Background: The leaves of Elaeagnus angustifolia, belonging to the Elaeagnaceae Juss. family, are known for their medicinal properties for relieving cough and asthma, as well as treating dysentery and diarrhea.
Objective: To establish a rapid qualitative method for the detection of secondary metabolites in leaves of Elaeagnus angustifolia, including the identification and analysis of various secondary metabolites in leaves of Elaeagnus angustifolia.
Method: Samples were separated using a Waters ACQUITY H-Class ultra-performance liquid chromatography (UPLC) system (FTN autosampler, quaternary LC pump) and ACQUITY UPLC® BEH C18 column (1.7 μm, 2.1 mm× 100 mm). The flow rate was set to 0.4 mL/min, the injection volume was 1.0 μL, and the column temperature was set to 45 °C. The mobile phase was methanol (A) with) -0.1% formic acid in water (B). Samples were analyzed by quadrupole time-of-flight mass spectrometry (Q-TOF-MS).
Results: A total of 182 different secondary metabolites were detected from 10 varieties of leaves of Elaeagnus angustifolia, including 77 flavonoids, 20 steroids, 7 alkaloids, 15 amino acids, 18 organic acids, and 45 other compound types.
Conclusions: A method for the rapid analysis of leaves of Elaeagnus angustifolia by UPLC-Q-TOF-MS was established, and the secondary metabolites in leaves of Elaeagnus angustifolia were identified. The enrichment of secondary metabolites in leaves of different varieties of Elaeagnus angustifolia was clarified.
Highlights: The UPLC-Q-TOF-MS method is very fast and possesses a high degree of selectivity, precision, and sensitivity. These findings provide a reliable foundation for the development of medicinal resources derived from Elaeagnus angustifolia leaves.