pathological mechanisms that drive progressive fibrosis in patients with ILD has expanded, with the role of alveolar endothelial cells, the immune system, and fibroblasts better elucidated. Drugs that target novel mechanisms hold promise for expanding the future therapeutic armamentarium for progressive fibrotic ILD.
{"title":"Pathological mechanisms and novel drug targets in fibrotic interstitial lung disease.","authors":"Yasuhiko Nishioka, Jun Araya, Yoshiya Tanaka, Atsushi Kumanogoh","doi":"10.1186/s41232-024-00345-2","DOIUrl":"10.1186/s41232-024-00345-2","url":null,"abstract":"<p><strong>Background: </strong>Interstitial lung diseases (ILDs) are a diverse group of conditions characterized by inflammation and fibrosis in the lung. In some patients with ILD, a progressive fibrotic phenotype develops, which is associated with an irreversible decline in lung function and a poor prognosis.</p><p><strong>Main body: </strong>The pathological mechanisms that underlie this process culminate in fibroblast activation, proliferation, and differentiation into myofibroblasts, which deposit extracellular matrix proteins and result in fibrosis. Upstream of fibroblast activation, epithelial cell injury and immune activation are known initiators of fibrosis progression, with multiple diverse cell types involved. Recent years have seen an increase in our understanding of the complex and interrelated processes that drive fibrosis progression in ILD, in part due to the advent of single-cell RNA sequencing technology and integrative multiomics analyses. Novel pathological mechanisms have been identified, which represent new targets for drugs currently in clinical development. These include phosphodiesterase 4 inhibitors and other molecules that act on intracellular cyclic adenosine monophosphate signaling, as well as inhibitors of the autotaxin-lysophosphatidic acid axis and <math><msub><mi>α</mi> <mi>v</mi></msub> </math> integrins. Here, we review current knowledge and recent developments regarding the pathological mechanisms that underlie progressive fibrotic ILD, including potential therapeutic targets.</p><p><strong>Conclusion: </strong>Knowledge of the pathological mechanisms that drive progressive fibrosis in patients with ILD has expanded, with the role of alveolar endothelial cells, the immune system, and fibroblasts better elucidated. Drugs that target novel mechanisms hold promise for expanding the future therapeutic armamentarium for progressive fibrotic ILD.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1186/s41232-024-00349-y
Miri Kim, Seokmin Oh, Songyeon Kim, Il-Sun Kim, Joowon Kim, Jungho Han, Ji Woong Ahn, Seungsoo Chung, Jae-Hyung Jang, Jeong Eun Shin, Kook In Park
Background: Neonatal hypoxic-ischemic brain injury (HIBI) is a significant contributor to neonatal mortality and long-term neurodevelopmental disability, characterized by massive neuronal loss and reactive astrogliosis. Current therapeutic approaches for neonatal HIBI have been limited to general supportive therapy because of the lack of methods to compensate for irreversible neuronal loss. This study aimed to establish a feasible regenerative therapy for neonatal HIBI utilizing in vivo direct neuronal reprogramming technology.
Methods: Neonatal HIBI was induced in ICR mice at postnatal day 7 by permanent right common carotid artery occlusion and exposure to hypoxia with 8% oxygen and 92% nitrogen for 90 min. Three days after the injury, NeuroD1 was delivered to reactive astrocytes of the injury site using the astrocyte-tropic adeno-associated viral (AAV) vector AAVShH19. AAVShH19 was engineered with the Cre-FLEX system for long-term tracking of infected cells.
Results: AAVShH19-mediated ectopic NeuroD1 expression effectively converted astrocytes into GABAergic neurons, and the converted cells exhibited electrophysiological properties and synaptic transmitters. Additionally, we found that NeuroD1-mediated in vivo direct neuronal reprogramming protected injured host neurons and altered the host environment, i.e., decreased the numbers of activated microglia, reactive astrocytes, and toxic A1-type astrocytes, and decreased the expression of pro-inflammatory factors. Furthermore, NeuroD1-treated mice exhibited significantly improved motor functions.
Conclusions: This study demonstrates that NeuroD1-mediated in vivo direct neuronal reprogramming technology through AAV gene delivery can be a novel regenerative therapy for neonatal HIBI.
{"title":"In vivo neural regeneration via AAV-NeuroD1 gene delivery to astrocytes in neonatal hypoxic-ischemic brain injury.","authors":"Miri Kim, Seokmin Oh, Songyeon Kim, Il-Sun Kim, Joowon Kim, Jungho Han, Ji Woong Ahn, Seungsoo Chung, Jae-Hyung Jang, Jeong Eun Shin, Kook In Park","doi":"10.1186/s41232-024-00349-y","DOIUrl":"10.1186/s41232-024-00349-y","url":null,"abstract":"<p><strong>Background: </strong>Neonatal hypoxic-ischemic brain injury (HIBI) is a significant contributor to neonatal mortality and long-term neurodevelopmental disability, characterized by massive neuronal loss and reactive astrogliosis. Current therapeutic approaches for neonatal HIBI have been limited to general supportive therapy because of the lack of methods to compensate for irreversible neuronal loss. This study aimed to establish a feasible regenerative therapy for neonatal HIBI utilizing in vivo direct neuronal reprogramming technology.</p><p><strong>Methods: </strong>Neonatal HIBI was induced in ICR mice at postnatal day 7 by permanent right common carotid artery occlusion and exposure to hypoxia with 8% oxygen and 92% nitrogen for 90 min. Three days after the injury, NeuroD1 was delivered to reactive astrocytes of the injury site using the astrocyte-tropic adeno-associated viral (AAV) vector AAVShH19. AAVShH19 was engineered with the Cre-FLEX system for long-term tracking of infected cells.</p><p><strong>Results: </strong>AAVShH19-mediated ectopic NeuroD1 expression effectively converted astrocytes into GABAergic neurons, and the converted cells exhibited electrophysiological properties and synaptic transmitters. Additionally, we found that NeuroD1-mediated in vivo direct neuronal reprogramming protected injured host neurons and altered the host environment, i.e., decreased the numbers of activated microglia, reactive astrocytes, and toxic A1-type astrocytes, and decreased the expression of pro-inflammatory factors. Furthermore, NeuroD1-treated mice exhibited significantly improved motor functions.</p><p><strong>Conclusions: </strong>This study demonstrates that NeuroD1-mediated in vivo direct neuronal reprogramming technology through AAV gene delivery can be a novel regenerative therapy for neonatal HIBI.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"33"},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1186/s41232-024-00346-1
Chris Kato, Koji Ueda, Satoru Morimoto, Shinichi Takahashi, Shiho Nakamura, Fumiko Ozawa, Daisuke Ito, Yugaku Daté, Kensuke Okada, Naoki Kobayashi, Jin Nakahara, Hideyuki Okano
Background: Extracellular vesicles (EVs) hold the potential for elucidating the pathogenesis of amyotrophic lateral sclerosis (ALS) and serve as biomarkers. Notably, the comparative and longitudinal alterations in the protein profiles of EVs in serum (sEVs) and cerebrospinal fluid (CSF; cEVs) of sporadic ALS (SALS) patients remain uncharted. Ropinirole hydrochloride (ROPI; dopamine D2 receptor [D2R] agonist), a new anti-ALS drug candidate identified through induced pluripotent stem cell (iPSC)-based drug discovery, has been suggested to inhibit ALS disease progression in the Ropinirole Hydrochloride Remedy for Amyotrophic Lateral Sclerosis (ROPALS) trial, but its mechanism of action is not well understood. Therefore, we tried to reveal longitudinal changes with disease progression and the effects of ROPI on protein profiles of EVs.
Methods: We collected serum and CSF at fixed intervals from ten controls and from 20 SALS patients participating in the ROPALS trial. Comprehensive proteomic analysis of EVs, extracted from these samples, was conducted using liquid chromatography/mass spectrometer (LC/MS). Furthermore, we generated iPSC-derived astrocytes (iPasts) and performed RNA sequencing on astrocytes with or without ROPI treatment.
Results: The findings revealed notable disparities yet high congruity in sEVs and cEVs protein profiles concerning disease status, time and ROPI administration. In SALS, both sEVs and cEVs presented elevated levels of inflammation-related proteins but reduced levels associated with unfolded protein response (UPR). These results mirrored the longitudinal changes after disease onset and correlated with the revised ALS Functional Rating Scale (ALSFRS-R) at sampling time, suggesting a link to the onset and progression of SALS. ROPI appeared to counteract these changes, attenuating inflammation-related protein levels and boosting those tied to UPR in SALS, proposing an anti-ALS impact on EV protein profiles. Reverse translational research using iPasts indicated that these changes may partly reflect the DRD2-dependent neuroinflammatory inhibitory effects of ROPI. We have also identified biomarkers that predict diagnosis and disease progression by machine learning-driven biomarker search.
Conclusions: Despite the limited sample size, this study pioneers in reporting time-series proteomic alterations in serum and CSF EVs from SALS patients, offering comprehensive insights into SALS pathogenesis, ROPI-induced changes, and potential prognostic and diagnostic biomarkers.
{"title":"Proteomic insights into extracellular vesicles in ALS for therapeutic potential of Ropinirole and biomarker discovery.","authors":"Chris Kato, Koji Ueda, Satoru Morimoto, Shinichi Takahashi, Shiho Nakamura, Fumiko Ozawa, Daisuke Ito, Yugaku Daté, Kensuke Okada, Naoki Kobayashi, Jin Nakahara, Hideyuki Okano","doi":"10.1186/s41232-024-00346-1","DOIUrl":"10.1186/s41232-024-00346-1","url":null,"abstract":"<p><strong>Background: </strong>Extracellular vesicles (EVs) hold the potential for elucidating the pathogenesis of amyotrophic lateral sclerosis (ALS) and serve as biomarkers. Notably, the comparative and longitudinal alterations in the protein profiles of EVs in serum (sEVs) and cerebrospinal fluid (CSF; cEVs) of sporadic ALS (SALS) patients remain uncharted. Ropinirole hydrochloride (ROPI; dopamine D2 receptor [D2R] agonist), a new anti-ALS drug candidate identified through induced pluripotent stem cell (iPSC)-based drug discovery, has been suggested to inhibit ALS disease progression in the Ropinirole Hydrochloride Remedy for Amyotrophic Lateral Sclerosis (ROPALS) trial, but its mechanism of action is not well understood. Therefore, we tried to reveal longitudinal changes with disease progression and the effects of ROPI on protein profiles of EVs.</p><p><strong>Methods: </strong>We collected serum and CSF at fixed intervals from ten controls and from 20 SALS patients participating in the ROPALS trial. Comprehensive proteomic analysis of EVs, extracted from these samples, was conducted using liquid chromatography/mass spectrometer (LC/MS). Furthermore, we generated iPSC-derived astrocytes (iPasts) and performed RNA sequencing on astrocytes with or without ROPI treatment.</p><p><strong>Results: </strong>The findings revealed notable disparities yet high congruity in sEVs and cEVs protein profiles concerning disease status, time and ROPI administration. In SALS, both sEVs and cEVs presented elevated levels of inflammation-related proteins but reduced levels associated with unfolded protein response (UPR). These results mirrored the longitudinal changes after disease onset and correlated with the revised ALS Functional Rating Scale (ALSFRS-R) at sampling time, suggesting a link to the onset and progression of SALS. ROPI appeared to counteract these changes, attenuating inflammation-related protein levels and boosting those tied to UPR in SALS, proposing an anti-ALS impact on EV protein profiles. Reverse translational research using iPasts indicated that these changes may partly reflect the DRD2-dependent neuroinflammatory inhibitory effects of ROPI. We have also identified biomarkers that predict diagnosis and disease progression by machine learning-driven biomarker search.</p><p><strong>Conclusions: </strong>Despite the limited sample size, this study pioneers in reporting time-series proteomic alterations in serum and CSF EVs from SALS patients, offering comprehensive insights into SALS pathogenesis, ROPI-induced changes, and potential prognostic and diagnostic biomarkers.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"32"},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1186/s41232-024-00344-3
Hye-Jin Boo, Hye-Young Min, Heung-Bin Lim, Euni Lee, Ho-Young Lee
Background: Tobacco smoking causes pulmonary inflammation, resulting in emphysema, an independent risk factor for lung cancer. Induction of insulin-like growth factor 2 (IGF2) in response to lung injury by tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and polycyclic aromatic hydrocarbon benzo[a]pyrene in combination (NB), is critical for the proliferation of alveolar type 2 cells (AT2s) for lung repair. However, persistent IGF2 overexpression during NB-induced severe injury results in hyperproliferation of AT2s without coordinated AT2-to-AT1 differentiation, disrupting alveolar repair, which leads to the concurrent development of emphysema and lung cancer. The current study aims to verify the role of IGF2 signaling in the associated development of emphysema and cancer and develop effective pharmaceuticals for the diseases using animal models that recapitulate the characteristics of these chronic diseases.
Methods: The pathogenesis of pulmonary emphysema and cancer was analyzed by lung function testing, histological evaluation, in situ zymography, dihydroethidium staining, and immunofluorescence and immunohistochemistry analyses utilizing mouse models of emphysema and cancer established by moderate exposure to NB for up to seven months.
Results: Moderate NB exposure induced IGF2 expression in AT2s during the development of pulmonary emphysema and lung cancer in mice. Using AT2-specific insulin receptor knockout mice, we verified the causative role of sustained IGF2 signaling activation in AT2s in emphysema development. IGF2-targeting strategies, including voltage-dependent calcium channel blocker (CCB) and a neutralizing antibody, significantly suppressed the NB-induced development of emphysema and lung cancer. A publicly available database revealed an inverse correlation between the use of calcium channel blockers and a COPD diagnosis.
Conclusions: Our work confirms sustained IGF2 signaling activation in AT2s couples impaired lung repair to the concurrent development of emphysema and cancer in mice. Additionally, CCB and IGF2-specific neutralizing antibodies are effective pharmaceuticals for the two diseases.
{"title":"Autocrine insulin-like growth factor 2 signaling as a potential target in the associated development of pulmonary emphysema and cancer in smokers.","authors":"Hye-Jin Boo, Hye-Young Min, Heung-Bin Lim, Euni Lee, Ho-Young Lee","doi":"10.1186/s41232-024-00344-3","DOIUrl":"10.1186/s41232-024-00344-3","url":null,"abstract":"<p><strong>Background: </strong>Tobacco smoking causes pulmonary inflammation, resulting in emphysema, an independent risk factor for lung cancer. Induction of insulin-like growth factor 2 (IGF2) in response to lung injury by tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and polycyclic aromatic hydrocarbon benzo[a]pyrene in combination (NB), is critical for the proliferation of alveolar type 2 cells (AT2s) for lung repair. However, persistent IGF2 overexpression during NB-induced severe injury results in hyperproliferation of AT2s without coordinated AT2-to-AT1 differentiation, disrupting alveolar repair, which leads to the concurrent development of emphysema and lung cancer. The current study aims to verify the role of IGF2 signaling in the associated development of emphysema and cancer and develop effective pharmaceuticals for the diseases using animal models that recapitulate the characteristics of these chronic diseases.</p><p><strong>Methods: </strong>The pathogenesis of pulmonary emphysema and cancer was analyzed by lung function testing, histological evaluation, in situ zymography, dihydroethidium staining, and immunofluorescence and immunohistochemistry analyses utilizing mouse models of emphysema and cancer established by moderate exposure to NB for up to seven months.</p><p><strong>Results: </strong>Moderate NB exposure induced IGF2 expression in AT2s during the development of pulmonary emphysema and lung cancer in mice. Using AT2-specific insulin receptor knockout mice, we verified the causative role of sustained IGF2 signaling activation in AT2s in emphysema development. IGF2-targeting strategies, including voltage-dependent calcium channel blocker (CCB) and a neutralizing antibody, significantly suppressed the NB-induced development of emphysema and lung cancer. A publicly available database revealed an inverse correlation between the use of calcium channel blockers and a COPD diagnosis.</p><p><strong>Conclusions: </strong>Our work confirms sustained IGF2 signaling activation in AT2s couples impaired lung repair to the concurrent development of emphysema and cancer in mice. Additionally, CCB and IGF2-specific neutralizing antibodies are effective pharmaceuticals for the two diseases.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"31"},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Current strategies that target cytokines (e.g., tumor necrosis factor (TNF)-α), or signaling molecules (e.g., Janus kinase (JAK)) have advanced the management for allergies and autoimmune diseases. Nevertheless, the molecular mechanism that underpins its clinical efficacy have largely remained elusive, especially in the local tissue environment. Here, we aimed to identify the genetic, epigenetic, and immunological targets of JAK inhibitors (JAKis), focusing on their effects on synovial fibroblasts (SFs), the major local effectors associated with destructive joint inflammation in rheumatoid arthritis (RA).
Methods: SFs were activated by cytokines related to inflammation in RA, and were treated with three types of JAKis or a TNF-α inhibitor (TNFi). Dynamic changes in transcriptome and chromatin accessibility were profiled across samples to identify drug targets. Furthermore, the putative targets were validated using luciferase assays and clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing.
Results: We found that both JAKis and the TNFi targeted the inflammatory module including IL6. Conversely, specific gene signatures that were preferentially inhibited by either of the drug classes were identified. Strikingly, RA risk enhancers for CD40 and TRAF1 were distinctively regulated by JAKis and the TNFi. We performed luciferase assays and CRISPR-based genome editing, and successfully fine-mapped the single causal variants in these loci, rs6074022-CD40 and rs7021049-TRAF1.
Conclusions: JAKis and the TNFi had a direct impact on different RA risk enhancers, and we identified nucleotide-resolution targets for both drugs. Distinctive targets of clinically effective drugs could be useful for tailoring the application of these drugs and future design of more efficient treatment strategies.
{"title":"Epigenetic targets of Janus kinase inhibitors are linked to genetic risks of rheumatoid arthritis.","authors":"Haruka Tsuchiya, Mineto Ota, Haruka Takahashi, Hiroaki Hatano, Megumi Ogawa, Sotaro Nakajima, Risa Yoshihara, Tomohisa Okamura, Shuji Sumitomo, Keishi Fujio","doi":"10.1186/s41232-024-00337-2","DOIUrl":"10.1186/s41232-024-00337-2","url":null,"abstract":"<p><strong>Background: </strong>Current strategies that target cytokines (e.g., tumor necrosis factor (TNF)-α), or signaling molecules (e.g., Janus kinase (JAK)) have advanced the management for allergies and autoimmune diseases. Nevertheless, the molecular mechanism that underpins its clinical efficacy have largely remained elusive, especially in the local tissue environment. Here, we aimed to identify the genetic, epigenetic, and immunological targets of JAK inhibitors (JAKis), focusing on their effects on synovial fibroblasts (SFs), the major local effectors associated with destructive joint inflammation in rheumatoid arthritis (RA).</p><p><strong>Methods: </strong>SFs were activated by cytokines related to inflammation in RA, and were treated with three types of JAKis or a TNF-α inhibitor (TNFi). Dynamic changes in transcriptome and chromatin accessibility were profiled across samples to identify drug targets. Furthermore, the putative targets were validated using luciferase assays and clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing.</p><p><strong>Results: </strong>We found that both JAKis and the TNFi targeted the inflammatory module including IL6. Conversely, specific gene signatures that were preferentially inhibited by either of the drug classes were identified. Strikingly, RA risk enhancers for CD40 and TRAF1 were distinctively regulated by JAKis and the TNFi. We performed luciferase assays and CRISPR-based genome editing, and successfully fine-mapped the single causal variants in these loci, rs6074022-CD40 and rs7021049-TRAF1.</p><p><strong>Conclusions: </strong>JAKis and the TNFi had a direct impact on different RA risk enhancers, and we identified nucleotide-resolution targets for both drugs. Distinctive targets of clinically effective drugs could be useful for tailoring the application of these drugs and future design of more efficient treatment strategies.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"29"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}