Pub Date : 2023-11-06DOI: 10.1186/s41232-023-00304-3
Sho Kitamoto, Nobuhiko Kamada
Inflammatory bowel disease (IBD) is a multifactorial intractable intestinal disease. Focusing on only one facet of the pathogenesis of IBD is insufficient to fully capture the complexity of the disease, and results in limited advance in clinical management. Therefore, it is critical to dissect the interactions amongst the multifarious contributors to the pathogenesis to comprehensively understand its pathology and subsequently improve clinical outcomes. In this context, the systemic interactions between organs, particularly the oral-gut axis mediated by host immune cells and resident microorganisms, have garnered significant attention in IBD research. More specifically, periodontal disease such as periodontitis has been implicated in augmenting intestinal inflammation beyond the confines of the oral cavity. There is mounting evidence suggesting that potentially harmful oral resident bacteria, termed pathobionts, and pro-inflammatory immune cells from the oral mucosa can migrate to the gastrointestinal tract, thereby potentiating intestinal inflammation. This article aims to provide a holistic overview of the causal relationship between periodontal disease and intestinal inflammation. Furthermore, we will discuss potential determinants that facilitate the translocation of oral pathobionts into the gut, a key event underpinning the oral-gut axis. Unraveling the complex dynamics of microbiota and immunity in the oral-gut continuum will lead to a better understanding of the pathophysiology inherent in both oral and intestinal diseases and the development of prospective therapeutic strategies.
{"title":"The oral-gut axis: a missing piece in the IBD puzzle.","authors":"Sho Kitamoto, Nobuhiko Kamada","doi":"10.1186/s41232-023-00304-3","DOIUrl":"10.1186/s41232-023-00304-3","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a multifactorial intractable intestinal disease. Focusing on only one facet of the pathogenesis of IBD is insufficient to fully capture the complexity of the disease, and results in limited advance in clinical management. Therefore, it is critical to dissect the interactions amongst the multifarious contributors to the pathogenesis to comprehensively understand its pathology and subsequently improve clinical outcomes. In this context, the systemic interactions between organs, particularly the oral-gut axis mediated by host immune cells and resident microorganisms, have garnered significant attention in IBD research. More specifically, periodontal disease such as periodontitis has been implicated in augmenting intestinal inflammation beyond the confines of the oral cavity. There is mounting evidence suggesting that potentially harmful oral resident bacteria, termed pathobionts, and pro-inflammatory immune cells from the oral mucosa can migrate to the gastrointestinal tract, thereby potentiating intestinal inflammation. This article aims to provide a holistic overview of the causal relationship between periodontal disease and intestinal inflammation. Furthermore, we will discuss potential determinants that facilitate the translocation of oral pathobionts into the gut, a key event underpinning the oral-gut axis. Unraveling the complex dynamics of microbiota and immunity in the oral-gut continuum will lead to a better understanding of the pathophysiology inherent in both oral and intestinal diseases and the development of prospective therapeutic strategies.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"54"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1186/s41232-023-00302-5
Tina Rauchenwald, Florian Handle, Catherine E Connolly, Antonia Degen, Christof Seifarth, Martin Hermann, Christoph H Tripp, Doris Wilflingseder, Susanne Lobenwein, Dragana Savic, Leo Pölzl, Evi M Morandi, Dolores Wolfram, Ira-Ida Skvortsova, Patrizia Stoitzner, Johannes Haybaeck, Marko Konschake, Gerhard Pierer, Christian Ploner
Background: Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment.
Methods: We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR.
Results: CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs.
Conclusion: Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.
{"title":"Preadipocytes in human granulation tissue: role in wound healing and response to macrophage polarization.","authors":"Tina Rauchenwald, Florian Handle, Catherine E Connolly, Antonia Degen, Christof Seifarth, Martin Hermann, Christoph H Tripp, Doris Wilflingseder, Susanne Lobenwein, Dragana Savic, Leo Pölzl, Evi M Morandi, Dolores Wolfram, Ira-Ida Skvortsova, Patrizia Stoitzner, Johannes Haybaeck, Marko Konschake, Gerhard Pierer, Christian Ploner","doi":"10.1186/s41232-023-00302-5","DOIUrl":"10.1186/s41232-023-00302-5","url":null,"abstract":"<p><strong>Background: </strong>Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment.</p><p><strong>Methods: </strong>We examined CD45<sup>-</sup>/CD31<sup>-</sup>/CD34<sup>+</sup> preadipocytes and CD68<sup>+</sup> macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14<sup>+</sup> monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR.</p><p><strong>Results: </strong>CD45<sup>-</sup>/CD31<sup>-</sup>/CD34<sup>+</sup> preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68<sup>+</sup> macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs.</p><p><strong>Conclusion: </strong>Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"53"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71416293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-24DOI: 10.1186/s41232-023-00301-6
Dharmesh V Hirani, Florian Thielen, Siavash Mansouri, Soula Danopoulos, Christina Vohlen, Pinar Haznedar-Karakaya, Jasmine Mohr, Rebecca Wilke, Jaco Selle, Thomas Grosch, Ivana Mizik, Margarete Odenthal, Cristina M Alvira, Celien Kuiper-Makris, Gloria S Pryhuber, Christian Pallasch, S van Koningsbruggen-Rietschel, Denise Al-Alam, Werner Seeger, Rajkumar Savai, Jörg Dötsch, Miguel A Alejandre Alcazar
Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10-/-) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10-/- mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10-/- mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.
{"title":"CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia.","authors":"Dharmesh V Hirani, Florian Thielen, Siavash Mansouri, Soula Danopoulos, Christina Vohlen, Pinar Haznedar-Karakaya, Jasmine Mohr, Rebecca Wilke, Jaco Selle, Thomas Grosch, Ivana Mizik, Margarete Odenthal, Cristina M Alvira, Celien Kuiper-Makris, Gloria S Pryhuber, Christian Pallasch, S van Koningsbruggen-Rietschel, Denise Al-Alam, Werner Seeger, Rajkumar Savai, Jörg Dötsch, Miguel A Alejandre Alcazar","doi":"10.1186/s41232-023-00301-6","DOIUrl":"10.1186/s41232-023-00301-6","url":null,"abstract":"<p><p>Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10<sup>-/-</sup>) and wild-type mice to an experimental model of hyperoxia (85% O<sub>2</sub>)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10<sup>-/-</sup> mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10<sup>-/-</sup> mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"52"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-24DOI: 10.1186/s41232-023-00303-4
Hirofumi Shoda, Bunki Natsumoto, Keishi Fujio
The precise pathogenesis of immune-related diseases remains unclear, and new effective therapeutic choices are required for the induction of remission or cure in these diseases. Basic research utilizing immune-related disease patient-derived induced pluripotent stem (iPS) cells is expected to be a promising platform for elucidating the pathogenesis of the diseases and for drug discovery. Since autoinflammatory diseases are usually monogenic, genetic mutations affect the cell function and patient-derived iPS cells tend to exhibit disease-specific phenotypes. In particular, iPS cell-derived monocytic cells and macrophages can be used for functional experiments, such as inflammatory cytokine production, and are often employed in research on patients with autoinflammatory diseases.On the other hand, the utilization of disease-specific iPS cells is less successful for research on autoimmune diseases. One reason for this is that autoimmune diseases are usually polygenic, which makes it challenging to determine which factors cause the phenotypes of patient-derived iPS cells are caused by. Another reason is that protocols for differentiating some lymphocytes associated with autoimmunity, such as CD4+T cells or B cells, from iPS cells have not been well established. Nevertheless, several groups have reported studies utilizing autoimmune disease patient-derived iPS cells, including patients with rheumatoid arthritis, systemic lupus erythematosus (SLE), and systemic sclerosis. Particularly, non-hematopoietic cells, such as fibroblasts and cardiomyocytes, differentiated from autoimmune patient-derived iPS cells have shown promising results for further research into the pathogenesis. Recently, our groups established a method for differentiating dendritic cells that produce interferon-alpha, which can be applied as an SLE pathological model. In summary, patient-derived iPS cells can provide a promising platform for pathological research and new drug discovery in the field of immune-related diseases.
{"title":"Investigation of immune-related diseases using patient-derived induced pluripotent stem cells.","authors":"Hirofumi Shoda, Bunki Natsumoto, Keishi Fujio","doi":"10.1186/s41232-023-00303-4","DOIUrl":"10.1186/s41232-023-00303-4","url":null,"abstract":"<p><p>The precise pathogenesis of immune-related diseases remains unclear, and new effective therapeutic choices are required for the induction of remission or cure in these diseases. Basic research utilizing immune-related disease patient-derived induced pluripotent stem (iPS) cells is expected to be a promising platform for elucidating the pathogenesis of the diseases and for drug discovery. Since autoinflammatory diseases are usually monogenic, genetic mutations affect the cell function and patient-derived iPS cells tend to exhibit disease-specific phenotypes. In particular, iPS cell-derived monocytic cells and macrophages can be used for functional experiments, such as inflammatory cytokine production, and are often employed in research on patients with autoinflammatory diseases.On the other hand, the utilization of disease-specific iPS cells is less successful for research on autoimmune diseases. One reason for this is that autoimmune diseases are usually polygenic, which makes it challenging to determine which factors cause the phenotypes of patient-derived iPS cells are caused by. Another reason is that protocols for differentiating some lymphocytes associated with autoimmunity, such as CD4<sup>+</sup>T cells or B cells, from iPS cells have not been well established. Nevertheless, several groups have reported studies utilizing autoimmune disease patient-derived iPS cells, including patients with rheumatoid arthritis, systemic lupus erythematosus (SLE), and systemic sclerosis. Particularly, non-hematopoietic cells, such as fibroblasts and cardiomyocytes, differentiated from autoimmune patient-derived iPS cells have shown promising results for further research into the pathogenesis. Recently, our groups established a method for differentiating dendritic cells that produce interferon-alpha, which can be applied as an SLE pathological model. In summary, patient-derived iPS cells can provide a promising platform for pathological research and new drug discovery in the field of immune-related diseases.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"51"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC)-based cell transplantation has emerged as a groundbreaking method for replacing damaged neural cells and stimulating functional recovery, but its efficacy is strongly influenced by the state of the injured spinal microenvironment. This study evaluates the impact of a dual therapeutic intervention utilizing hepatocyte growth factor (HGF) and hiPSC-NS/PC transplantation on motor function restoration following spinal cord injury (SCI).
Methods: Severe contusive SCI was induced in immunocompromised rats, followed by continuous administration of recombinant human HGF protein into the subarachnoid space immediately after SCI for two weeks. Acute-phase histological and RNA sequencing analyses were conducted. Nine days after the injury, hiPSC-NS/PCs were transplanted into the lesion epicenter of the injured spinal cord, and the functional and histological outcomes were determined.
Results: The acute-phase HGF-treated group exhibited vascularization, diverse anti-inflammatory effects, and activation of endogenous neural stem cells after SCI, which collectively contributed to tissue preservation. Following cell transplantation into a favorable environment, the transplanted NS/PCs survived well, facilitating remyelination and neuronal regeneration in host tissues. These comprehensive effects led to substantial enhancements in motor function in the dual-therapy group compared to the single-treatment groups.
Conclusions: We demonstrate that the combined therapeutic approach of HGF preconditioning and hiPSC-NS/PC transplantation enhances locomotor functional recovery post-SCI, highlighting a highly promising therapeutic strategy for acute to subacute SCI.
{"title":"Hepatocyte growth factor pretreatment boosts functional recovery after spinal cord injury through human iPSC-derived neural stem/progenitor cell transplantation.","authors":"Yu Suematsu, Narihito Nagoshi, Munehisa Shinozaki, Yoshitaka Kase, Yusuke Saijo, Shogo Hashimoto, Takahiro Shibata, Keita Kajikawa, Yasuhiro Kamata, Masahiro Ozaki, Kaori Yasutake, Tomoko Shindo, Shinsuke Shibata, Morio Matsumoto, Masaya Nakamura, Hideyuki Okano","doi":"10.1186/s41232-023-00298-y","DOIUrl":"10.1186/s41232-023-00298-y","url":null,"abstract":"<p><strong>Background: </strong>Human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC)-based cell transplantation has emerged as a groundbreaking method for replacing damaged neural cells and stimulating functional recovery, but its efficacy is strongly influenced by the state of the injured spinal microenvironment. This study evaluates the impact of a dual therapeutic intervention utilizing hepatocyte growth factor (HGF) and hiPSC-NS/PC transplantation on motor function restoration following spinal cord injury (SCI).</p><p><strong>Methods: </strong>Severe contusive SCI was induced in immunocompromised rats, followed by continuous administration of recombinant human HGF protein into the subarachnoid space immediately after SCI for two weeks. Acute-phase histological and RNA sequencing analyses were conducted. Nine days after the injury, hiPSC-NS/PCs were transplanted into the lesion epicenter of the injured spinal cord, and the functional and histological outcomes were determined.</p><p><strong>Results: </strong>The acute-phase HGF-treated group exhibited vascularization, diverse anti-inflammatory effects, and activation of endogenous neural stem cells after SCI, which collectively contributed to tissue preservation. Following cell transplantation into a favorable environment, the transplanted NS/PCs survived well, facilitating remyelination and neuronal regeneration in host tissues. These comprehensive effects led to substantial enhancements in motor function in the dual-therapy group compared to the single-treatment groups.</p><p><strong>Conclusions: </strong>We demonstrate that the combined therapeutic approach of HGF preconditioning and hiPSC-NS/PC transplantation enhances locomotor functional recovery post-SCI, highlighting a highly promising therapeutic strategy for acute to subacute SCI.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"50"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1186/s41232-023-00300-7
Kouminin Kanwore, Konimpo Kanwore, Xiaoxiao Guo, Ying Xia, Han Zhou, Lin Zhang, Gabriel Komla Adzika, Adu-Amankwaah Joseph, Ayanlaja Abdulrahman Abiola, Peipei Mu, Piniel Alphayo Kambey, Marie Louis N'dzie Noah, DianShuai Gao
Background: Testosterone contributes to male organism development, such as bone density, muscle development, and fat repartition. Estrogen (derived from testosterone) also contributes to female reproductive system development. Here, we investigated the effect of testosterone on glioma cells and brain neuron inflammation essential for cancer development and progression.
Methods: The human astrocyte and glioma cell lines were treated with 6 ng/ml exogenous testosterone in vitro. We performed cell counting kit-8, transwell, and wound healing assays to determine the effect of testosterone on glioma cell proliferation, migration, and invasion. The glioma cells were injected into the xenograft and treated with 5 µl concentrated testosterone. Transcriptional suppression of glial cell line-derived neurotrophic factor (GDNF) was performed to evaluate brain neuron inflammation and survival. The tumor tissues were assessed by hematoxylin-eosin staining and immunohistochemistry.
Results: Testosterone upregulates GDNF to stimulate proliferation, migration, and invasion of glioma cells. Pathologically, the augmentation of GDNF and cyclophilin A contributed to neuroprotection when treated with testosterone. Our investigation showed that testosterone contributes to brain neuron and astrocyte inflammation through the upregulation of nuclear factor erythroid 2-related factor 2 (NRF2), glial fibrillary acid protein (GFAP), and sirtuin 5 (SIRT5), resulting in pro-inflammatory macrophages recruitments into the neural microenvironment. Mechanically, testosterone treatment regulates GDNF translocation from the glioma cells and astrocyte nuclei to the cytoplasm.
Conclusion: Testosterone upregulates GDNF in glioma cells and astrocytes essential for microglial proliferation, migration, and invasion. Testosterone contributes to brain tumor growth via GDNF and inflammation. The contribution of testosterone, macrophages, and astrocytes, in old neuron rescue, survival, and proliferation. During brain neuron inflammation, the organism activates and stimulates the neuron rescue through the enrichment of the old neuron microenvironment with growth factors such as GDNF, BDNF, SOX1/2, and MAPK secreted by the surrounding neurons and glial cells to maintain the damaged neuron by inflammation alive even if the axon is dead. The immune response also contributes to brain cell survival through the secretion of proinflammatory cytokines, resulting in inflammation maintenance. The rescued old neuron interaction with infiltrated macrophages contributes to angiogenesis to supplement the old neuron with more nutrients leading to metabolism activation and surrounding cell uncontrollable cell growth.
{"title":"Testosterone upregulates glial cell line-derived neurotrophic factor (GDNF) and promotes neuroinflammation to enhance glioma cell survival and proliferation.","authors":"Kouminin Kanwore, Konimpo Kanwore, Xiaoxiao Guo, Ying Xia, Han Zhou, Lin Zhang, Gabriel Komla Adzika, Adu-Amankwaah Joseph, Ayanlaja Abdulrahman Abiola, Peipei Mu, Piniel Alphayo Kambey, Marie Louis N'dzie Noah, DianShuai Gao","doi":"10.1186/s41232-023-00300-7","DOIUrl":"10.1186/s41232-023-00300-7","url":null,"abstract":"<p><strong>Background: </strong>Testosterone contributes to male organism development, such as bone density, muscle development, and fat repartition. Estrogen (derived from testosterone) also contributes to female reproductive system development. Here, we investigated the effect of testosterone on glioma cells and brain neuron inflammation essential for cancer development and progression.</p><p><strong>Methods: </strong>The human astrocyte and glioma cell lines were treated with 6 ng/ml exogenous testosterone in vitro. We performed cell counting kit-8, transwell, and wound healing assays to determine the effect of testosterone on glioma cell proliferation, migration, and invasion. The glioma cells were injected into the xenograft and treated with 5 µl concentrated testosterone. Transcriptional suppression of glial cell line-derived neurotrophic factor (GDNF) was performed to evaluate brain neuron inflammation and survival. The tumor tissues were assessed by hematoxylin-eosin staining and immunohistochemistry.</p><p><strong>Results: </strong>Testosterone upregulates GDNF to stimulate proliferation, migration, and invasion of glioma cells. Pathologically, the augmentation of GDNF and cyclophilin A contributed to neuroprotection when treated with testosterone. Our investigation showed that testosterone contributes to brain neuron and astrocyte inflammation through the upregulation of nuclear factor erythroid 2-related factor 2 (NRF2), glial fibrillary acid protein (GFAP), and sirtuin 5 (SIRT5), resulting in pro-inflammatory macrophages recruitments into the neural microenvironment. Mechanically, testosterone treatment regulates GDNF translocation from the glioma cells and astrocyte nuclei to the cytoplasm.</p><p><strong>Conclusion: </strong>Testosterone upregulates GDNF in glioma cells and astrocytes essential for microglial proliferation, migration, and invasion. Testosterone contributes to brain tumor growth via GDNF and inflammation. The contribution of testosterone, macrophages, and astrocytes, in old neuron rescue, survival, and proliferation. During brain neuron inflammation, the organism activates and stimulates the neuron rescue through the enrichment of the old neuron microenvironment with growth factors such as GDNF, BDNF, SOX1/2, and MAPK secreted by the surrounding neurons and glial cells to maintain the damaged neuron by inflammation alive even if the axon is dead. The immune response also contributes to brain cell survival through the secretion of proinflammatory cytokines, resulting in inflammation maintenance. The rescued old neuron interaction with infiltrated macrophages contributes to angiogenesis to supplement the old neuron with more nutrients leading to metabolism activation and surrounding cell uncontrollable cell growth.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"49"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The progression of liver fibrosis leads to portal hypertension and liver dysfunction. However, no antifibrotic agents have been approved for cirrhosis to date, making them an unmet medical need. Small extracellular vesicles (sEVs) of mesenchymal stem cells (MSCs) are among these candidate agents. In this study, we investigated the effects of sEVs of MSCs, analyzed their distribution in the liver post-administration, whether their effect was dose-dependent, and whether it was possible to collect a large number of sEVs.
Methods: sEVs expressing tdTomato were generated, and their uptake into constituent liver cells was observed in vitro, as well as their sites of uptake and cells in the liver using a mouse model of liver cirrhosis. The efficiency of sEV collection using tangential flow filtration (TFF) and changes in the therapeutic effects of sEVs in a volume-dependent manner were examined.
Results: The sEVs of MSCs accumulated mostly in macrophages in damaged areas of the liver. In addition, the therapeutic effect of sEVs was not necessarily dose-dependent, and it reached a plateau when the dosage exceeded a certain level. Furthermore, although ultracentrifugation was commonly used to collect sEVs for research purposes, we verified that TFF could be used for efficient sEV collection and that their effectiveness is not reduced.
Conclusion: In this study, we identified some unknown aspects regarding the dynamics, collection, and capacity dependence of sEVs. Our results provide important fundamentals for the development of therapies using sEVs and hold potential implications for the therapeutic applications of sEV-based therapies for liver cirrhosis.
{"title":"Analysis of distribution, collection, and confirmation of capacity dependency of small extracellular vesicles toward a therapy for liver cirrhosis.","authors":"Nobutaka Takeda, Atsunori Tsuchiya, Masaki Mito, Kazuki Natsui, Yui Natusi, Yohei Koseki, Kei Tomiyoshi, Fusako Yamazaki, Yuki Yoshida, Hiroyuki Abe, Masayuki Sano, Taketomo Kido, Yusuke Yoshioka, Junichi Kikuta, Tohru Itoh, Ken Nishimura, Masaru Ishii, Takahiro Ochiya, Atsushi Miyajima, Shuji Terai","doi":"10.1186/s41232-023-00299-x","DOIUrl":"10.1186/s41232-023-00299-x","url":null,"abstract":"<p><strong>Background: </strong>The progression of liver fibrosis leads to portal hypertension and liver dysfunction. However, no antifibrotic agents have been approved for cirrhosis to date, making them an unmet medical need. Small extracellular vesicles (sEVs) of mesenchymal stem cells (MSCs) are among these candidate agents. In this study, we investigated the effects of sEVs of MSCs, analyzed their distribution in the liver post-administration, whether their effect was dose-dependent, and whether it was possible to collect a large number of sEVs.</p><p><strong>Methods: </strong>sEVs expressing tdTomato were generated, and their uptake into constituent liver cells was observed in vitro, as well as their sites of uptake and cells in the liver using a mouse model of liver cirrhosis. The efficiency of sEV collection using tangential flow filtration (TFF) and changes in the therapeutic effects of sEVs in a volume-dependent manner were examined.</p><p><strong>Results: </strong>The sEVs of MSCs accumulated mostly in macrophages in damaged areas of the liver. In addition, the therapeutic effect of sEVs was not necessarily dose-dependent, and it reached a plateau when the dosage exceeded a certain level. Furthermore, although ultracentrifugation was commonly used to collect sEVs for research purposes, we verified that TFF could be used for efficient sEV collection and that their effectiveness is not reduced.</p><p><strong>Conclusion: </strong>In this study, we identified some unknown aspects regarding the dynamics, collection, and capacity dependence of sEVs. Our results provide important fundamentals for the development of therapies using sEVs and hold potential implications for the therapeutic applications of sEV-based therapies for liver cirrhosis.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"48"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1186/s41232-023-00297-z
Wenjie Zheng, Saiyan Bian, Shi Qiu, Colin E Bishop, Meimei Wan, Nuo Xu, Xieyin Sun, Russel Clive Sequeira, Anthony Atala, Zhifeng Gu, Weixin Zhao
Background: Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms.
Methods: The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-β1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations.
Results: TGF-β1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-β1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2).
Conclusion: Pd-MSCs-EVs ameliorated TGF-β1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.
{"title":"Placenta mesenchymal stem cell-derived extracellular vesicles alleviate liver fibrosis by inactivating hepatic stellate cells through a miR-378c/SKP2 axis.","authors":"Wenjie Zheng, Saiyan Bian, Shi Qiu, Colin E Bishop, Meimei Wan, Nuo Xu, Xieyin Sun, Russel Clive Sequeira, Anthony Atala, Zhifeng Gu, Weixin Zhao","doi":"10.1186/s41232-023-00297-z","DOIUrl":"10.1186/s41232-023-00297-z","url":null,"abstract":"<p><strong>Background: </strong>Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms.</p><p><strong>Methods: </strong>The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-β1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations.</p><p><strong>Results: </strong>TGF-β1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-β1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2).</p><p><strong>Conclusion: </strong>Pd-MSCs-EVs ameliorated TGF-β1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"47"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41173303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-27DOI: 10.1186/s41232-023-00296-0
Yoshitaka Murota, Mariko Nagane, Mei Wu, Mithun Santra, Seshasailam Venkateswaran, Shinji Tanaka, Mark Bradley, Tetsuya Taga, Kouichi Tabu
Background: Pancreatic adenocarcinoma (PAAD) is one of the most fatal human cancers, but effective therapies remain to be established. Cancer stem cells (CSCs) are highly resistant to anti-cancer drugs and a deeper understanding of their microenvironmental niche has been considered important to provide understanding and solutions to cancer eradication. However, as the CSC niche is composed of a wide variety of biological and physicochemical factors, the development of multidisciplinary tools that recapitulate their complex features is indispensable. Synthetic polymers have been studied as attractive biomaterials due to their tunable biofunctionalities, while hydrogelation technique further renders upon them a diversity of physical properties, making them an attractive tool for analysis of the CSC niche.
Methods: To develop innovative materials that recapitulate the CSC niche in pancreatic cancers, we performed polymer microarray analysis to identify niche-mimicking scaffolds that preferentially supported the growth of CSCs. The niche-mimicking activity of the identified polymers was further optimized by polyethylene glycol (PEG)-based hydrogelation. To reveal the biological mechanisms behind the activity of the optimized hydrogels towards CSCs, proteins binding onto the hydrogel were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and the potential therapeutic targets were validated by looking at gene expression and patients' outcome in the TCGA database.
Results: PA531, a heteropolymer composed of 2-methoxyethyl methacrylate (MEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) (5.5:4.5) that specifically supports the growth and maintenance of CSCs was identified by polymer microarray screening using the human PAAD cell line KLM1. The polymer PA531 was converted into five hydrogels (PA531-HG1 to HG5) and developed to give an optimized scaffold with the highest CSC niche-mimicking activities. From this polymer that recapitulated CSC binding and control, the proteins fetuin-B and angiotensinogen were identified as candidate target molecules with clinical significance due to the correlation between gene expression levels and prognosis in PAAD patients and the proteins associated with the niche-mimicking polymer.
Conclusion: This study screened for biofunctional polymers suitable for recapitulation of the pancreatic CSC niche and one hydrogel with high niche-mimicking abilities was successfully fabricated. Two soluble factors with clinical significance were identified as potential candidates for biomarkers and therapeutic targets in pancreatic cancers. Such a biomaterial-based approach could be a new platform in drug discovery and therapy development against CSCs, via targeting of their niche.
{"title":"A niche-mimicking polymer hydrogel-based approach to identify molecular targets for tackling human pancreatic cancer stem cells.","authors":"Yoshitaka Murota, Mariko Nagane, Mei Wu, Mithun Santra, Seshasailam Venkateswaran, Shinji Tanaka, Mark Bradley, Tetsuya Taga, Kouichi Tabu","doi":"10.1186/s41232-023-00296-0","DOIUrl":"10.1186/s41232-023-00296-0","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic adenocarcinoma (PAAD) is one of the most fatal human cancers, but effective therapies remain to be established. Cancer stem cells (CSCs) are highly resistant to anti-cancer drugs and a deeper understanding of their microenvironmental niche has been considered important to provide understanding and solutions to cancer eradication. However, as the CSC niche is composed of a wide variety of biological and physicochemical factors, the development of multidisciplinary tools that recapitulate their complex features is indispensable. Synthetic polymers have been studied as attractive biomaterials due to their tunable biofunctionalities, while hydrogelation technique further renders upon them a diversity of physical properties, making them an attractive tool for analysis of the CSC niche.</p><p><strong>Methods: </strong>To develop innovative materials that recapitulate the CSC niche in pancreatic cancers, we performed polymer microarray analysis to identify niche-mimicking scaffolds that preferentially supported the growth of CSCs. The niche-mimicking activity of the identified polymers was further optimized by polyethylene glycol (PEG)-based hydrogelation. To reveal the biological mechanisms behind the activity of the optimized hydrogels towards CSCs, proteins binding onto the hydrogel were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and the potential therapeutic targets were validated by looking at gene expression and patients' outcome in the TCGA database.</p><p><strong>Results: </strong>PA531, a heteropolymer composed of 2-methoxyethyl methacrylate (MEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) (5.5:4.5) that specifically supports the growth and maintenance of CSCs was identified by polymer microarray screening using the human PAAD cell line KLM1. The polymer PA531 was converted into five hydrogels (PA531-HG1 to HG5) and developed to give an optimized scaffold with the highest CSC niche-mimicking activities. From this polymer that recapitulated CSC binding and control, the proteins fetuin-B and angiotensinogen were identified as candidate target molecules with clinical significance due to the correlation between gene expression levels and prognosis in PAAD patients and the proteins associated with the niche-mimicking polymer.</p><p><strong>Conclusion: </strong>This study screened for biofunctional polymers suitable for recapitulation of the pancreatic CSC niche and one hydrogel with high niche-mimicking abilities was successfully fabricated. Two soluble factors with clinical significance were identified as potential candidates for biomarkers and therapeutic targets in pancreatic cancers. Such a biomaterial-based approach could be a new platform in drug discovery and therapy development against CSCs, via targeting of their niche.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"46"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-21DOI: 10.1186/s41232-023-00295-1
Ryusuke Kizawa, Jun Araya, Yu Fujita
Idiopathic pulmonary fibrosis (IPF) is a progressive aging-related lung disease with a poor prognosis. Despite extensive research, the cause of IPF remains largely unknown and treatment strategies are limited. Proposed mechanisms of the pathogenesis of IPF are a combination of excessive accumulation of the extracellular matrix and dysfunctional lung tissue regeneration. Epithelial cell dysfunction, in addition to fibroblast activation, is considered a key process in the progression of IPF. Epithelial cells normally maintain homeostasis of the lung tissue through regulated proliferation, differentiation, cell death, and cellular senescence. However, various stresses can cause repetitive damage to lung epithelial cells, leading to dysfunctional regeneration and acquisition of profibrotic functions. The Hippo pathway is a central signaling pathway that maintains tissue homeostasis and plays an essential role in fundamental biological processes. Dysregulation of the Hippo pathway has been implicated in various diseases, including IPF. However, the role of the Hippo pathway in the pathogenesis of IPF remains unclear, particularly given the pathway's opposing effects on the 2 key pathogenic mechanisms of IPF: epithelial cell dysfunction and fibroblast activation. A deeper understanding of the relationship between the Hippo pathway and the pathogenesis of IPF will pave the way for novel Hippo-targeted therapies.
{"title":"Divergent roles of the Hippo pathway in the pathogenesis of idiopathic pulmonary fibrosis: tissue homeostasis and fibrosis.","authors":"Ryusuke Kizawa, Jun Araya, Yu Fujita","doi":"10.1186/s41232-023-00295-1","DOIUrl":"10.1186/s41232-023-00295-1","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive aging-related lung disease with a poor prognosis. Despite extensive research, the cause of IPF remains largely unknown and treatment strategies are limited. Proposed mechanisms of the pathogenesis of IPF are a combination of excessive accumulation of the extracellular matrix and dysfunctional lung tissue regeneration. Epithelial cell dysfunction, in addition to fibroblast activation, is considered a key process in the progression of IPF. Epithelial cells normally maintain homeostasis of the lung tissue through regulated proliferation, differentiation, cell death, and cellular senescence. However, various stresses can cause repetitive damage to lung epithelial cells, leading to dysfunctional regeneration and acquisition of profibrotic functions. The Hippo pathway is a central signaling pathway that maintains tissue homeostasis and plays an essential role in fundamental biological processes. Dysregulation of the Hippo pathway has been implicated in various diseases, including IPF. However, the role of the Hippo pathway in the pathogenesis of IPF remains unclear, particularly given the pathway's opposing effects on the 2 key pathogenic mechanisms of IPF: epithelial cell dysfunction and fibroblast activation. A deeper understanding of the relationship between the Hippo pathway and the pathogenesis of IPF will pave the way for novel Hippo-targeted therapies.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"45"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}