Pub Date : 2024-10-03DOI: 10.1021/jacsau.4c0086310.1021/jacsau.4c00863
Soraya Learte-Aymamí, Laura Martínez-Castro, Carmen González-González, Miriam Condeminas, Pau Martin-Malpartida, María Tomás-Gamasa, Sandra Baúlde, José R. Couceiro, Jean-Didier Maréchal*, Maria J. Macias*, José L. Mascareñas* and M. Eugenio Vázquez*,
{"title":"Correction to “De Novo Engineering of Pd-Metalloproteins and Their Use as Intracellular Catalysts”","authors":"Soraya Learte-Aymamí, Laura Martínez-Castro, Carmen González-González, Miriam Condeminas, Pau Martin-Malpartida, María Tomás-Gamasa, Sandra Baúlde, José R. Couceiro, Jean-Didier Maréchal*, Maria J. Macias*, José L. Mascareñas* and M. Eugenio Vázquez*, ","doi":"10.1021/jacsau.4c0086310.1021/jacsau.4c00863","DOIUrl":"https://doi.org/10.1021/jacsau.4c00863https://doi.org/10.1021/jacsau.4c00863","url":null,"abstract":"","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00863","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1021/jacsau.4c0067710.1021/jacsau.4c00677
Pablo A. Mercadal, Agustín González, Ana Beloqui, Liliana C. Tomé, David Mecerreyes, Marcelo Calderón and Matias L. Picchio*,
Eutectogels, a rising category of soft materials, have recently garnered significant attention owing to their remarkable potential in various domains. This innovative class of materials consists of a eutectic solvent immobilized in a three-dimensional network structure. The use of eco-friendly and cost-effective eutectic solvents further emphasizes the appeal of these materials in multiple applications. Eutectogels exhibit key characteristics of most eutectic solvents, including environmental friendliness, facile preparation, low vapor pressure, and good ionic conductivity. Moreover, they can be tailored to display functionalities such as self-healing capability, adhesiveness, and antibacterial properties, which are facilitated by incorporating specific combinations of the eutectic mixture constituents. This perspective article delves into the current landscape and challenges associated with eutectogels, particularly focusing on their potential applications in CO2 separation, drug delivery systems, battery technologies, biocatalysis, and food packaging. By exploring these diverse realms, we aim to shed light on the transformative capabilities of eutectogels and the opportunities they present to address pressing industrial, academic, and environmental challenges.
{"title":"Eutectogels: The Multifaceted Soft Ionic Materials of Tomorrow","authors":"Pablo A. Mercadal, Agustín González, Ana Beloqui, Liliana C. Tomé, David Mecerreyes, Marcelo Calderón and Matias L. Picchio*, ","doi":"10.1021/jacsau.4c0067710.1021/jacsau.4c00677","DOIUrl":"https://doi.org/10.1021/jacsau.4c00677https://doi.org/10.1021/jacsau.4c00677","url":null,"abstract":"<p >Eutectogels, a rising category of soft materials, have recently garnered significant attention owing to their remarkable potential in various domains. This innovative class of materials consists of a eutectic solvent immobilized in a three-dimensional network structure. The use of eco-friendly and cost-effective eutectic solvents further emphasizes the appeal of these materials in multiple applications. Eutectogels exhibit key characteristics of most eutectic solvents, including environmental friendliness, facile preparation, low vapor pressure, and good ionic conductivity. Moreover, they can be tailored to display functionalities such as self-healing capability, adhesiveness, and antibacterial properties, which are facilitated by incorporating specific combinations of the eutectic mixture constituents. This perspective article delves into the current landscape and challenges associated with eutectogels, particularly focusing on their potential applications in CO<sub>2</sub> separation, drug delivery systems, battery technologies, biocatalysis, and food packaging. By exploring these diverse realms, we aim to shed light on the transformative capabilities of eutectogels and the opportunities they present to address pressing industrial, academic, and environmental challenges.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00677","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1021/jacsau.4c0078710.1021/jacsau.4c00787
Zifan Zhu, Yun Feng, Qiufen Tian, Jiawen Li, Chencong Liu, Yuchi Cheng, Sanjun Zhang, Yijing Dang, Jing Gao, Yi Lai, Fan Zhang, Haijun Yu, Wen Zhang and Zhiai Xu*,
The precise theranostic strategy of fluorescence imaging-guided photodynamic therapy (PDT) can effectively mitigate the adverse effect of photosensitizers in normal cells and tissues. However, low tumor enrichment and high diffusivity of photosensitizers significantly compromise the imaging accuracy and PDT effect. In this study, we have developed a nitroreductase (NTR)-activated and self-immobilizing photosensitizer CyNT-F, which showed enhanced enrichment in tumor tissues and facilitated precise and sustained imaging as well as PDT for hypoxia tumors. mPEG-b-PDPA nanomicelles encapsulating photosensitizers underwent dissociation and released CyNT-F in tumor cells. CyNT-F and NTR enzymatically reacted in situ to generate highly reactive quinone methide, subsequently covalently binding to adjacent proteins for fluorescence and PDT activation. CyNT-F exhibited longer intracellular retention (7 days) and effectively inhibited the tumor growth of solid hypoxia tumor. We believe the activatable and self-immobilizing strategy of PDT presents a novel methodology for minimizing the adverse effect and enabling spatiotemporally accurate ablation of diseased cells and tissues.
{"title":"A Self-Immobilizing Photosensitizer with Long-Term Retention for Hypoxia Imaging and Enhanced Photodynamic Therapy","authors":"Zifan Zhu, Yun Feng, Qiufen Tian, Jiawen Li, Chencong Liu, Yuchi Cheng, Sanjun Zhang, Yijing Dang, Jing Gao, Yi Lai, Fan Zhang, Haijun Yu, Wen Zhang and Zhiai Xu*, ","doi":"10.1021/jacsau.4c0078710.1021/jacsau.4c00787","DOIUrl":"https://doi.org/10.1021/jacsau.4c00787https://doi.org/10.1021/jacsau.4c00787","url":null,"abstract":"<p >The precise theranostic strategy of fluorescence imaging-guided photodynamic therapy (PDT) can effectively mitigate the adverse effect of photosensitizers in normal cells and tissues. However, low tumor enrichment and high diffusivity of photosensitizers significantly compromise the imaging accuracy and PDT effect. In this study, we have developed a nitroreductase (NTR)-activated and self-immobilizing photosensitizer CyNT-F, which showed enhanced enrichment in tumor tissues and facilitated precise and sustained imaging as well as PDT for hypoxia tumors. mPEG-<i>b</i>-PDPA nanomicelles encapsulating photosensitizers underwent dissociation and released CyNT-F in tumor cells. CyNT-F and NTR enzymatically reacted in situ to generate highly reactive quinone methide, subsequently covalently binding to adjacent proteins for fluorescence and PDT activation. CyNT-F exhibited longer intracellular retention (7 days) and effectively inhibited the tumor growth of solid hypoxia tumor. We believe the activatable and self-immobilizing strategy of PDT presents a novel methodology for minimizing the adverse effect and enabling spatiotemporally accurate ablation of diseased cells and tissues.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00787","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03eCollection Date: 2024-10-28DOI: 10.1021/jacsau.4c00863
Soraya Learte-Aymamí, Laura Martínez-Castro, Carmen González-González, Miriam Condeminas, Pau Martin-Malpartida, María Tomás-Gamasa, Sandra Baúlde, José R Couceiro, Jean-Didier Maréchal, Maria J Macias, José L Mascareñas, M Eugenio Vázquez
[This corrects the article DOI: 10.1021/jacsau.4c00379.].
[此处更正了文章 DOI:10.1021/jacsau.4c00379]。
{"title":"Correction to \"De Novo Engineering of Pd-Metalloproteins and Their Use as Intracellular Catalysts\".","authors":"Soraya Learte-Aymamí, Laura Martínez-Castro, Carmen González-González, Miriam Condeminas, Pau Martin-Malpartida, María Tomás-Gamasa, Sandra Baúlde, José R Couceiro, Jean-Didier Maréchal, Maria J Macias, José L Mascareñas, M Eugenio Vázquez","doi":"10.1021/jacsau.4c00863","DOIUrl":"10.1021/jacsau.4c00863","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1021/jacsau.4c00379.].</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1021/jacsau.4c0048910.1021/jacsau.4c00489
Pablo A. Dean, Yifan Wu, Sheng Guo, Timothy M. Swager* and Zachary P. Smith*,
Competitive sorption enables the emergent phenomenon of enhanced CO2-based selectivities for gas separation membranes when using microporous polymers with primary amines. However, strong secondary forces in these polymers through hydrogen bonding results in low solvent solubility, precluding standard solution processing approaches to form these polymers into membrane films. Herein, we circumvent these manufacturing constraints while maintaining competitive-sorption enhancements by synthesizing eight representative microporous poly(arylene ether)s (PAEs) with tertiary amines. High-pressure H2S, CO2, and CH4 sorption isotherms were collected for these samples to demonstrate enhanced affinity for acid gases relative to the unfunctional control polymer. Although competitive sorption was observed for all samples, improvements were less pronounced than for primary-amine-functional analogs. For H2S-based separations, the benefits of competitive sorption offset decreases in selectivity due to plasticization. This detailed study helps to elucidate the role of tertiary amines for acid gas separations in solution-processable microporous PAEs.
{"title":"Tertiary-Amine-Functional Poly(arylene ether)s for Acid-Gas Separations","authors":"Pablo A. Dean, Yifan Wu, Sheng Guo, Timothy M. Swager* and Zachary P. Smith*, ","doi":"10.1021/jacsau.4c0048910.1021/jacsau.4c00489","DOIUrl":"https://doi.org/10.1021/jacsau.4c00489https://doi.org/10.1021/jacsau.4c00489","url":null,"abstract":"<p >Competitive sorption enables the emergent phenomenon of enhanced CO<sub>2</sub>-based selectivities for gas separation membranes when using microporous polymers with primary amines. However, strong secondary forces in these polymers through hydrogen bonding results in low solvent solubility, precluding standard solution processing approaches to form these polymers into membrane films. Herein, we circumvent these manufacturing constraints while maintaining competitive-sorption enhancements by synthesizing eight representative microporous poly(arylene ether)s (PAEs) with tertiary amines. High-pressure H<sub>2</sub>S, CO<sub>2</sub>, and CH<sub>4</sub> sorption isotherms were collected for these samples to demonstrate enhanced affinity for acid gases relative to the unfunctional control polymer. Although competitive sorption was observed for all samples, improvements were less pronounced than for primary-amine-functional analogs. For H<sub>2</sub>S-based separations, the benefits of competitive sorption offset decreases in selectivity due to plasticization. This detailed study helps to elucidate the role of tertiary amines for acid gas separations in solution-processable microporous PAEs.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02eCollection Date: 2024-10-28DOI: 10.1021/jacsau.4c00489
Pablo A Dean, Yifan Wu, Sheng Guo, Timothy M Swager, Zachary P Smith
Competitive sorption enables the emergent phenomenon of enhanced CO2-based selectivities for gas separation membranes when using microporous polymers with primary amines. However, strong secondary forces in these polymers through hydrogen bonding results in low solvent solubility, precluding standard solution processing approaches to form these polymers into membrane films. Herein, we circumvent these manufacturing constraints while maintaining competitive-sorption enhancements by synthesizing eight representative microporous poly(arylene ether)s (PAEs) with tertiary amines. High-pressure H2S, CO2, and CH4 sorption isotherms were collected for these samples to demonstrate enhanced affinity for acid gases relative to the unfunctional control polymer. Although competitive sorption was observed for all samples, improvements were less pronounced than for primary-amine-functional analogs. For H2S-based separations, the benefits of competitive sorption offset decreases in selectivity due to plasticization. This detailed study helps to elucidate the role of tertiary amines for acid gas separations in solution-processable microporous PAEs.
{"title":"Tertiary-Amine-Functional Poly(arylene ether)s for Acid-Gas Separations.","authors":"Pablo A Dean, Yifan Wu, Sheng Guo, Timothy M Swager, Zachary P Smith","doi":"10.1021/jacsau.4c00489","DOIUrl":"10.1021/jacsau.4c00489","url":null,"abstract":"<p><p>Competitive sorption enables the emergent phenomenon of enhanced CO<sub>2</sub>-based selectivities for gas separation membranes when using microporous polymers with primary amines. However, strong secondary forces in these polymers through hydrogen bonding results in low solvent solubility, precluding standard solution processing approaches to form these polymers into membrane films. Herein, we circumvent these manufacturing constraints while maintaining competitive-sorption enhancements by synthesizing eight representative microporous poly(arylene ether)s (PAEs) with tertiary amines. High-pressure H<sub>2</sub>S, CO<sub>2</sub>, and CH<sub>4</sub> sorption isotherms were collected for these samples to demonstrate enhanced affinity for acid gases relative to the unfunctional control polymer. Although competitive sorption was observed for all samples, improvements were less pronounced than for primary-amine-functional analogs. For H<sub>2</sub>S-based separations, the benefits of competitive sorption offset decreases in selectivity due to plasticization. This detailed study helps to elucidate the role of tertiary amines for acid gas separations in solution-processable microporous PAEs.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1021/jacsau.4c0073810.1021/jacsau.4c00738
Millicent Dockerill, Pramod M. Sabale, Francesco Russo, Sofia Barluenga and Nicolas Winssinger*,
DNA-encoded libraries connect the phenotypes of synthetic molecules to a DNA barcode; however, most libraries do not tap into the potential of Darwinian evolution. Herein, we report a DNA-templated synthesis (DTS) architecture to make peptides that are stabilized into α-helical conformations via head-to-tail supramolecular cyclization. Using a pilot library targeting MDM2, we show that repeated screening can amplify a binder from the lowest abundance in the library to a ranking that correlates to binding affinity. The study also highlights the need to design libraries such that the chemistry avoids biases from the heterogeneous yield in DTS.
{"title":"Translation of Deoxyribonucleic Acid into Synthetic Alpha Helical Peptides for Darwinian Evolution","authors":"Millicent Dockerill, Pramod M. Sabale, Francesco Russo, Sofia Barluenga and Nicolas Winssinger*, ","doi":"10.1021/jacsau.4c0073810.1021/jacsau.4c00738","DOIUrl":"https://doi.org/10.1021/jacsau.4c00738https://doi.org/10.1021/jacsau.4c00738","url":null,"abstract":"<p >DNA-encoded libraries connect the phenotypes of synthetic molecules to a DNA barcode; however, most libraries do not tap into the potential of Darwinian evolution. Herein, we report a DNA-templated synthesis (DTS) architecture to make peptides that are stabilized into α-helical conformations via head-to-tail supramolecular cyclization. Using a pilot library targeting MDM2, we show that repeated screening can amplify a binder from the lowest abundance in the library to a ranking that correlates to binding affinity. The study also highlights the need to design libraries such that the chemistry avoids biases from the heterogeneous yield in DTS.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00738","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142550392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02eCollection Date: 2024-10-28DOI: 10.1021/jacsau.4c00738
Millicent Dockerill, Pramod M Sabale, Francesco Russo, Sofia Barluenga, Nicolas Winssinger
DNA-encoded libraries connect the phenotypes of synthetic molecules to a DNA barcode; however, most libraries do not tap into the potential of Darwinian evolution. Herein, we report a DNA-templated synthesis (DTS) architecture to make peptides that are stabilized into α-helical conformations via head-to-tail supramolecular cyclization. Using a pilot library targeting MDM2, we show that repeated screening can amplify a binder from the lowest abundance in the library to a ranking that correlates to binding affinity. The study also highlights the need to design libraries such that the chemistry avoids biases from the heterogeneous yield in DTS.
{"title":"Translation of Deoxyribonucleic Acid into Synthetic Alpha Helical Peptides for Darwinian Evolution.","authors":"Millicent Dockerill, Pramod M Sabale, Francesco Russo, Sofia Barluenga, Nicolas Winssinger","doi":"10.1021/jacsau.4c00738","DOIUrl":"10.1021/jacsau.4c00738","url":null,"abstract":"<p><p>DNA-encoded libraries connect the phenotypes of synthetic molecules to a DNA barcode; however, most libraries do not tap into the potential of Darwinian evolution. Herein, we report a DNA-templated synthesis (DTS) architecture to make peptides that are stabilized into α-helical conformations via head-to-tail supramolecular cyclization. Using a pilot library targeting MDM2, we show that repeated screening can amplify a binder from the lowest abundance in the library to a ranking that correlates to binding affinity. The study also highlights the need to design libraries such that the chemistry avoids biases from the heterogeneous yield in DTS.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01eCollection Date: 2024-10-28DOI: 10.1021/jacsau.4c00475
Rong Luo, Bao-Jing Li, Zhan-Peng Wang, Ming-Guang Chen, Gui-Lin Zhuang, Quan Li, Jia-Ping Tong, Wen-Tai Wang, Yu-Hua Fan, Feng Shao
Ambient electrochemical NO reduction presents a dual solution for sustainable NO reduction and NH3 synthesis. However, their complex kinetics and energy demands necessitate high-performance electrocatalysts to ensure effective and selective process outcomes. Herein, we report that a two-dimensional Cu-based metal-organic framework (MOF), {[Cu(HL)]·H2O} n , (Cu-OUC, H3L = 5-(2'-carboxylphenoxy)isophthalic acid) acts as a stable electrocatalyst with high efficiency for NO-to-NH3 conversion. Electrochemical experimental studies showed that in 0.1 M K2SO4 solution, the as-prepared Cu-OUC achieved a peak Faradaic efficiency of 96.91% and a notable NH3 yield as high as 3415.82 μg h-1 mg-1. The Zn-NO battery in aqueous solution can produce electricity possessing a power density of 2.04 mW cm-2 while simultaneously achieving an NH3 yield of 616.92 μg h-1 mg-1. Theoretical calculations revealed that the surface of Cu-OUC effectively facilitates NO activation through a two-way charge transfer mechanism of "electron acceptance and donation", with the *NO formation step being the potential-determining stage. The study pioneers the use of a MOF as an electrocatalyst for ambient NO-to-NH3 conversion.
{"title":"Two-Dimensional MOF Constructed by a Binuclear-Copper Motif for High-Performance Electrocatalytic NO Reduction to NH<sub>3</sub>.","authors":"Rong Luo, Bao-Jing Li, Zhan-Peng Wang, Ming-Guang Chen, Gui-Lin Zhuang, Quan Li, Jia-Ping Tong, Wen-Tai Wang, Yu-Hua Fan, Feng Shao","doi":"10.1021/jacsau.4c00475","DOIUrl":"10.1021/jacsau.4c00475","url":null,"abstract":"<p><p>Ambient electrochemical NO reduction presents a dual solution for sustainable NO reduction and NH<sub>3</sub> synthesis. However, their complex kinetics and energy demands necessitate high-performance electrocatalysts to ensure effective and selective process outcomes. Herein, we report that a two-dimensional Cu-based metal-organic framework (MOF), {[Cu(HL)]·H<sub>2</sub>O} <sub><i>n</i></sub> , (<b>Cu-OUC</b>, H<sub>3</sub>L = 5-(2'-carboxylphenoxy)isophthalic acid) acts as a stable electrocatalyst with high efficiency for NO-to-NH<sub>3</sub> conversion. Electrochemical experimental studies showed that in 0.1 M K<sub>2</sub>SO<sub>4</sub> solution, the as-prepared <b>Cu-OUC</b> achieved a peak Faradaic efficiency of 96.91% and a notable NH<sub>3</sub> yield as high as 3415.82 μg h<sup>-1</sup> mg<sup>-1</sup>. The Zn-NO battery in aqueous solution can produce electricity possessing a power density of 2.04 mW cm<sup>-2</sup> while simultaneously achieving an NH<sub>3</sub> yield of 616.92 μg h<sup>-1</sup> mg<sup>-1</sup>. Theoretical calculations revealed that the surface of <b>Cu-OUC</b> effectively facilitates NO activation through a two-way charge transfer mechanism of \"electron acceptance and donation\", with the *NO formation step being the potential-determining stage. The study pioneers the use of a MOF as an electrocatalyst for ambient NO-to-NH<sub>3</sub> conversion.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522898/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1021/jacsau.4c0047510.1021/jacsau.4c00475
Rong Luo, Bao-Jing Li, Zhan-Peng Wang, Ming-Guang Chen, Gui-Lin Zhuang*, Quan Li, Jia-Ping Tong, Wen-Tai Wang*, Yu-Hua Fan and Feng Shao*,
Ambient electrochemical NO reduction presents a dual solution for sustainable NO reduction and NH3 synthesis. However, their complex kinetics and energy demands necessitate high-performance electrocatalysts to ensure effective and selective process outcomes. Herein, we report that a two-dimensional Cu-based metal–organic framework (MOF), {[Cu(HL)]·H2O}n, (Cu-OUC, H3L = 5-(2′-carboxylphenoxy)isophthalic acid) acts as a stable electrocatalyst with high efficiency for NO-to-NH3 conversion. Electrochemical experimental studies showed that in 0.1 M K2SO4 solution, the as-prepared Cu-OUC achieved a peak Faradaic efficiency of 96.91% and a notable NH3 yield as high as 3415.82 μg h–1 mg–1. The Zn–NO battery in aqueous solution can produce electricity possessing a power density of 2.04 mW cm–2 while simultaneously achieving an NH3 yield of 616.92 μg h–1 mg–1. Theoretical calculations revealed that the surface of Cu-OUC effectively facilitates NO activation through a two-way charge transfer mechanism of “electron acceptance and donation”, with the *NO formation step being the potential-determining stage. The study pioneers the use of a MOF as an electrocatalyst for ambient NO-to-NH3 conversion.
{"title":"Two-Dimensional MOF Constructed by a Binuclear-Copper Motif for High-Performance Electrocatalytic NO Reduction to NH3","authors":"Rong Luo, Bao-Jing Li, Zhan-Peng Wang, Ming-Guang Chen, Gui-Lin Zhuang*, Quan Li, Jia-Ping Tong, Wen-Tai Wang*, Yu-Hua Fan and Feng Shao*, ","doi":"10.1021/jacsau.4c0047510.1021/jacsau.4c00475","DOIUrl":"https://doi.org/10.1021/jacsau.4c00475https://doi.org/10.1021/jacsau.4c00475","url":null,"abstract":"<p >Ambient electrochemical NO reduction presents a dual solution for sustainable NO reduction and NH<sub>3</sub> synthesis. However, their complex kinetics and energy demands necessitate high-performance electrocatalysts to ensure effective and selective process outcomes. Herein, we report that a two-dimensional Cu-based metal–organic framework (MOF), {[Cu(HL)]·H<sub>2</sub>O}<sub><i>n</i></sub>, (<b>Cu-OUC</b>, H<sub>3</sub>L = 5-(2′-carboxylphenoxy)isophthalic acid) acts as a stable electrocatalyst with high efficiency for NO-to-NH<sub>3</sub> conversion. Electrochemical experimental studies showed that in 0.1 M K<sub>2</sub>SO<sub>4</sub> solution, the as-prepared <b>Cu-OUC</b> achieved a peak Faradaic efficiency of 96.91% and a notable NH<sub>3</sub> yield as high as 3415.82 μg h<sup>–1</sup> mg<sup>–1</sup>. The Zn–NO battery in aqueous solution can produce electricity possessing a power density of 2.04 mW cm<sup>–2</sup> while simultaneously achieving an NH<sub>3</sub> yield of 616.92 μg h<sup>–1</sup> mg<sup>–1</sup>. Theoretical calculations revealed that the surface of <b>Cu-OUC</b> effectively facilitates NO activation through a two-way charge transfer mechanism of “electron acceptance and donation”, with the *NO formation step being the potential-determining stage. The study pioneers the use of a MOF as an electrocatalyst for ambient NO-to-NH<sub>3</sub> conversion.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00475","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}