Background: Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge.
Aim of review: This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization.
Key scientific concepts of review: CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
{"title":"Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis.","authors":"Shun-Hua Chen, Chun-Hong Chen, Hsin-Chieh Lin, Shyh-An Yeh, Tsong-Long Hwang, Po-Jen Chen","doi":"10.1016/j.jare.2024.07.026","DOIUrl":"10.1016/j.jare.2024.07.026","url":null,"abstract":"<p><strong>Background: </strong>Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge.</p><p><strong>Aim of review: </strong>This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization.</p><p><strong>Key scientific concepts of review: </strong>CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.jare.2024.07.031
Ruhan Yang, Weijun Yu, Lu Lin, Zhurong Cui, Jiaqi Tang, Guanglong Li, Min Jin, Yuting Gu, Eryi Lu
Introduction: Excessive osteoclastogenesis is a key driver of inflammatory bone loss. Suppressing osteoclastogenesis has always been considered essential for the treatment of inflammatory bone loss. N-acetyltransferase 10 (NAT10) is the sole enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNA, and is involved in cell development. However, its role in osteoclastogenesis and inflammatory bone loss remained elusive.
Objectives: We aimed to clarify the regulatory mechanism of NAT10 and ac4C modification in osteoclastogenesis and inflammatory bone loss.
Methods: NAT10 expression and ac4C modification during osteoclastogenesis were determined by quantitative real-time PCR (qPCR), western blotting, dot blot and immunofluorescent staining, and the effect of NAT10 inhibition on osteoclast differentiation in vitro was measured by the tartrate-resistant acid phosphatase staining, podosome belts staining assay and bone resorption pit assay. Then, acRIP-qPCR and NAT10RIP-qPCR, ac4C site prediction, mRNA decay assay and luciferase reporter assay were performed to further study the underlying mechanisms. At last, mice models of inflammatory bone loss were applied to verify the therapeutic effect of NAT10 inhibition in vivo.
Results: NAT10 expression was upregulated during osteoclast differentiation and highly expressed in alveolar bone osteoclasts from periodontitis mice. Inhibition of NAT10 notably reduced osteoclast differentiation in vitro, as indicated by great reduction of tartrated resistant acid phosphatse positive multinuclear cells, osteoclast-specific gene expression, F-actin ring formation and bone resorption capacity. Mechanistically, NAT10 catalyzed ac4C modification of Fos (encoding AP-1 component c-Fos) mRNA and maintained its stabilization. Besides, NAT10 promoted MAPK signaling pathway and thereby activated AP-1 (c-Fos/c-Jun) transcription for osteoclastogenesis. Therapeutically, administration of Remodelin, the specific inhibitor of NAT10, remarkably impeded the ligature-induced alveolar bone loss and lipopolysaccharide-induced inflammatory calvarial osteolysis.
Conclusions: Our study demonstrated that NAT10-mediated ac4C modification is an important epigenetic regulation of osteoclast differentiation and proposed a promising therapeutic target for inflammatory bone loss.
{"title":"NAT10 promotes osteoclastogenesis in inflammatory bone loss by catalyzing Fos mRNA ac4C modification and upregulating MAPK signaling pathway.","authors":"Ruhan Yang, Weijun Yu, Lu Lin, Zhurong Cui, Jiaqi Tang, Guanglong Li, Min Jin, Yuting Gu, Eryi Lu","doi":"10.1016/j.jare.2024.07.031","DOIUrl":"10.1016/j.jare.2024.07.031","url":null,"abstract":"<p><strong>Introduction: </strong>Excessive osteoclastogenesis is a key driver of inflammatory bone loss. Suppressing osteoclastogenesis has always been considered essential for the treatment of inflammatory bone loss. N-acetyltransferase 10 (NAT10) is the sole enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNA, and is involved in cell development. However, its role in osteoclastogenesis and inflammatory bone loss remained elusive.</p><p><strong>Objectives: </strong>We aimed to clarify the regulatory mechanism of NAT10 and ac4C modification in osteoclastogenesis and inflammatory bone loss.</p><p><strong>Methods: </strong>NAT10 expression and ac4C modification during osteoclastogenesis were determined by quantitative real-time PCR (qPCR), western blotting, dot blot and immunofluorescent staining, and the effect of NAT10 inhibition on osteoclast differentiation in vitro was measured by the tartrate-resistant acid phosphatase staining, podosome belts staining assay and bone resorption pit assay. Then, acRIP-qPCR and NAT10RIP-qPCR, ac4C site prediction, mRNA decay assay and luciferase reporter assay were performed to further study the underlying mechanisms. At last, mice models of inflammatory bone loss were applied to verify the therapeutic effect of NAT10 inhibition in vivo.</p><p><strong>Results: </strong>NAT10 expression was upregulated during osteoclast differentiation and highly expressed in alveolar bone osteoclasts from periodontitis mice. Inhibition of NAT10 notably reduced osteoclast differentiation in vitro, as indicated by great reduction of tartrated resistant acid phosphatse positive multinuclear cells, osteoclast-specific gene expression, F-actin ring formation and bone resorption capacity. Mechanistically, NAT10 catalyzed ac4C modification of Fos (encoding AP-1 component c-Fos) mRNA and maintained its stabilization. Besides, NAT10 promoted MAPK signaling pathway and thereby activated AP-1 (c-Fos/c-Jun) transcription for osteoclastogenesis. Therapeutically, administration of Remodelin, the specific inhibitor of NAT10, remarkably impeded the ligature-induced alveolar bone loss and lipopolysaccharide-induced inflammatory calvarial osteolysis.</p><p><strong>Conclusions: </strong>Our study demonstrated that NAT10-mediated ac4C modification is an important epigenetic regulation of osteoclast differentiation and proposed a promising therapeutic target for inflammatory bone loss.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.jare.2024.07.023
Gang Wang, Wenqing Wu, Nancy P Keller, Xu Guo, Erfeng Li, Junning Ma, Fuguo Xing
Introduction: Ochratoxins (OTs) are worldwide regulated mycotoxins contaminating a variety of food-environment and agro-environment. Several Aspergillus and Pencillium species synthesize OTs from a six-gene biosynthetic gene cluster (BGC) to produce the highly toxic final product OTA. Although many studies on OTA-degrading enzymes were performed, high efficiency enzymes with strong stability are extremely needed, and the OTA degrading mechanism is poorly understood.
Objectives: The study aimed to explore the OT-degradation enzyme and investigate its degradation mechanisms in Metarhizium, which contain an OT biosynthetic gene cluster.
Methods: Phylogenomic relationship combined with RNA expression analysis were used to explore the distribution of OT BGC in fungi. Bioactivity-guided isolation and protein mass spectrometry were conducted to trace the degrading enzymes in Metarhizium spp., and the enzymes were heterologously expressed in E. coli and verified by in vitro assays. Structure prediction and point mutation were performed to reveal the catalytic mechanism of MbAmh1.
Results: Beyond Aspergillus and Pencillium species, three species of the distant phylogenetic taxon Metarhizium contain an expressed OT-like BGC but lack an otaD gene. Unexpectedly, no OT BGC products were found in some Metarhizium species. Instead, Metarhizium metabolized both OTA and OTB to their non-toxic degradation products. This activity of M. brunneum was attributed to an intracellular hydrolase MbAmh1, which was tracked by bioactivity-guided proteomic analysis combined with in vitro reaction. Recombinant MbAmh1 (5 μg/mL) completely degraded 1 μg/mL OTA within 3 min, demonstrating a strong degrading ability towards OTA. Additionally, MbAmh1 showed considerable temperature adaptability ranging from 30 to 70 °C and acidic pH stability ranging from 4.0 to 7.0. Identification of active sites supported the crucial role of metal iron for this enzymatic reaction.
Conclusion: These findings reveal different patterns of OT synthesis in fungi and provide a potential OTA degrading enzyme for industrial applications.
导言:赭曲霉毒素(OTs)是受世界各国管制的霉菌毒素,污染了各种食品环境和农业环境。几种曲霉和青霉菌通过六基因生物合成基因簇(BGC)合成 OTs,产生剧毒的最终产物 OTA。虽然对 OTA 降解酶进行了许多研究,但仍极需高效且稳定性强的酶,而且对 OTA 降解机制的了解也很少:本研究旨在探索含有 OT 生物合成基因簇的 Metarhizium 中的 OT 降解酶并研究其降解机制:方法:采用系统发生组学关系结合RNA表达分析,探讨OT生物合成基因簇在真菌中的分布。通过生物活性引导分离和蛋白质质谱分析,追踪 Metarhizium 属真菌中的降解酶,并在大肠杆菌中进行异源表达和体外实验验证。通过结构预测和点突变揭示了MbAmh1的催化机理:结果:除曲霉和青霉外,远源系统发育类群 Metarhizium 的三个菌种含有表达的 OT 样 BGC,但缺乏 otaD 基因。出乎意料的是,在一些 Metarhizium 物种中没有发现 OT BGC 产物。相反,梅塔利虫将 OTA 和 OTB 代谢为无毒的降解产物。布氏杆菌的这种活性归因于一种细胞内水解酶 MbAmh1,这种水解酶是通过生物活性引导的蛋白质组分析结合体外反应追踪到的。重组 MbAmh1(5 μg/mL)在 3 分钟内完全降解了 1 μg/mL OTA,显示了对 OTA 的强大降解能力。此外,MbAmh1 还表现出相当强的温度适应性(30 至 70 °C)和酸性 pH 稳定性(4.0 至 7.0)。活性位点的鉴定支持了金属铁在该酶促反应中的关键作用:这些发现揭示了真菌合成 OT 的不同模式,并为工业应用提供了一种潜在的 OTA 降解酶。
{"title":"Metarhizium spp. encode an ochratoxin cluster and a high efficiency ochratoxin-degrading amidohydrolase revealed by genomic analysis.","authors":"Gang Wang, Wenqing Wu, Nancy P Keller, Xu Guo, Erfeng Li, Junning Ma, Fuguo Xing","doi":"10.1016/j.jare.2024.07.023","DOIUrl":"10.1016/j.jare.2024.07.023","url":null,"abstract":"<p><strong>Introduction: </strong>Ochratoxins (OTs) are worldwide regulated mycotoxins contaminating a variety of food-environment and agro-environment. Several Aspergillus and Pencillium species synthesize OTs from a six-gene biosynthetic gene cluster (BGC) to produce the highly toxic final product OTA. Although many studies on OTA-degrading enzymes were performed, high efficiency enzymes with strong stability are extremely needed, and the OTA degrading mechanism is poorly understood.</p><p><strong>Objectives: </strong>The study aimed to explore the OT-degradation enzyme and investigate its degradation mechanisms in Metarhizium, which contain an OT biosynthetic gene cluster.</p><p><strong>Methods: </strong>Phylogenomic relationship combined with RNA expression analysis were used to explore the distribution of OT BGC in fungi. Bioactivity-guided isolation and protein mass spectrometry were conducted to trace the degrading enzymes in Metarhizium spp., and the enzymes were heterologously expressed in E. coli and verified by in vitro assays. Structure prediction and point mutation were performed to reveal the catalytic mechanism of MbAmh1.</p><p><strong>Results: </strong>Beyond Aspergillus and Pencillium species, three species of the distant phylogenetic taxon Metarhizium contain an expressed OT-like BGC but lack an otaD gene. Unexpectedly, no OT BGC products were found in some Metarhizium species. Instead, Metarhizium metabolized both OTA and OTB to their non-toxic degradation products. This activity of M. brunneum was attributed to an intracellular hydrolase MbAmh1, which was tracked by bioactivity-guided proteomic analysis combined with in vitro reaction. Recombinant MbAmh1 (5 μg/mL) completely degraded 1 μg/mL OTA within 3 min, demonstrating a strong degrading ability towards OTA. Additionally, MbAmh1 showed considerable temperature adaptability ranging from 30 to 70 °C and acidic pH stability ranging from 4.0 to 7.0. Identification of active sites supported the crucial role of metal iron for this enzymatic reaction.</p><p><strong>Conclusion: </strong>These findings reveal different patterns of OT synthesis in fungi and provide a potential OTA degrading enzyme for industrial applications.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.jare.2024.07.032
Lei Cheng, Mudi Wang, Baolin Yang, Yang Li, Tong Wang, Chuanying Xi, Yuyan Han, Ze Wang, Yanwen Fang, Min Wei, Hua Du, An Xu
Introduction: Ultra-high static magnetic fields (SMFs) have unique advantages in improving medical and academic research. However, the research on the early embryo exposure of ultra-high SMFs is minimal, extensive exploration is indispensable in living organisms.
Objectives: The present study was aimed to study the effects of ultra-high SMFs on the early embryonic division and development of Caenorhabditis elegans (C. elegans).
Methods: Early adult parents containing fertilized eggs in vivo were exposed to SMFs at intensities ranging from 4 T to 27 T. The number of mitotic cells in the reproductive glands of the P0 worms, early embryonic cell spindle localization, embryo hatching and the reproductive as well as developmental indicators of F1 and F2 nematodes were examined as endpoints.
Results: Our results indicated that ultra-high SMFs has no obvious effect on the germ cell cycle, while 14 T and 27 T SMFs significantly increased the proportion of multi-polar spindle formation in early embryonic cells, and reduced the developmental rate and lifespan of C. elegans exposed at the embryonic stage. Spindle abnormalities of early embryonic cells, as well as the down-regulation of genes related to asymmetric embryonic division and the abnormal expression of the non-muscle myosin NMY-2 in the division grooves played a critical role in the slowing down of embryonic development induced by ultra-high SMFs.
Conclusions: This study provided novel information and a new sight for evaluating the biosafety assessment by exposure to ultra-high SMFs at the early embryonic stage in vivo.
简介超高静磁场(SMF)在提高医学和学术研究方面具有独特的优势。然而,关于早期胚胎暴露于超高静磁场的研究却少之又少,在生物体内进行广泛的探索是必不可少的:本研究旨在研究超高 SMF 对 elegans(秀丽隐杆线虫)早期胚胎分裂和发育的影响:方法:将体内含有受精卵的早期成体亲本暴露于强度为 4 T 至 27 T 的 SMF 中。方法:将体内含有受精卵的早期成虫亲本暴露于强度为 4 T 至 27 T 的 SMF 中,以检测 P0 虫生殖腺中有丝分裂细胞的数量、早期胚胎细胞纺锤体定位、胚胎孵化以及 F1 和 F2 线虫的生殖和发育指标:结果表明:超高SMF对生殖细胞周期无明显影响,而14 T和27 T SMF可显著增加早期胚胎细胞多极纺锤体形成的比例,并降低线虫在胚胎期的发育速度和寿命。早期胚胎细胞纺锤体异常以及与不对称胚胎分裂相关的基因下调和非肌球蛋白NMY-2在分裂沟中的异常表达,在超高SMF诱导的胚胎发育减缓中起着关键作用:这项研究为评估体内胚胎早期暴露于超高 SMF 的生物安全性评估提供了新的信息和新的视角。
{"title":"Ultra-high static magnetic fields altered the embryonic division and development in Caenorhabditis elegans via multipolar spindles.","authors":"Lei Cheng, Mudi Wang, Baolin Yang, Yang Li, Tong Wang, Chuanying Xi, Yuyan Han, Ze Wang, Yanwen Fang, Min Wei, Hua Du, An Xu","doi":"10.1016/j.jare.2024.07.032","DOIUrl":"10.1016/j.jare.2024.07.032","url":null,"abstract":"<p><strong>Introduction: </strong>Ultra-high static magnetic fields (SMFs) have unique advantages in improving medical and academic research. However, the research on the early embryo exposure of ultra-high SMFs is minimal, extensive exploration is indispensable in living organisms.</p><p><strong>Objectives: </strong>The present study was aimed to study the effects of ultra-high SMFs on the early embryonic division and development of Caenorhabditis elegans (C. elegans).</p><p><strong>Methods: </strong>Early adult parents containing fertilized eggs in vivo were exposed to SMFs at intensities ranging from 4 T to 27 T. The number of mitotic cells in the reproductive glands of the P0 worms, early embryonic cell spindle localization, embryo hatching and the reproductive as well as developmental indicators of F1 and F2 nematodes were examined as endpoints.</p><p><strong>Results: </strong>Our results indicated that ultra-high SMFs has no obvious effect on the germ cell cycle, while 14 T and 27 T SMFs significantly increased the proportion of multi-polar spindle formation in early embryonic cells, and reduced the developmental rate and lifespan of C. elegans exposed at the embryonic stage. Spindle abnormalities of early embryonic cells, as well as the down-regulation of genes related to asymmetric embryonic division and the abnormal expression of the non-muscle myosin NMY-2 in the division grooves played a critical role in the slowing down of embryonic development induced by ultra-high SMFs.</p><p><strong>Conclusions: </strong>This study provided novel information and a new sight for evaluating the biosafety assessment by exposure to ultra-high SMFs at the early embryonic stage in vivo.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Exaggerated neutrophil recruitment and activation are the major features of pathological alterations in periodontitis, in which neutrophil extracellular traps (NETs) are considered to be responsible for inflammatory periodontal lesions. Despite the critical role of NETs in the development and progression of periodontitis, their specific functions and mechanisms remain unclear.
Objectives: To demonstrate the important functions and specific mechanisms of NETs involved in periodontal immunopathology.
Methods: We performed single-cell RNA sequencing on gingival tissues from both healthy individuals and patients diagnosed with periodontitis. High-dimensional weighted gene co-expression network analysis and pseudotime analysis were then applied to characterize the heterogeneity of neutrophils. Animal models of periodontitis were treated with NETs inhibitors to investigate the effects of NETs in severe periodontitis. Additionally, we established a periodontitis prediction model based on NETs-related genes using six types of machine learning methods. Cell-cell communication analysis was used to identify ligand-receptor pairs among the major cell groups within the immune microenvironment.
Results: We constructed a single-cell atlas of the periodontal microenvironment and obtained nine major cell populations. We further identified a NETs-related subgroup (NrNeu) in neutrophils. An in vivo inhibition experiment confirmed the involvement of NETs in gingival inflammatory infiltration and alveolar bone absorption in severe periodontitis. We further screened three key NETs-related genes (PTGS2, MME and SLC2A3) and verified that they have the potential to predict periodontitis. Moreover, our findings revealed that gingival fibroblasts had the most interactions with NrNeu and that they might facilitate the production of NETs through the MIF-CD74/CXCR4 axis in periodontitis.
Conclusion: This study highlights the pathogenic role of NETs in periodontal immunity and elucidates the specific regulatory relationship by which gingival fibroblasts activate NETs, which provides new insights into the clinical diagnosis and treatment of periodontitis.
{"title":"Single-cell atlas of human gingiva unveils a NETs-related neutrophil subpopulation regulating periodontal immunity.","authors":"Wei Qiu, Ruiming Guo, Hongwen Yu, Xiaoxin Chen, Zehao Chen, Dian Ding, Jindou Zhong, Yumeng Yang, Fuchun Fang","doi":"10.1016/j.jare.2024.07.028","DOIUrl":"10.1016/j.jare.2024.07.028","url":null,"abstract":"<p><strong>Introduction: </strong>Exaggerated neutrophil recruitment and activation are the major features of pathological alterations in periodontitis, in which neutrophil extracellular traps (NETs) are considered to be responsible for inflammatory periodontal lesions. Despite the critical role of NETs in the development and progression of periodontitis, their specific functions and mechanisms remain unclear.</p><p><strong>Objectives: </strong>To demonstrate the important functions and specific mechanisms of NETs involved in periodontal immunopathology.</p><p><strong>Methods: </strong>We performed single-cell RNA sequencing on gingival tissues from both healthy individuals and patients diagnosed with periodontitis. High-dimensional weighted gene co-expression network analysis and pseudotime analysis were then applied to characterize the heterogeneity of neutrophils. Animal models of periodontitis were treated with NETs inhibitors to investigate the effects of NETs in severe periodontitis. Additionally, we established a periodontitis prediction model based on NETs-related genes using six types of machine learning methods. Cell-cell communication analysis was used to identify ligand-receptor pairs among the major cell groups within the immune microenvironment.</p><p><strong>Results: </strong>We constructed a single-cell atlas of the periodontal microenvironment and obtained nine major cell populations. We further identified a NETs-related subgroup (NrNeu) in neutrophils. An in vivo inhibition experiment confirmed the involvement of NETs in gingival inflammatory infiltration and alveolar bone absorption in severe periodontitis. We further screened three key NETs-related genes (PTGS2, MME and SLC2A3) and verified that they have the potential to predict periodontitis. Moreover, our findings revealed that gingival fibroblasts had the most interactions with NrNeu and that they might facilitate the production of NETs through the MIF-CD74/CXCR4 axis in periodontitis.</p><p><strong>Conclusion: </strong>This study highlights the pathogenic role of NETs in periodontal immunity and elucidates the specific regulatory relationship by which gingival fibroblasts activate NETs, which provides new insights into the clinical diagnosis and treatment of periodontitis.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1016/j.jare.2024.07.027
Lin Ding, Xiaofu Wang, Xiaoyun Chen, Xiaoli Xu, Wei Wei, Lei Yang, Yi Ji, Jian Wu, Junfeng Xu, Cheng Peng
Introduction: Genetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation.
Objective: In this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection.
Methods: The RPA reaction used for amplification CaMV35S and NOS targets was contained in the tube base, while the dual CRISPR enzymes were placed in the tube cap. Following centrifugation, the dual CRISPR (Cas13a/Cas12a) detection system was initiated. Fluorescence visualization was used to measure CaMV35S through the FAM channel and NOS through the HEX channel. When using lateral flow strips, CaMV35S was detected using rabbit anti-digoxin (blue line), whilst NOS was identified using anti-mouse FITC (red line). Line intensity was quantified using Image J and depicted graphically.
Results: Detection of the targets was completed in 35 min, with a limit of detection as low as 20 copies. In addition, two analysis systems were developed and they performed well in the MR-DCA assay. In an analysis of 24 blind samples from GM crops with a wide genomic range, MR-DCA gave consistent results with the quantitative PCR method, which indicated high accuracy, applicability and semi-quantitative ability.
Conclusion: The development of MR-DCA represents a significant advancement in the field of GM detection, offering a rapid, sensitive and portable method for multiple target detection that can be used in resource-limited environments.
{"title":"Development of a novel Cas13a/Cas12a-mediated 'one-pot' dual detection assay for genetically modified crops.","authors":"Lin Ding, Xiaofu Wang, Xiaoyun Chen, Xiaoli Xu, Wei Wei, Lei Yang, Yi Ji, Jian Wu, Junfeng Xu, Cheng Peng","doi":"10.1016/j.jare.2024.07.027","DOIUrl":"10.1016/j.jare.2024.07.027","url":null,"abstract":"<p><strong>Introduction: </strong>Genetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation.</p><p><strong>Objective: </strong>In this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection.</p><p><strong>Methods: </strong>The RPA reaction used for amplification CaMV35S and NOS targets was contained in the tube base, while the dual CRISPR enzymes were placed in the tube cap. Following centrifugation, the dual CRISPR (Cas13a/Cas12a) detection system was initiated. Fluorescence visualization was used to measure CaMV35S through the FAM channel and NOS through the HEX channel. When using lateral flow strips, CaMV35S was detected using rabbit anti-digoxin (blue line), whilst NOS was identified using anti-mouse FITC (red line). Line intensity was quantified using Image J and depicted graphically.</p><p><strong>Results: </strong>Detection of the targets was completed in 35 min, with a limit of detection as low as 20 copies. In addition, two analysis systems were developed and they performed well in the MR-DCA assay. In an analysis of 24 blind samples from GM crops with a wide genomic range, MR-DCA gave consistent results with the quantitative PCR method, which indicated high accuracy, applicability and semi-quantitative ability.</p><p><strong>Conclusion: </strong>The development of MR-DCA represents a significant advancement in the field of GM detection, offering a rapid, sensitive and portable method for multiple target detection that can be used in resource-limited environments.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Nav1.6 is closely related to the pathology of Alzheimer's Disease (AD), and astrocytes have recently been identified as a significant source of β-amyloid (Aβ). However, little is known about the connection between Nav1.6 and astrocyte-derived Aβ.
Objective: This study explored the crucial role of Nav1.6 in mediated astrocyte-derived Aβ in AD and knockdown astrocytic Nav1.6 alleviates AD progression by promoting autophagy and lysosome-APP fusion.
Methods: A mouse model for astrocytic Nav1.6 knockdown was constructed to study the effects of astrocytic Nav1.6 on amyloidosis. The role of astrocytic Nav1.6 on autophagy and lysosome-APP(amyloid precursor protein) fusion was used by transmission electron microscope, immunostaining, western blot and patch clamp. Glial cell activation was detected using immunostaining. Neuroplasticity and neural network were assessed using patch-clamp, Golgi stain and EEG recording. Behavioral experiments were performed to evaluate cognitive defects.
Results: Astrocytic Nav1.6 knockdown reduces amyloidosis, alleviates glial cell activation and morphological complexity, improves neuroplasticity and abnormal neural networks, as well as promotes learning and memory abilities in APP/PS1 mice. Astrocytic Nav1.6 knockdown reduces itself-derived Aβ by promoting lysosome- APP fusion, which is related to attenuating reverse Na+-Ca2+ exchange current thus reducing intracellular Ca2+ to facilitate autophagic through AKT/mTOR/ULK pathway.
Conclusion: Our findings unveil the crucial role of astrocyte-specific Nav1.6 in reducing astrocyte-derived Aβ, highlighting its potential as a cell-specific target for modulating AD progression.
{"title":"Cell-specific Nav1.6 knockdown reduced astrocyte-derived Aβ by reverse Na<sup>+</sup>-Ca<sup>2+</sup> transporter-mediated autophagy in alzheimer-like mice.","authors":"Xin Wang, Wei Wu, Guang Yang, Xue-Wei Yang, Xu Ma, Dan-Dan Zhu, Kabir Ahmad, Khizar Khan, Ying-Zi Wang, Ao-Ran Sui, Song-Yu Guo, Yue Kong, Bo Yuan, Tian-Yuan Luo, Cheng-Kang Liu, Peng Zhang, Yue Zhang, Qi-Fa Li, Bin Wang, Qiong Wu, Xue-Fei Wu, Zhi-Cheng Xiao, Quan-Hong Ma, Shao Li","doi":"10.1016/j.jare.2024.07.024","DOIUrl":"10.1016/j.jare.2024.07.024","url":null,"abstract":"<p><strong>Introduction: </strong>Nav1.6 is closely related to the pathology of Alzheimer's Disease (AD), and astrocytes have recently been identified as a significant source of β-amyloid (Aβ). However, little is known about the connection between Nav1.6 and astrocyte-derived Aβ.</p><p><strong>Objective: </strong>This study explored the crucial role of Nav1.6 in mediated astrocyte-derived Aβ in AD and knockdown astrocytic Nav1.6 alleviates AD progression by promoting autophagy and lysosome-APP fusion.</p><p><strong>Methods: </strong>A mouse model for astrocytic Nav1.6 knockdown was constructed to study the effects of astrocytic Nav1.6 on amyloidosis. The role of astrocytic Nav1.6 on autophagy and lysosome-APP(amyloid precursor protein) fusion was used by transmission electron microscope, immunostaining, western blot and patch clamp. Glial cell activation was detected using immunostaining. Neuroplasticity and neural network were assessed using patch-clamp, Golgi stain and EEG recording. Behavioral experiments were performed to evaluate cognitive defects.</p><p><strong>Results: </strong>Astrocytic Nav1.6 knockdown reduces amyloidosis, alleviates glial cell activation and morphological complexity, improves neuroplasticity and abnormal neural networks, as well as promotes learning and memory abilities in APP/PS1 mice. Astrocytic Nav1.6 knockdown reduces itself-derived Aβ by promoting lysosome- APP fusion, which is related to attenuating reverse Na<sup>+</sup>-Ca<sup>2+</sup> exchange current thus reducing intracellular Ca<sup>2+</sup> to facilitate autophagic through AKT/mTOR/ULK pathway.</p><p><strong>Conclusion: </strong>Our findings unveil the crucial role of astrocyte-specific Nav1.6 in reducing astrocyte-derived Aβ, highlighting its potential as a cell-specific target for modulating AD progression.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.jare.2024.07.025
Guangping Lu, Yufeng Tang, Ou Chen, Yuanfang Guo, Mengjie Xiao, Jie Wang, Qingbo Liu, Jiahao Li, Ting Gao, Xiaohui Zhang, Jingjing Zhang, Quanli Cheng, Rong Kuang, Junlian Gu
Introduction: Insulin resistance (IR) is associated with multiple pathological features. Although p53- or TRIB3-orchestrated IR is extensively studied in adipose tissue and liver, the role of p53-TRIB3 axis in myocardial IR remains unknown, and more importantly target-directed therapies of myocardial IR are missing.
Objectives: Considering the beneficial effects of sulforaphane (SFN) on cardiovascular health, it is of particular interest to explore whether SFN protects against myocardial IR with a focus on the regulatory role of p53-TRIB3 axis.
Methods: Mouse models including cardiac specific p53-overexpressing transgenic (p53-cTg) mice and Trib3 knockout (Trib3-KO) mice, combined with primary cardiomyocytes treated with p53 activator (nutlin-3a) and inhibitor (pifithrin-α, PFT-α), or transfected with p53-shRNA and Trib3-shRNA, followed by multiple molecular biological methodologies, were used to investigate the role of p53-TRIB3 axis in SFN actions on myocardial IR.
Results: Here, we report that knockdown of p53 rescued cardiac insulin-stimulated AKT phosphorylation, while up-regulation of p53 by nutlin-3a or p53-cTg mice blunted insulin sensitivity in cardiomyocytes under diabetic conditions. Diabetic attenuation of AKT-mediated cardiac insulin signaling was markedly reversed by SFN in p53-Tgfl/fl mice, but not in p53-cTg mice. Importantly, we identified TRIB3 was elevated in p53-cTg diabetic mice, and confirmed the physical interaction between p53 and TRIB3. Trib3-KO diabetic mice displayed improved insulin sensitivity in the heart. More specifically, the AMPKα-triggered CHOP phosphorylation and degradation were essential for p53 on the transcriptional regulation of Trib3.
Conclusion: Overall, these results indicate that inhibiting the p53-TRIB3 pathway by SFN plays an unsuspected key role in the improvement of myocardial IR, which may be a promising strategy for attenuating diabetic cardiomyopathy (DCM) in diabetic patients.
{"title":"Aberrant activation of p53-TRIB3 axis contributes to diabetic myocardial insulin resistance and sulforaphane protection.","authors":"Guangping Lu, Yufeng Tang, Ou Chen, Yuanfang Guo, Mengjie Xiao, Jie Wang, Qingbo Liu, Jiahao Li, Ting Gao, Xiaohui Zhang, Jingjing Zhang, Quanli Cheng, Rong Kuang, Junlian Gu","doi":"10.1016/j.jare.2024.07.025","DOIUrl":"10.1016/j.jare.2024.07.025","url":null,"abstract":"<p><strong>Introduction: </strong>Insulin resistance (IR) is associated with multiple pathological features. Although p53- or TRIB3-orchestrated IR is extensively studied in adipose tissue and liver, the role of p53-TRIB3 axis in myocardial IR remains unknown, and more importantly target-directed therapies of myocardial IR are missing.</p><p><strong>Objectives: </strong>Considering the beneficial effects of sulforaphane (SFN) on cardiovascular health, it is of particular interest to explore whether SFN protects against myocardial IR with a focus on the regulatory role of p53-TRIB3 axis.</p><p><strong>Methods: </strong>Mouse models including cardiac specific p53-overexpressing transgenic (p53-cTg) mice and Trib3 knockout (Trib3-KO) mice, combined with primary cardiomyocytes treated with p53 activator (nutlin-3a) and inhibitor (pifithrin-α, PFT-α), or transfected with p53-shRNA and Trib3-shRNA, followed by multiple molecular biological methodologies, were used to investigate the role of p53-TRIB3 axis in SFN actions on myocardial IR.</p><p><strong>Results: </strong>Here, we report that knockdown of p53 rescued cardiac insulin-stimulated AKT phosphorylation, while up-regulation of p53 by nutlin-3a or p53-cTg mice blunted insulin sensitivity in cardiomyocytes under diabetic conditions. Diabetic attenuation of AKT-mediated cardiac insulin signaling was markedly reversed by SFN in p53-Tg<sup>fl/fl</sup> mice, but not in p53-cTg mice. Importantly, we identified TRIB3 was elevated in p53-cTg diabetic mice, and confirmed the physical interaction between p53 and TRIB3. Trib3-KO diabetic mice displayed improved insulin sensitivity in the heart. More specifically, the AMPKα-triggered CHOP phosphorylation and degradation were essential for p53 on the transcriptional regulation of Trib3.</p><p><strong>Conclusion: </strong>Overall, these results indicate that inhibiting the p53-TRIB3 pathway by SFN plays an unsuspected key role in the improvement of myocardial IR, which may be a promising strategy for attenuating diabetic cardiomyopathy (DCM) in diabetic patients.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.jare.2024.07.022
Min Hee Yang, Basappa Basappa, Suresha N Deveshegowda, Akshay Ravish, Arunkumar Mohan, Omantheswara Nagaraja, Mahendra Madegowda, Kanchugarakoppal S Rangappa, Amudha Deivasigamani, Vijay Pandey, Peter E Lobie, Kam Man Hui, Gautam Sethi, Kwang Seok Ahn
Introduction: Globally, colorectal cancer (CRC) is the third most common type of cancer, and its treatment frequently includes the utilization of drugs based on antibodies and small molecules. The development of CRC has been linked to various signaling pathways, with the Wnt/β-catenin pathway identified as a key target for intervention.
Objectives: We have explored the impact of imidazopyridine-tethered chalcone-C (CHL-C) in CRC models.
Methods: To determine the influence of CHL-C on apoptosis and autophagy, Western blot analysis, annexin V assay, cell cycle analysis, acridine orange staining, and immunocytochemistry were performed. Next, the activation of the Wnt/β-catenin signaling pathway and the anti-cancer effects of CHL-C in vivo were examined in an orthotopic HCT-116 mouse model.
Results: We describe the synthesis and biological assessment of the CHL series as inhibitors of the viability of HCT-116, SW480, HT-29, HCT-15, and SNU-C2A CRC cell lines. Further biological evaluations showed that CHL-C induced apoptosis and autophagy in down-regulated β-catenin, Wnt3a, FZD-1, Axin-1, and p-GSK-3β (Ser9), and up-regulated p-GSK3β (Tyr216) and β-TrCP. In-depth analysis using structure-based bioinformatics showed that CHL-C strongly binds to β-catenin, with a binding affinity comparable to that of ICG-001, a well-known β-catenin inhibitor. Additionally, our in vivo research showed that CHL-C markedly inhibited tumor growth and triggered the activation of both apoptosis and autophagy in tumor tissues.
Conclusion: CHL-C is capable of inducing apoptosis and autophagy by influencing the Wnt/β-catenin signaling pathway.
{"title":"A novel drug prejudice scaffold-imidazopyridine-conjugate can promote cell death in a colorectal cancer model by binding to β-catenin and suppressing the Wnt signaling pathway.","authors":"Min Hee Yang, Basappa Basappa, Suresha N Deveshegowda, Akshay Ravish, Arunkumar Mohan, Omantheswara Nagaraja, Mahendra Madegowda, Kanchugarakoppal S Rangappa, Amudha Deivasigamani, Vijay Pandey, Peter E Lobie, Kam Man Hui, Gautam Sethi, Kwang Seok Ahn","doi":"10.1016/j.jare.2024.07.022","DOIUrl":"10.1016/j.jare.2024.07.022","url":null,"abstract":"<p><strong>Introduction: </strong>Globally, colorectal cancer (CRC) is the third most common type of cancer, and its treatment frequently includes the utilization of drugs based on antibodies and small molecules. The development of CRC has been linked to various signaling pathways, with the Wnt/β-catenin pathway identified as a key target for intervention.</p><p><strong>Objectives: </strong>We have explored the impact of imidazopyridine-tethered chalcone-C (CHL-C) in CRC models.</p><p><strong>Methods: </strong>To determine the influence of CHL-C on apoptosis and autophagy, Western blot analysis, annexin V assay, cell cycle analysis, acridine orange staining, and immunocytochemistry were performed. Next, the activation of the Wnt/β-catenin signaling pathway and the anti-cancer effects of CHL-C in vivo were examined in an orthotopic HCT-116 mouse model.</p><p><strong>Results: </strong>We describe the synthesis and biological assessment of the CHL series as inhibitors of the viability of HCT-116, SW480, HT-29, HCT-15, and SNU-C2A CRC cell lines. Further biological evaluations showed that CHL-C induced apoptosis and autophagy in down-regulated β-catenin, Wnt3a, FZD-1, Axin-1, and p-GSK-3β (Ser9), and up-regulated p-GSK3β (Tyr216) and β-TrCP. In-depth analysis using structure-based bioinformatics showed that CHL-C strongly binds to β-catenin, with a binding affinity comparable to that of ICG-001, a well-known β-catenin inhibitor. Additionally, our in vivo research showed that CHL-C markedly inhibited tumor growth and triggered the activation of both apoptosis and autophagy in tumor tissues.</p><p><strong>Conclusion: </strong>CHL-C is capable of inducing apoptosis and autophagy by influencing the Wnt/β-catenin signaling pathway.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: One of the methods for pain management involves the use of local anesthesia, which numbs sensations in specific body regions while maintaining consciousness.
Objectives: Considering the certain limitations (e.g., pain, the requirement of skilled professionals, or slow passive diffusion) of conventional delivery methods of local anesthetics, developing alternative strategies that offer minimally invasive yet therapeutically effective delivery systems is of great concern for ophthalmic regional anesthesia.
Methods and results: In this study, a rapidly dissolving cambered microneedle (MNs) patch, composed of poly(vinylpyrrolidone) (PVP) and hyaluronic acid (HA) and served as a delivery system for lidocaine (Lido) in local anesthesia, was developed taking inspiration from the mosquito proboscis's ability to extract blood unnoticed. The lidocaine-containing MNs patch (MNs@Lido) consisted of 25 microneedles with a four-pronged cone structure (height: 500 μm, base width: 275 μm), arranged in a concentric circle pattern on the patch, and displays excellent dissolubility for effective drug delivery of Lido. After confirming good cytocompatibility, MNs@Lido was found to possess adequate rigidity to penetrate the cornea without causing any subsequent injury, and the created corneal pinhole channels completely self-healed within 24 h. Interestingly, MNs@Lido exhibited effective analgesic effects for local anesthesia on both heel skin and eyeball, with the sustained anesthetic effect lasting for at least 30 min.
Conclusions: These findings indicate that the mosquito proboscis-inspired cambered MNs patch provides rapid and painless local anesthesia, overcoming the limitations of conventional delivery methods of local anesthetics, thus opening up new possibilities in the treatment of ophthalmic diseases.
{"title":"A mosquito proboscis-inspired cambered microneedle patch for ophthalmic regional anaesthesia.","authors":"Xuequan Liu, Xuequan Sun, Hongyu Zhu, Rubing Yan, Chang Xu, Fangxing Zhu, Ruijie Xu, Jing Xia, He Dong, Bingcheng Yi, Qihui Zhou","doi":"10.1016/j.jare.2024.07.020","DOIUrl":"10.1016/j.jare.2024.07.020","url":null,"abstract":"<p><strong>Introduction: </strong>One of the methods for pain management involves the use of local anesthesia, which numbs sensations in specific body regions while maintaining consciousness.</p><p><strong>Objectives: </strong>Considering the certain limitations (e.g., pain, the requirement of skilled professionals, or slow passive diffusion) of conventional delivery methods of local anesthetics, developing alternative strategies that offer minimally invasive yet therapeutically effective delivery systems is of great concern for ophthalmic regional anesthesia.</p><p><strong>Methods and results: </strong>In this study, a rapidly dissolving cambered microneedle (MNs) patch, composed of poly(vinylpyrrolidone) (PVP) and hyaluronic acid (HA) and served as a delivery system for lidocaine (Lido) in local anesthesia, was developed taking inspiration from the mosquito proboscis's ability to extract blood unnoticed. The lidocaine-containing MNs patch (MNs@Lido) consisted of 25 microneedles with a four-pronged cone structure (height: 500 μm, base width: 275 μm), arranged in a concentric circle pattern on the patch, and displays excellent dissolubility for effective drug delivery of Lido. After confirming good cytocompatibility, MNs@Lido was found to possess adequate rigidity to penetrate the cornea without causing any subsequent injury, and the created corneal pinhole channels completely self-healed within 24 h. Interestingly, MNs@Lido exhibited effective analgesic effects for local anesthesia on both heel skin and eyeball, with the sustained anesthetic effect lasting for at least 30 min.</p><p><strong>Conclusions: </strong>These findings indicate that the mosquito proboscis-inspired cambered MNs patch provides rapid and painless local anesthesia, overcoming the limitations of conventional delivery methods of local anesthetics, thus opening up new possibilities in the treatment of ophthalmic diseases.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}