首页 > 最新文献

Journal of advanced research最新文献

英文 中文
Disturbance of bile acids profile aggravates the diarrhea induced by capecitabine through inhibiting the Wnt/β-catenin pathway. 通过抑制 Wnt/β-catenin 通路,胆汁酸谱的紊乱会加重卡培他滨引起的腹泻。
Pub Date : 2024-07-22 DOI: 10.1016/j.jare.2024.07.019
Zhipeng Wang, Zhijun Liu, Lili Cui, Jianguo Sun, Chen Bu, Mao Tang, Mingming Li, Shouhong Gao, Wansheng Chen, Xia Tao

Introduction: Diarrhea is the primary dose-limiting side effect of capecitabine(Cap) hindering its clinical application, but the mechanism is unclear. Clarifying this mechanism may enhance the patient compliance and improve the treatment outcome.

Objectives: To assess if the endogenous metabolic profile could prodict the diarrhea induced by Cap and explore and validate underlying mechanisms.

Methods: Untargeted and targeted bile acids(BAs) metabolomics were performed to analyzed the metabolic profile of baseline samples from colorectal cancer(CRC) patients and the association with the diarrhea induced by Cap was assessed. The toxicity of BAs and Cap and its metabolites alone or their combinations to the human normal intestinal epithelial cell(HIEC) was assessed, and the key genes that mediated the BAs-enhanced toxicity of Cap were discovered by RNA-seq and then validated. A mouse model with high exposure levels of BAs was constructed and then treated with Cap to verify the Cap-induced diarrhea enhanced by BAs.

Results: The baseline endogenous metabolic profile showed obviously difference between diarrhea and non-diarrhea CRC patients, and the differential metabolites mainly enriched in BAs metabolism; the deoxycholic acid(DCA) and lithocholic acid(LCA) were selected to be the key BAs that enhanced the toxicity of Cap metabolite 5-FU to the HIEC cell; the DCA and LCA could inhibit the Wnt/β-catenin signaling pathway, which then suppressed the P-glycoprotein and increased the exposure level of 5-FU in the HIEC cell. The results of animal experiment verified that the excessive DCA and LCA could aggravate the Cap-induced diarrhea through inhibiting Wnt/β-catenin-P-glycoprotein pathway.

Conclusions: The disordered BAs metabolic profile showed close relationship with diarrhea induced by Cap, and excessive DCA and LCA were proved to be the key BAs, which could aggravate the Cap-induced diarrhea through inhibiting Wnt/β-catenin-P-glycoprotein pathway.

导言:腹泻是卡培他滨(Cap)的主要剂量限制性副作用,阻碍了其临床应用,但其机制尚不清楚。方法:采用非靶向和靶向胆汁酸(BAs)代谢组学分析结直肠癌(CRC)患者基线样本的代谢谱,并评估其与卡培他滨引起的腹泻的相关性。评估了胆汁酸和Cap及其代谢物单独或组合对人类正常肠上皮细胞(HIEC)的毒性,通过RNA-seq发现并验证了介导胆汁酸增强Cap毒性的关键基因。构建了一个高浓度BAs暴露的小鼠模型,然后用Cap治疗,以验证BAs增强Cap诱导的腹泻。结果腹泻和非腹泻 CRC 患者的基线内源性代谢谱有明显差异,差异代谢物主要富集在 BAs 代谢中;筛选出脱氧胆酸(DCA)和石胆酸(LCA)是增强Cap代谢产物5-FU对HIEC细胞毒性的关键BAs;DCA和LCA可抑制Wnt/β-catenin信号通路,进而抑制P-糖蛋白,增加5-FU在HIEC细胞中的暴露水平。动物实验结果证实,过量的DCA和LCA可通过抑制Wnt/β-catenin-P-糖蛋白通路加重Cap诱导的腹泻。
{"title":"Disturbance of bile acids profile aggravates the diarrhea induced by capecitabine through inhibiting the Wnt/β-catenin pathway.","authors":"Zhipeng Wang, Zhijun Liu, Lili Cui, Jianguo Sun, Chen Bu, Mao Tang, Mingming Li, Shouhong Gao, Wansheng Chen, Xia Tao","doi":"10.1016/j.jare.2024.07.019","DOIUrl":"10.1016/j.jare.2024.07.019","url":null,"abstract":"<p><strong>Introduction: </strong>Diarrhea is the primary dose-limiting side effect of capecitabine(Cap) hindering its clinical application, but the mechanism is unclear. Clarifying this mechanism may enhance the patient compliance and improve the treatment outcome.</p><p><strong>Objectives: </strong>To assess if the endogenous metabolic profile could prodict the diarrhea induced by Cap and explore and validate underlying mechanisms.</p><p><strong>Methods: </strong>Untargeted and targeted bile acids(BAs) metabolomics were performed to analyzed the metabolic profile of baseline samples from colorectal cancer(CRC) patients and the association with the diarrhea induced by Cap was assessed. The toxicity of BAs and Cap and its metabolites alone or their combinations to the human normal intestinal epithelial cell(HIEC) was assessed, and the key genes that mediated the BAs-enhanced toxicity of Cap were discovered by RNA-seq and then validated. A mouse model with high exposure levels of BAs was constructed and then treated with Cap to verify the Cap-induced diarrhea enhanced by BAs.</p><p><strong>Results: </strong>The baseline endogenous metabolic profile showed obviously difference between diarrhea and non-diarrhea CRC patients, and the differential metabolites mainly enriched in BAs metabolism; the deoxycholic acid(DCA) and lithocholic acid(LCA) were selected to be the key BAs that enhanced the toxicity of Cap metabolite 5-FU to the HIEC cell; the DCA and LCA could inhibit the Wnt/β-catenin signaling pathway, which then suppressed the P-glycoprotein and increased the exposure level of 5-FU in the HIEC cell. The results of animal experiment verified that the excessive DCA and LCA could aggravate the Cap-induced diarrhea through inhibiting Wnt/β-catenin-P-glycoprotein pathway.</p><p><strong>Conclusions: </strong>The disordered BAs metabolic profile showed close relationship with diarrhea induced by Cap, and excessive DCA and LCA were proved to be the key BAs, which could aggravate the Cap-induced diarrhea through inhibiting Wnt/β-catenin-P-glycoprotein pathway.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. 用于牙科植入物的碳基生物活性涂层的最新回顾和最新进展。
Pub Date : 2024-07-20 DOI: 10.1016/j.jare.2024.07.016
Nazrah Maher, Anum Mahmood, Muhammad Amber Fareed, Naresh Kumar, Dinesh Rokaya, Muhammad Sohail Zafar

Background: Surface coating of dental implants with a bioactive biomaterial is one of the distinguished approaches to improve the osseointegration potential, antibacterial properties, durability, and clinical success rate of dental implants. Carbon-based bioactive coatings, a unique class of biomaterial that possesses excellent mechanical properties, high chemical and thermal stability, osteoconductivity, corrosion resistance, and biocompatibility, have been utilized successfully for this purpose.

Aim: This review aims to present a comprehensive overview of the structure, properties, coating techniques, and application of the various carbon-based coatings for dental implant applicationswith a particular focuson Carbon-based nanomaterial (CNMs), which is an advanced class of biomaterials.

Key scientific concepts of review: Available articles on carbon coatings for dental implants were reviewed using PubMed, Science Direct, and Google Scholar resources. Carbon-based coatings are non-cytotoxic, highly biocompatible, chemically inert, and osteoconductive, which allows the bone cells to come into close contact with the implant surface and prevents bacterial attachment and growth. Current research and advancements are now more focused on carbon-based nanomaterial (CNMs), as this emerging class of biomaterial possesses the advantage of both nanotechnology and carbon and aligns closely with ideal coating material characteristics. Carbon nanotubes, graphene, and its derivatives have received the most attention for dental implant coating. Various coating techniques are available for carbon-based materials, chosen according to substrate type, application requirements, and desired coating thickness. Vapor deposition technique, plasma spraying, laser deposition, and thermal spraying techniques are most commonly employed to coat the carbon structures on the implant surface. Longer duration trials and monitoring are required to ascertain the role of carbon-based bioactive coating for dental implant applications.

背景:在牙科植入体表面涂覆生物活性生物材料是提高牙科植入体骨结合潜力、抗菌性能、耐久性和临床成功率的重要方法之一。碳基生物活性涂层是一类独特的生物材料,具有优异的机械性能、高化学稳定性和热稳定性、骨传导性、耐腐蚀性和生物相容性,目前已被成功地应用于这一目的:我们利用 PubMed、Science Direct 和 Google Scholar 等资源查阅了有关牙科植入物碳涂层的现有文章。碳基涂层具有无细胞毒性、高度生物相容性、化学惰性和骨传导性,可使骨细胞与种植体表面紧密接触,防止细菌附着和生长。目前的研究和进展更多地集中在碳基纳米材料(CNMs)上,因为这类新兴的生物材料同时具备纳米技术和碳的优势,并且与理想涂层材料的特性非常吻合。碳纳米管、石墨烯及其衍生物在牙科种植体涂层方面最受关注。碳基材料有多种涂层技术,可根据基底类型、应用要求和所需涂层厚度进行选择。最常用的是气相沉积技术、等离子喷涂、激光沉积和热喷涂技术,用于在种植体表面涂覆碳结构。要确定碳基生物活性涂层在牙科种植应用中的作用,还需要进行更长时间的试验和监测。
{"title":"An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications.","authors":"Nazrah Maher, Anum Mahmood, Muhammad Amber Fareed, Naresh Kumar, Dinesh Rokaya, Muhammad Sohail Zafar","doi":"10.1016/j.jare.2024.07.016","DOIUrl":"10.1016/j.jare.2024.07.016","url":null,"abstract":"<p><strong>Background: </strong>Surface coating of dental implants with a bioactive biomaterial is one of the distinguished approaches to improve the osseointegration potential, antibacterial properties, durability, and clinical success rate of dental implants. Carbon-based bioactive coatings, a unique class of biomaterial that possesses excellent mechanical properties, high chemical and thermal stability, osteoconductivity, corrosion resistance, and biocompatibility, have been utilized successfully for this purpose.</p><p><strong>Aim: </strong>This review aims to present a comprehensive overview of the structure, properties, coating techniques, and application of the various carbon-based coatings for dental implant applicationswith a particular focuson Carbon-based nanomaterial (CNMs), which is an advanced class of biomaterials.</p><p><strong>Key scientific concepts of review: </strong>Available articles on carbon coatings for dental implants were reviewed using PubMed, Science Direct, and Google Scholar resources. Carbon-based coatings are non-cytotoxic, highly biocompatible, chemically inert, and osteoconductive, which allows the bone cells to come into close contact with the implant surface and prevents bacterial attachment and growth. Current research and advancements are now more focused on carbon-based nanomaterial (CNMs), as this emerging class of biomaterial possesses the advantage of both nanotechnology and carbon and aligns closely with ideal coating material characteristics. Carbon nanotubes, graphene, and its derivatives have received the most attention for dental implant coating. Various coating techniques are available for carbon-based materials, chosen according to substrate type, application requirements, and desired coating thickness. Vapor deposition technique, plasma spraying, laser deposition, and thermal spraying techniques are most commonly employed to coat the carbon structures on the implant surface. Longer duration trials and monitoring are required to ascertain the role of carbon-based bioactive coating for dental implant applications.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cadmium targeting transcription factor EB to inhibit autophagy-lysosome function contributes to acute kidney injury. 镉靶向转录因子EB抑制自噬-溶酶体功能导致急性肾损伤。
Pub Date : 2024-07-19 DOI: 10.1016/j.jare.2024.07.013
Peng-Fei Dong, Tian-Bin Liu, Kai Chen, Dan Li, Yue Li, Cai-Yu Lian, Zhen-Yong Wang, Lin Wang

Introduction: Environmental and occupational exposure to cadmium (Cd) has been shown to cause acute kidney injury (AKI). Previous studies have demonstrated that autophagy inhibition and lysosomal dysfunction are important mechanisms of Cd-induced AKI.

Objectives: Transcription factor EB (TFEB) is a critical transcription regulator that modulates autophagy-lysosome function, but its role in Cd-induced AKI is yet to be elucidated. Thus, in vivo and in vitro studies were conducted to clarify this issue.

Methods and results: Data firstly showed that reduced TFEB expression and nuclear translocation were evident in Cd-induced AKI models, accompanied by autophagy-lysosome dysfunction. Pharmacological and genetic activation of TFEB improved Cd-induced AKI via alleviating autophagy inhibition and lysosomal dysfunction, whereas Tfeb knockdown further aggravated this phenomenon, suggesting the key role of TFEB in Cd-induced AKI by regulating autophagy. Mechanistically, Cd activated mechanistic target of rapamycin complex 1 (mTORC1) to enhance TFEB phosphorylation and thereby inhibiting TFEB nuclear translocation. Cd also activated chromosome region maintenance 1 (CRM1) to promote TFEB nuclear export. Meanwhile, Cd activated general control non-repressed protein 5 (GCN5) to enhance nuclear TFEB acetylation, resulting in the decreased TFEB transcriptional activity. Moreover, inhibition of CRM1 or GCN5 alleviated Cd-induced AKI by enhancing TFEB activity, respectively.

Conclusion: In summary, these findings reveal that TFEB phosphorylation, nuclear export and acetylation independently suppress TFEB activity to cause Cd-induced AKI via regulating autophagy-lysosome function, suggesting that TFEB activation might be a promising treatment strategy for Cd-induced AKI.

导言:环境和职业暴露于镉(Cd)已被证明可导致急性肾损伤(AKI)。以往的研究表明,自噬抑制和溶酶体功能障碍是镉诱导急性肾损伤的重要机制:目的:转录因子 EB(TFEB)是调节自噬-溶酶体功能的关键转录调节因子,但其在 Cd 诱导的 AKI 中的作用尚未阐明。因此,我们进行了体内和体外研究以澄清这一问题:数据首先表明,在 Cd 诱导的 AKI 模型中,TFEB 的表达和核易位明显减少,同时伴有自噬-溶酶体功能障碍。药理和基因激活TFEB可缓解自噬抑制和溶酶体功能障碍,从而改善Cd诱导的AKI,而敲除Tfeb会进一步加重这一现象,这表明TFEB通过调节自噬在Cd诱导的AKI中起着关键作用。从机制上讲,Cd 激活雷帕霉素复合体 1(mTORC1)的机制靶标,增强 TFEB 磷酸化,从而抑制 TFEB 的核转位。镉还能激活染色体区域维护 1(CRM1),促进 TFEB 核输出。同时,镉激活一般控制非抑制蛋白 5(GCN5),增强 TFEB 核乙酰化,导致 TFEB 转录活性下降。此外,抑制 CRM1 或 GCN5 可分别通过增强 TFEB 的活性来缓解镉诱导的 AKI:总之,这些发现揭示了TFEB磷酸化、核输出和乙酰化通过调节自噬-溶酶体功能独立地抑制TFEB活性,从而导致Cd诱导的AKI,这表明TFEB激活可能是治疗Cd诱导的AKI的一种有前景的策略。
{"title":"Cadmium targeting transcription factor EB to inhibit autophagy-lysosome function contributes to acute kidney injury.","authors":"Peng-Fei Dong, Tian-Bin Liu, Kai Chen, Dan Li, Yue Li, Cai-Yu Lian, Zhen-Yong Wang, Lin Wang","doi":"10.1016/j.jare.2024.07.013","DOIUrl":"10.1016/j.jare.2024.07.013","url":null,"abstract":"<p><strong>Introduction: </strong>Environmental and occupational exposure to cadmium (Cd) has been shown to cause acute kidney injury (AKI). Previous studies have demonstrated that autophagy inhibition and lysosomal dysfunction are important mechanisms of Cd-induced AKI.</p><p><strong>Objectives: </strong>Transcription factor EB (TFEB) is a critical transcription regulator that modulates autophagy-lysosome function, but its role in Cd-induced AKI is yet to be elucidated. Thus, in vivo and in vitro studies were conducted to clarify this issue.</p><p><strong>Methods and results: </strong>Data firstly showed that reduced TFEB expression and nuclear translocation were evident in Cd-induced AKI models, accompanied by autophagy-lysosome dysfunction. Pharmacological and genetic activation of TFEB improved Cd-induced AKI via alleviating autophagy inhibition and lysosomal dysfunction, whereas Tfeb knockdown further aggravated this phenomenon, suggesting the key role of TFEB in Cd-induced AKI by regulating autophagy. Mechanistically, Cd activated mechanistic target of rapamycin complex 1 (mTORC1) to enhance TFEB phosphorylation and thereby inhibiting TFEB nuclear translocation. Cd also activated chromosome region maintenance 1 (CRM1) to promote TFEB nuclear export. Meanwhile, Cd activated general control non-repressed protein 5 (GCN5) to enhance nuclear TFEB acetylation, resulting in the decreased TFEB transcriptional activity. Moreover, inhibition of CRM1 or GCN5 alleviated Cd-induced AKI by enhancing TFEB activity, respectively.</p><p><strong>Conclusion: </strong>In summary, these findings reveal that TFEB phosphorylation, nuclear export and acetylation independently suppress TFEB activity to cause Cd-induced AKI via regulating autophagy-lysosome function, suggesting that TFEB activation might be a promising treatment strategy for Cd-induced AKI.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neopterin mediates sleep deprivation-induced microglial activation resulting in neuronal damage by affecting YY1/HDAC1/TOP1/IL-6 signaling. 蝶呤通过影响YY1/HDAC1/TOP1/IL-6信号传导,介导睡眠剥夺诱导的小胶质细胞活化,导致神经元损伤。
Pub Date : 2024-07-18 DOI: 10.1016/j.jare.2024.07.017
Xuan Li, Ziyu Kong, Ke Cai, Fujian Qi, Sen Zhu

Introduction: Sleep deprivation (SD) is a common disorder in modern society. Hippocampus is an important region of the brain for learning, memory, and emotions. Dysfunction of hippocampus can lead to severe learning and memory disorder, significantly affecting quality of life. SD is accompanied by hippocampal microglia activation and a surge in inflammatory factors, but the precise mechanism remains unclear. Moreover, the ongoing unknown persists regarding how activated microglia in SD lead to neuronal damage. Topoisomerase 1 (TOP1) plays an essential role in the inflammatory process, including the tumor system and viral infection. In this study, we observed a significant elevation in TOP1 levels in the hippocampus of mice subjected to SD. Therefore, we hypothesize that TOP1 may be implicated in SD-induced microglia activation and neuronal damage.

Objectives: To investigate the role of TOP1 in SD-induced microglial activation, neuronal damage, and neurobehavioral impairments, and the molecular basis of SD-induced elevated TOP1 levels.

Methods: TOP1-specific knockout mice in microglia were used to study the effects of TOP1 on microglial activation and neuronal damage. Transcription factor prediction, RNA interference, ChIP-qPCR, ChIP-seq database analysis, and luciferase reporter assays were performed to explore the molecular mechanisms of YY1 transcriptional activation. Untargeted metabolic profiling was employed to investigate the material basis of YY1 transcriptional activation.

Results: Knockdown of TOP1 in hippocampal microglia ameliorates SD-induced microglial activation, inflammatory response, and neuronal damage. Mechanistically, TOP1 mediates the release of IL-6 from microglia, which consequently leads to neuronal dysfunction. Moreover, elevated TOP1 due to SD were associated with neopterin, which was attributed to its promotion of elevated levels of H3K27ac in the TOP1 promoter region by disrupting the binding of YY1 and HDAC1.

Conclusion: The present study reveals that TOP1-mediated microglial activation is critical for SD induced hippocampal neuronal damage and behavioral impairments.

简介睡眠不足(SD)是现代社会的一种常见疾病。海马区是大脑中负责学习、记忆和情绪的重要区域。海马功能障碍可导致严重的学习和记忆障碍,严重影响生活质量。SD 伴随着海马小胶质细胞的激活和炎症因子的激增,但其确切机制仍不清楚。此外,SD 中活化的小胶质细胞如何导致神经元损伤也一直是个未知数。拓扑异构酶 1(TOP1)在包括肿瘤系统和病毒感染在内的炎症过程中发挥着至关重要的作用。在本研究中,我们观察到 SD 小鼠海马中的 TOP1 水平显著升高。因此,我们推测 TOP1 可能与 SD 诱导的小胶质细胞活化和神经元损伤有关:研究 TOP1 在 SD 诱导的小胶质细胞活化、神经元损伤和神经行为障碍中的作用,以及 SD 诱导的 TOP1 水平升高的分子基础:方法:利用特异性小胶质细胞 TOP1 基因敲除小鼠研究 TOP1 对小胶质细胞活化和神经元损伤的影响。通过转录因子预测、RNA干扰、ChIP-qPCR、ChIP-seq数据库分析和荧光素酶报告实验来探索YY1转录激活的分子机制。非靶向代谢分析被用来研究YY1转录激活的物质基础:结果:在海马小胶质细胞中敲除 TOP1 能改善 SD 诱导的小胶质细胞活化、炎症反应和神经元损伤。从机理上讲,TOP1介导小胶质细胞释放IL-6,从而导致神经元功能障碍。此外,SD导致的TOP1升高与新蝶呤有关,这是因为新蝶呤通过破坏YY1和HDAC1的结合促进了TOP1启动子区域H3K27ac水平的升高:本研究揭示了TOP1介导的小胶质细胞活化对SD诱导的海马神经元损伤和行为障碍至关重要。
{"title":"Neopterin mediates sleep deprivation-induced microglial activation resulting in neuronal damage by affecting YY1/HDAC1/TOP1/IL-6 signaling.","authors":"Xuan Li, Ziyu Kong, Ke Cai, Fujian Qi, Sen Zhu","doi":"10.1016/j.jare.2024.07.017","DOIUrl":"10.1016/j.jare.2024.07.017","url":null,"abstract":"<p><strong>Introduction: </strong>Sleep deprivation (SD) is a common disorder in modern society. Hippocampus is an important region of the brain for learning, memory, and emotions. Dysfunction of hippocampus can lead to severe learning and memory disorder, significantly affecting quality of life. SD is accompanied by hippocampal microglia activation and a surge in inflammatory factors, but the precise mechanism remains unclear. Moreover, the ongoing unknown persists regarding how activated microglia in SD lead to neuronal damage. Topoisomerase 1 (TOP1) plays an essential role in the inflammatory process, including the tumor system and viral infection. In this study, we observed a significant elevation in TOP1 levels in the hippocampus of mice subjected to SD. Therefore, we hypothesize that TOP1 may be implicated in SD-induced microglia activation and neuronal damage.</p><p><strong>Objectives: </strong>To investigate the role of TOP1 in SD-induced microglial activation, neuronal damage, and neurobehavioral impairments, and the molecular basis of SD-induced elevated TOP1 levels.</p><p><strong>Methods: </strong>TOP1-specific knockout mice in microglia were used to study the effects of TOP1 on microglial activation and neuronal damage. Transcription factor prediction, RNA interference, ChIP-qPCR, ChIP-seq database analysis, and luciferase reporter assays were performed to explore the molecular mechanisms of YY1 transcriptional activation. Untargeted metabolic profiling was employed to investigate the material basis of YY1 transcriptional activation.</p><p><strong>Results: </strong>Knockdown of TOP1 in hippocampal microglia ameliorates SD-induced microglial activation, inflammatory response, and neuronal damage. Mechanistically, TOP1 mediates the release of IL-6 from microglia, which consequently leads to neuronal dysfunction. Moreover, elevated TOP1 due to SD were associated with neopterin, which was attributed to its promotion of elevated levels of H3K27ac in the TOP1 promoter region by disrupting the binding of YY1 and HDAC1.</p><p><strong>Conclusion: </strong>The present study reveals that TOP1-mediated microglial activation is critical for SD induced hippocampal neuronal damage and behavioral impairments.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nicotinamide riboside alleviates ionizing radiation-induced intestinal senescence by alleviating oxidative damage and regulating intestinal metabolism. 烟酰胺核糖甙通过减轻氧化损伤和调节肠道代谢,缓解电离辐射诱导的肠道衰老。
Pub Date : 2024-07-17 DOI: 10.1016/j.jare.2024.07.010
Tongpeng Yue, Yinping Dong, Qidong Huo, Wenxuan Li, Xinyue Wang, Shiyi Zhang, Huirong Fan, Xin Wu, Xin He, Yu Zhao, Deguan Li

Introduction: The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE.

Objectives: The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms.

Methods: Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection.

Results: Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR.

Conclusion: In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.

导言:肠道经常接受盆腔或腹部放疗,由于其对辐射高度敏感,特别容易受到急性辐射照射的延迟效应(DEARE)的影响。辐射诱发的肠道衰老(DEARE)严重影响了放疗患者的健康和生活质量。然而,目前针对辐射诱导衰老的靶向药物干预还很少。我们的研究结果表明,烟酰胺核糖甙(NR)能有效缓解辐射诱导的肠道衰老,为利用 NR 作为药理制剂对抗肠道 DEARE 提供了重要意义:本研究旨在研究 NR 能否减轻辐射诱导的肠道衰老,并探索其相关机制:雄性 C57BL/6J 小鼠被随机分为 CON 组、IR 组和 IR + NR 组。IR组和IR + NR组的小鼠接受6.0 Gy γ射线全身照射。8 周后,IR + NR 组小鼠通过灌胃接受 NR,剂量为 400 mg/kg/d,持续 21 天。然后小鼠被用于样本采集:结果:我们的研究结果表明,NR 能显著缓解辐射诱导的肠道衰老。此外,我们的研究结果表明,NR 可以减轻氧化损伤,恢复肠道干细胞的正常功能,调节肠道共生生态系统的破坏,并解决代谢异常问题。此外,其潜在机制还包括 NR 激活 SIRT6、SIRT7 和抑制 mTORC1 通路:总之,我们的研究结果揭示了 NR 对辐射诱导的肠道衰老的实质性抑制作用。这些发现为将 NR 用作缓解肠道 DEARE 的潜在治疗药剂提供了宝贵的见解。
{"title":"Nicotinamide riboside alleviates ionizing radiation-induced intestinal senescence by alleviating oxidative damage and regulating intestinal metabolism.","authors":"Tongpeng Yue, Yinping Dong, Qidong Huo, Wenxuan Li, Xinyue Wang, Shiyi Zhang, Huirong Fan, Xin Wu, Xin He, Yu Zhao, Deguan Li","doi":"10.1016/j.jare.2024.07.010","DOIUrl":"10.1016/j.jare.2024.07.010","url":null,"abstract":"<p><strong>Introduction: </strong>The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE.</p><p><strong>Objectives: </strong>The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms.</p><p><strong>Methods: </strong>Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection.</p><p><strong>Results: </strong>Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR.</p><p><strong>Conclusion: </strong>In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevation of p53 sensitizes obese kidney to adriamycin-induced aberrant lipid homeostasis via repressing HNF4α-mediated FGF21 sensitivity. 通过抑制 HNF4α 介导的 FGF21 敏感性,p53 的升高使肥胖肾脏对阿霉素诱导的异常脂质稳态敏感。
Pub Date : 2024-07-15 DOI: 10.1016/j.jare.2024.07.014
Jiahao Li, Yufeng Tang, Guangping Lu, Qingbo Liu, Yuanfang Guo, Jie Wang, Mengjie Xiao, Ting Gao, Xiaohui Zhang, Junlian Gu

Introduction: Lipid metabolism disorders have been confirmed to be closely related to kidney injury caused by adriamycin (ADR) and obesity, respectively. However, it has not been explored whether lipid metabolism disorders appear progressively more severe after ADR-based chemotherapy in the obese state, and the specific molecular mechanism needs to be further clarified.

Objectives: This study was designed to examine the role of p53-fibroblast growth factor 21 (FGF21) axis in ADR-induced renal injury aggravated by high-fat diet (HFD).

Methods: We engineered Fgf21 KO mice and used long-term (4 months) and short-term (0.5 months) HFD feeding, and ADR-injected mice, as well as STZ-induced type 1 diabetic mice and type 2 (db/db) diabetic mice to produce an in vivo model of nephrotoxicity. The specific effects of p53/FGF21 on the regulation of lipid metabolism disorders and its downstream mediators in kidney were subsequently elucidated using a combination of functional and pathological analysis, RNA-sequencing, molecular biology, and in vitro approaches.

Results: Long-term HFD feeding mice exhibited compromised effects of FGF21 on alleviation of renal dysfunction and lipid accumulation following ADR administration. However, these impairments were reversed by p53 inhibitor (pifithrin-α, PFT-α). PFT-α sensitized FGF21 actions in kidney tissues, while knockout of Fgf21 impaired the protective effects of PFT-α on lipid metabolism. Mechanistically, p53 impaired the renal expression of FGF receptor-1 (FGFR1) and thereby developed gradually into FGF21 resistance via inhibiting hepatocyte nuclear factor 4 alpha (HNF4α)-mediated transcriptional activation of Fgfr1. More importantly, exogenous supplementation of FGF21 or PFT-α could not only alleviate ADR-induced lipid metabolism disorder aggravated by HFD, but also reduce lipid accumulation caused by diabetic nephropathy.

Conclusion: Given the difficulties in developing the long-acting recombinant FGF21 analogs for therapeutic applications, sensitizing obesity-impaired FGF21 actions by suppression of p53 might be a therapeutic strategy for maintaining renal metabolic homeostasis during chemotherapy.

简介脂质代谢紊乱已被证实分别与阿霉素(ADR)和肥胖引起的肾损伤密切相关。然而,脂质代谢紊乱是否与肥胖加重的 ADR 引起的肾损伤有关尚未探明,具体的分子机制也有待进一步阐明:本研究旨在探讨p53-成纤维细胞生长因子21(FGF21)轴在高脂饮食(HFD)加重ADR诱导的肾损伤中的作用:方法:我们设计了Fgf21 KO小鼠,并使用长期(4个月)和短期(0.5个月)HFD喂养、ADR注射小鼠以及STZ诱导的1型糖尿病小鼠和2型(db/db)糖尿病小鼠来制作体内肾毒性模型。随后,综合运用功能和病理分析、RNA测序、分子生物学和体外方法,阐明了p53/FGF21对肾脏脂质代谢紊乱及其下游介质调节的具体影响:结果:长期摄入高氟日粮的小鼠在服用 ADR 后,FGF21 对缓解肾功能障碍和脂质积累的作用受到影响。然而,p53 抑制剂(pifithrin-α,PFT-α)可逆转这些损伤。PFT-α 使 FGF21 在肾组织中的作用变得敏感,而 Fgf21 基因敲除则削弱了 PFT-α 对脂质代谢的保护作用。从机理上讲,p53通过抑制肝细胞核因子α(HNF4α)介导的Fgfr1转录激活,损害了肾脏中FGF受体-1(FGFR1)的表达,从而逐渐发展成FGF21抗性。更重要的是,外源性补充FGF21或PFT-α不仅能缓解高脂饮食导致的ADR诱导的脂质代谢紊乱,还能减少糖尿病肾病引起的脂质蓄积:结论:鉴于开发长效重组FGF21类似物用于治疗存在困难,通过抑制p53使肥胖受损的FGF21作用敏感化可能是化疗期间维持肾脏代谢平衡的一种治疗策略。
{"title":"Elevation of p53 sensitizes obese kidney to adriamycin-induced aberrant lipid homeostasis via repressing HNF4α-mediated FGF21 sensitivity.","authors":"Jiahao Li, Yufeng Tang, Guangping Lu, Qingbo Liu, Yuanfang Guo, Jie Wang, Mengjie Xiao, Ting Gao, Xiaohui Zhang, Junlian Gu","doi":"10.1016/j.jare.2024.07.014","DOIUrl":"10.1016/j.jare.2024.07.014","url":null,"abstract":"<p><strong>Introduction: </strong>Lipid metabolism disorders have been confirmed to be closely related to kidney injury caused by adriamycin (ADR) and obesity, respectively. However, it has not been explored whether lipid metabolism disorders appear progressively more severe after ADR-based chemotherapy in the obese state, and the specific molecular mechanism needs to be further clarified.</p><p><strong>Objectives: </strong>This study was designed to examine the role of p53-fibroblast growth factor 21 (FGF21) axis in ADR-induced renal injury aggravated by high-fat diet (HFD).</p><p><strong>Methods: </strong>We engineered Fgf21 KO mice and used long-term (4 months) and short-term (0.5 months) HFD feeding, and ADR-injected mice, as well as STZ-induced type 1 diabetic mice and type 2 (db/db) diabetic mice to produce an in vivo model of nephrotoxicity. The specific effects of p53/FGF21 on the regulation of lipid metabolism disorders and its downstream mediators in kidney were subsequently elucidated using a combination of functional and pathological analysis, RNA-sequencing, molecular biology, and in vitro approaches.</p><p><strong>Results: </strong>Long-term HFD feeding mice exhibited compromised effects of FGF21 on alleviation of renal dysfunction and lipid accumulation following ADR administration. However, these impairments were reversed by p53 inhibitor (pifithrin-α, PFT-α). PFT-α sensitized FGF21 actions in kidney tissues, while knockout of Fgf21 impaired the protective effects of PFT-α on lipid metabolism. Mechanistically, p53 impaired the renal expression of FGF receptor-1 (FGFR1) and thereby developed gradually into FGF21 resistance via inhibiting hepatocyte nuclear factor 4 alpha (HNF4α)-mediated transcriptional activation of Fgfr1. More importantly, exogenous supplementation of FGF21 or PFT-α could not only alleviate ADR-induced lipid metabolism disorder aggravated by HFD, but also reduce lipid accumulation caused by diabetic nephropathy.</p><p><strong>Conclusion: </strong>Given the difficulties in developing the long-acting recombinant FGF21 analogs for therapeutic applications, sensitizing obesity-impaired FGF21 actions by suppression of p53 might be a therapeutic strategy for maintaining renal metabolic homeostasis during chemotherapy.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor necrosis factor-α-treated human adipose-derived stem cells enhance inherent radiation tolerance and alleviate in vivo radiation-induced capsular contracture. 经肿瘤坏死因子-α处理的人脂肪来源干细胞可增强固有辐射耐受性,缓解体内辐射诱发的囊性挛缩。
Pub Date : 2024-07-15 DOI: 10.1016/j.jare.2024.07.011
Chanutchamon Sutthiwanjampa, Seung Hyun Kang, Mi Kyung Kim, Jin Hwa Choi, Han Koo Kim, Soo Hyun Woo, Tae Hui Bae, Woo Joo Kim, Shin Hyuk Kang, Hansoo Park

Introduction: Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses.

Objective: This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment.

Methods: In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed.

Results: In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC.

Conclusion: This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.

导言:乳房切除术后放疗在乳腺癌治疗中起着至关重要的作用,但可能导致炎症反应,造成软组织损伤,特别是辐射诱发的囊性挛缩(RICC),影响乳房重建的效果。众所周知,脂肪源性干细胞(ADSCs)通过旁分泌能力具有再生潜力,并表现出固有的辐射耐受性。据报道,肿瘤坏死因子-α(TNF-α)对 ADSCs 的影响可增强 ADSCs 的旁分泌效应,通过调节炎症反应促进伤口愈合:本研究探讨了硅胶植入物上经TNF-α处理的人ADSCs(T-hASCs)缓解RICC的潜力,假设通过调节辐射暴露环境中的炎症反应来增强对RICC的抑制作用:方法:在体外,T-hASCs 被培养在不同的表面,以评估暴露于 20 Gy 辐射后的存活率。在体内,将T-hASC和未经TNF-α处理的hASC(C-hASCs)涂膜在辐射前植入小鼠体内,并在植入4周和8周后评估RICC的缓解情况。此外,还对T-hASCs释放的生长因子进行了评估:结果:在体外,hASCs表现出明显的辐射耐受性,在暴露于10 Gy辐射后仍能保持稳定的存活率。TNF-α处理进一步增强了辐射耐受性,在20 Gy时,其存活率明显高于C-hASCs。在体内,涂有T-hASC的植入物能有效抑制RICC,减少囊的厚度。T-hASCs 对炎症反应有明显的调节作用,抑制了巨噬细胞的 M1 极化,同时增强了巨噬细胞的 M2 极化。T-hASCs分泌的血管内皮生长因子被认为可诱导巨噬细胞极化,从而减少RICC:这项研究证实,T-hASCs 是一种很有前景的策略,可改善乳房切除术和放疗后乳房重建患者的不良反应。观察到的放射耐受性、抗纤维化作用和免疫调节功能表明,T-hASCs 有可能提高患者的治疗效果和生活质量。为了更广泛的临床应用,还需要进一步的研究和临床试验。
{"title":"Tumor necrosis factor-α-treated human adipose-derived stem cells enhance inherent radiation tolerance and alleviate in vivo radiation-induced capsular contracture.","authors":"Chanutchamon Sutthiwanjampa, Seung Hyun Kang, Mi Kyung Kim, Jin Hwa Choi, Han Koo Kim, Soo Hyun Woo, Tae Hui Bae, Woo Joo Kim, Shin Hyuk Kang, Hansoo Park","doi":"10.1016/j.jare.2024.07.011","DOIUrl":"10.1016/j.jare.2024.07.011","url":null,"abstract":"<p><strong>Introduction: </strong>Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses.</p><p><strong>Objective: </strong>This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment.</p><p><strong>Methods: </strong>In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed.</p><p><strong>Results: </strong>In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC.</p><p><strong>Conclusion: </strong>This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperibone J exerts antidepressant effects by targeting ADK to inhibit microglial P2X7R/TLR4-mediated neuroinflammation. 通过靶向ADK抑制小胶质细胞P2X7R/TLR4介导的神经炎症,Hyperibone J可发挥抗抑郁作用。
Pub Date : 2024-07-15 DOI: 10.1016/j.jare.2024.07.015
Ting Li, Yawei Li, Jinhu Chen, Miaomiao Nan, Xin Zhou, Lifang Yang, Wenjun Xu, Chao Zhang, Lingyi Kong

Introduction: The antidepressant properties of Hypericum species are known. Hyperibone J, a principal component found in the flowers of Hypericum bellum, exhibited in vitro anti-inflammatory effects. However, the antidepressant effects and mechanisms of Hyperibone J remain to be elucidated. Adenosine kinase (ADK) is upregulated in epilepsy and depression and has been implicated in promoting neuroinflammation.

Objectives: This study aimed to explore the impact of Hyperibone J on neuroinflammation-mediated depression and the mechanism underlying this impact.

Methods: This study employed acute and chronic in vivo depression models and an in vitro LPS-induced depression model using BV-2 microglia. The in vivo antidepressant efficacy of Hyperibone J was assessed through behavioral assays. Techniques such as RNA-seq, western blot, qPCR and ELISA were utilized to elucidate the direct target and mechanism of action of Hyperibone J.

Results: Compared with the model group, depression-like behaviors were significantly alleviated in the Hyperibone J group. Furthermore, Hyperibone J mitigated hippocampal neuroinflammation and neuronal damage. RNA-seq suggested that Hyperibone J predominantly influenced inflammation-related pathways. In vitro experiments revealed that Hyperibone J reversed the LPS-induced overexpression and release of inflammatory factors. Network pharmacology and various molecular biology experiments revealed that the potential binding of Hyperibone J at the ASN-312 site of ADK diminished the stability and protein expression of ADK. Mechanistic studies revealed that Hyperibone J attenuated the ADK/ATP/P2X7R/Caspase-1-mediated maturation and release of IL-1β. The study also revealed a significant correlation between Tlr4 expression and depression-like behaviors in mice. Hyperibone J downregulated ADK, inhibiting Tlr4 transcription, which in turn reduced the phosphorylation of NF-κB and the subsequent transcription of Nlrp3, Il-1b, Tnf, and Il-6.

Conclusion: Hyperibone J exerted antineuroinflammatory and antidepressant effects by binding to ADK in microglia, reducing its expression and thereby inhibiting the ATP/P2X7R/Caspase-1 and TLR4/NF-κB pathways. This study provides experimental evidence for the therapeutic potential of Hypericum bellum.

简介金丝桃的抗抑郁特性众所周知。金丝桃花中的主要成分金丝桃酮 J 具有体外抗炎作用。然而,金丝桃酮 J 的抗抑郁作用和机制仍有待阐明。腺苷激酶(ADK)在癫痫和抑郁症中上调,并被认为与促进神经炎症有关:本研究旨在探讨高血脂素 J 对神经炎症介导的抑郁症的影响及其机制:本研究采用了急性和慢性体内抑郁模型,以及利用BV-2小胶质细胞的体外LPS诱导抑郁模型。通过行为实验评估了金丝桃酮 J 的体内抗抑郁功效。利用RNA-seq、Western blot、qPCR和ELISA等技术阐明了Hyperibone J的直接靶点和作用机制:结果:与模型组相比,Hyperibone J组的抑郁样行为明显减轻。此外,Hyperibone J还减轻了海马神经炎症和神经元损伤。RNA-seq表明,Hyperibone J主要影响炎症相关通路。体外实验显示,Hyperibone J 逆转了 LPS 诱导的炎症因子的过度表达和释放。网络药理学和各种分子生物学实验显示,Hyperibone J 与 ADK 的 ASN-312 位点的潜在结合降低了 ADK 的稳定性和蛋白表达。机理研究发现,Hyperibone J 可抑制 ADK/ATP/P2X7R/Caspase-1 介导的 IL-1β 的成熟和释放。研究还发现,Tlr4的表达与小鼠的抑郁样行为之间存在明显的相关性。金丝桃酮 J 下调了 ADK,抑制了 Tlr4 的转录,进而降低了 NF-κB 的磷酸化以及随后 Nlrp3、Il-1b、Tnf 和 Il-6 的转录:结论:Hyperibone J通过与小胶质细胞中的ADK结合,减少其表达,从而抑制ATP/P2X7R/Caspase-1和TLR4/NF-κB途径,发挥抗神经炎和抗抑郁作用。这项研究为金丝桃的治疗潜力提供了实验证据。
{"title":"Hyperibone J exerts antidepressant effects by targeting ADK to inhibit microglial P2X7R/TLR4-mediated neuroinflammation.","authors":"Ting Li, Yawei Li, Jinhu Chen, Miaomiao Nan, Xin Zhou, Lifang Yang, Wenjun Xu, Chao Zhang, Lingyi Kong","doi":"10.1016/j.jare.2024.07.015","DOIUrl":"10.1016/j.jare.2024.07.015","url":null,"abstract":"<p><strong>Introduction: </strong>The antidepressant properties of Hypericum species are known. Hyperibone J, a principal component found in the flowers of Hypericum bellum, exhibited in vitro anti-inflammatory effects. However, the antidepressant effects and mechanisms of Hyperibone J remain to be elucidated. Adenosine kinase (ADK) is upregulated in epilepsy and depression and has been implicated in promoting neuroinflammation.</p><p><strong>Objectives: </strong>This study aimed to explore the impact of Hyperibone J on neuroinflammation-mediated depression and the mechanism underlying this impact.</p><p><strong>Methods: </strong>This study employed acute and chronic in vivo depression models and an in vitro LPS-induced depression model using BV-2 microglia. The in vivo antidepressant efficacy of Hyperibone J was assessed through behavioral assays. Techniques such as RNA-seq, western blot, qPCR and ELISA were utilized to elucidate the direct target and mechanism of action of Hyperibone J.</p><p><strong>Results: </strong>Compared with the model group, depression-like behaviors were significantly alleviated in the Hyperibone J group. Furthermore, Hyperibone J mitigated hippocampal neuroinflammation and neuronal damage. RNA-seq suggested that Hyperibone J predominantly influenced inflammation-related pathways. In vitro experiments revealed that Hyperibone J reversed the LPS-induced overexpression and release of inflammatory factors. Network pharmacology and various molecular biology experiments revealed that the potential binding of Hyperibone J at the ASN-312 site of ADK diminished the stability and protein expression of ADK. Mechanistic studies revealed that Hyperibone J attenuated the ADK/ATP/P2X7R/Caspase-1-mediated maturation and release of IL-1β. The study also revealed a significant correlation between Tlr4 expression and depression-like behaviors in mice. Hyperibone J downregulated ADK, inhibiting Tlr4 transcription, which in turn reduced the phosphorylation of NF-κB and the subsequent transcription of Nlrp3, Il-1b, Tnf, and Il-6.</p><p><strong>Conclusion: </strong>Hyperibone J exerted antineuroinflammatory and antidepressant effects by binding to ADK in microglia, reducing its expression and thereby inhibiting the ATP/P2X7R/Caspase-1 and TLR4/NF-κB pathways. This study provides experimental evidence for the therapeutic potential of Hypericum bellum.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charged polystyrene microplastics inhibit uptake and transformation of 14C-triclosan in hydroponics-cabbage system. 带电聚苯乙烯微塑料抑制了水培白菜系统对 14C 三氯生的吸收和转化。
Pub Date : 2024-07-14 DOI: 10.1016/j.jare.2024.07.009
Enguang Nie, Yandao Chen, Shengwei Xu, Zhiyang Yu, Qingfu Ye, Qing X Li, Zhen Yang, Haiyan Wang

Introduction: Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood.

Objective: This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system.

Methods: 14C-labeling method and liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS) analysis were applied to clarify the bioaccumulation, distribution, and metabolism of triclosan in hydroponics-cabbage system. The distribution of differentially charged PS-MPs in cabbage was investigated by confocal laser scanning microscopy and scanning electron microscopy.

Results: The results showed that MPs had a significant impact on bioaccumulation and metabolism of triclosan in hydroponics-cabbage system. PS-COO-, PS, and PS-NH3+ MPs decreased the bioaccumulation of triclosan in cabbage by 69.1 %, 81.5 %, and 87.7 %, respectively, in comparison with the non-MP treatment (control). PS-MPs also reduced the translocation of triclosan from the roots to the shoots in cabbage, with a reduction rate of 15.6 %, 28.3 %, and 65.8 % for PS-COO-, PS, and PS-NH3+, respectively. In addition, PS-NH3+ profoundly inhibited the triclosan metabolism pathways such as sulfonation, nitration, and nitrosation in the hydroponics-cabbage system. The above findings might be linked to strong adsorption between PS-NH3+ and triclosan, and PS-NH3+ may also potentially inhibit the growth of cabbage. Specially, the amount of triclosan adsorbed on PS-NH3+ was significantly greater than that on PS and PS-COO-. The cabbage biomass was reduced by 76.9 % in PS-NH3+ groups, in comparison with the control.

Conclusion: The uptake and transformation of triclosan in hydroponics-cabbage system were significantly inhibited by charged PS-MPs, especially PS-NH3+. This provides new insights into the fate of triclosan and other PPCPs coexisted with microplastics for potential risk assessments.

导言:自 COVID-19 事件爆发以来,药品和个人护理产品(PPCPs)中的微塑料(MPs)和三氯生的含量明显上升。微塑料和三氯生同时存在于环境中,但它们之间的相互作用以及随后对三氯生在植物中的归宿产生的影响还不甚了解:方法:采用 14C 标记法和液相色谱-四极杆/飞行时间质谱(LC-QTOF-MS)分析法,阐明三氯生在水培-卷心菜系统中的生物累积、分布和代谢情况。通过激光共聚焦扫描显微镜和扫描电子显微镜研究了带不同电荷的 PS-MPs 在卷心菜中的分布:结果表明,MPs 对三氯生在水培-卷心菜系统中的生物累积和代谢有显著影响。与非 MP 处理(对照组)相比,PS-COO-、PS 和 PS-NH3+ MPs 分别降低了三氯生在卷心菜中的生物累积率 69.1%、81.5% 和 87.7%。PS-MPs 还能减少三氯生在卷心菜中从根部向嫩芽的转移,PS-COO-、PS 和 PS-NH3+ 的减少率分别为 15.6%、28.3% 和 65.8%。此外,PS-NH3+ 还能显著抑制水培白菜系统中三氯生的磺化、硝化和亚硝化等代谢途径。上述发现可能与 PS-NH3+ 和三氯生之间的强吸附性有关,PS-NH3+ 也可能抑制卷心菜的生长。特别是,PS-NH3+ 上吸附的三氯生明显多于 PS 和 PS-COO-。与对照组相比,PS-NH3+ 组的卷心菜生物量减少了 76.9%:结论:带电 PS-MPs,特别是 PS-NH3+ 能明显抑制水培白菜系统对三氯生的吸收和转化。这为三氯生和其他与微塑料共存的多氯联苯农药的归宿提供了新的视角,有助于进行潜在的风险评估。
{"title":"Charged polystyrene microplastics inhibit uptake and transformation of <sup>14</sup>C-triclosan in hydroponics-cabbage system.","authors":"Enguang Nie, Yandao Chen, Shengwei Xu, Zhiyang Yu, Qingfu Ye, Qing X Li, Zhen Yang, Haiyan Wang","doi":"10.1016/j.jare.2024.07.009","DOIUrl":"10.1016/j.jare.2024.07.009","url":null,"abstract":"<p><strong>Introduction: </strong>Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood.</p><p><strong>Objective: </strong>This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system.</p><p><strong>Methods: </strong><sup>14</sup>C-labeling method and liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS) analysis were applied to clarify the bioaccumulation, distribution, and metabolism of triclosan in hydroponics-cabbage system. The distribution of differentially charged PS-MPs in cabbage was investigated by confocal laser scanning microscopy and scanning electron microscopy.</p><p><strong>Results: </strong>The results showed that MPs had a significant impact on bioaccumulation and metabolism of triclosan in hydroponics-cabbage system. PS-COO<sup>-</sup>, PS, and PS-NH<sub>3</sub><sup>+</sup> MPs decreased the bioaccumulation of triclosan in cabbage by 69.1 %, 81.5 %, and 87.7 %, respectively, in comparison with the non-MP treatment (control). PS-MPs also reduced the translocation of triclosan from the roots to the shoots in cabbage, with a reduction rate of 15.6 %, 28.3 %, and 65.8 % for PS-COO<sup>-</sup>, PS, and PS-NH<sub>3</sub><sup>+</sup>, respectively. In addition, PS-NH<sub>3</sub><sup>+</sup> profoundly inhibited the triclosan metabolism pathways such as sulfonation, nitration, and nitrosation in the hydroponics-cabbage system. The above findings might be linked to strong adsorption between PS-NH<sub>3</sub><sup>+</sup> and triclosan, and PS-NH<sub>3</sub><sup>+</sup> may also potentially inhibit the growth of cabbage. Specially, the amount of triclosan adsorbed on PS-NH<sub>3</sub><sup>+</sup> was significantly greater than that on PS and PS-COO<sup>-</sup>. The cabbage biomass was reduced by 76.9 % in PS-NH<sub>3</sub><sup>+</sup> groups, in comparison with the control.</p><p><strong>Conclusion: </strong>The uptake and transformation of triclosan in hydroponics-cabbage system were significantly inhibited by charged PS-MPs, especially PS-NH<sub>3</sub><sup>+</sup>. This provides new insights into the fate of triclosan and other PPCPs coexisted with microplastics for potential risk assessments.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergent and divergent transcriptional reprogramming of motor and sensory neurons underlying response to peripheral nerve injury. 运动神经元和感觉神经元对周围神经损伤反应的转录重编程的趋同性和差异性。
Pub Date : 2024-07-14 DOI: 10.1016/j.jare.2024.07.008
Jian Yang, Shuqiang Zhang, Xiaodi Li, Zhifeng Chen, Jie Xu, Jing Chen, Ya Tan, Guicai Li, Bin Yu, Xiaosong Gu, Lian Xu

Introduction: Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited.

Objectives: This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair.

Methods: We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs).

Results: We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury.

Conclusions: This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.

引言运动神经元在起源和周围环境等方面与感觉神经元不同。了解感觉神经元和运动神经元对周围神经损伤(PNI)和再生的分子反应的异同对于开发中枢神经系统再生的有效药物靶点至关重要。然而,对外周神经损伤后感觉神经元和运动神经元分子变化的全基因组比较仍然有限:本研究旨在调查感觉神经元和运动神经元损伤反应的全基因组趋同性和差异性,以确定神经修复的新型药物靶点:我们分析了原位捕获的感觉神经元(SN)和运动神经元(MN)在PNI、视网膜神经节细胞和脊髓中枢神经系统损伤时的两个大规模RNA-seq数据集。此外,我们还将这些数据与其他相关的单细胞水平数据集进行了整合。我们使用 Bootstrap DESeq2 和 WGCNA 来检测和探索差异表达基因(DEGs)的共表达模块:结果:我们发现SN和MN表现出相似的损伤状态,但MN的反应延迟。我们发现了一个包含 274 个共有 DEGs 的保守再生相关模块(cRAM)。其中,47%的 DEGs 可在单细胞分辨率数据集的支持下在损伤神经元中发生变化。我们还在cRAM中发现了一些研究较少的候选基因,包括与转录、泛素化(Rnf122)和神经元-免疫细胞交叉对话相关的基因。进一步的体外实验证实了 Rnf122 在轴突生长中的新作用。对分歧较大的前10% DEGs的分析表明,外在因素(如免疫微环境)和内在因素(如发育)都是导致损伤后SN和MN表达分歧的原因:这项综合分析揭示了SNs和MNs中趋同和分歧的损伤反应基因,为感觉和运动神经元对轴突损伤和随后的再生做出反应的转录重编程提供了新的见解。它还发现了一些新的再生相关候选基因,这些基因可能有助于轴突再生策略的开发。
{"title":"Convergent and divergent transcriptional reprogramming of motor and sensory neurons underlying response to peripheral nerve injury.","authors":"Jian Yang, Shuqiang Zhang, Xiaodi Li, Zhifeng Chen, Jie Xu, Jing Chen, Ya Tan, Guicai Li, Bin Yu, Xiaosong Gu, Lian Xu","doi":"10.1016/j.jare.2024.07.008","DOIUrl":"10.1016/j.jare.2024.07.008","url":null,"abstract":"<p><strong>Introduction: </strong>Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited.</p><p><strong>Objectives: </strong>This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair.</p><p><strong>Methods: </strong>We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs).</p><p><strong>Results: </strong>We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury.</p><p><strong>Conclusions: </strong>This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of advanced research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1