首页 > 最新文献

Journal of dental research最新文献

英文 中文
Dynamics of Mucosal Integration of Machined versus Anodized Titanium Implants. 机加工钛假体与阳极氧化钛假体的粘膜整合动力学。
Pub Date : 2024-12-20 DOI: 10.1177/00220345241296506
J Dworan, F Aellos, J A Grauer, G Fabbri, K G Harder, S Boccardo, P L Cuevas, I Dawid, M Vicini, J A Helms

The long-term success of dental implants depends on the ability of soft tissues to form a protective barrier, limiting pathogen infiltration into peri-implant tissues. Here, we investigated the impact of an anodized surface modification on mucosal integration. Scanning electron microscopy and surface chemistry characterization were carried out on miniaturized implants. Following placement in fresh extraction sockets of mice, peri-implant tissues were examined at 4 time points. Histology along with quantitative immunohistochemistry for Keratin14, Vimentin, Laminin5, and CD68 were carried out on postimplant day (PID) 3 to assess early events in soft-tissue repair; on PID7, when peri-implant epithelialization was complete; at PID14, when osseointegration was complete; and at PID28, when soft-tissue maturation was nearing completion. In all cases, an intact junctional epithelium served as a reference. These analyses supported 3 conclusions: first, maturation of the peri-implant epithelium (PIE) is a protracted process, consistent with clinical observations. Second, maturation of the soft tissue-implant interface is slower than maturation of the bone-implant interface. Third, there is a benefit, albeit transient, to soft-tissue maturation around an anodized implant surface. Given its prolonged time course, strategies to improve and/or accelerate PIE maturation are likely to have significant clinical benefit.

牙种植体的长期成功取决于软组织形成保护屏障的能力,限制病原体渗入种植体周围组织。在这里,我们研究了阳极表面修饰对粘膜整合的影响。对微型植入物进行了扫描电镜和表面化学表征。在小鼠新鲜拔牙槽内放置后,在4个时间点检查种植体周围组织。在移植后第3天(PID)进行组织病理学和定量免疫组化检测角质蛋白14、Vimentin、Laminin5和CD68,以评估软组织修复的早期事件;PID7为种植体周围上皮化完成时;PID14,骨整合完成;在PID28,软组织成熟接近完成。在所有病例中,完整的连接上皮作为参考。这些分析支持3个结论:第一,种植体周围上皮(PIE)的成熟是一个漫长的过程,与临床观察一致。其次,软组织-种植体界面的成熟要慢于骨-种植体界面的成熟。第三,虽然是短暂的,但对阳极氧化的植入物表面周围的软组织成熟有好处。鉴于其病程较长,改善和/或加速PIE成熟的策略可能具有显著的临床益处。
{"title":"Dynamics of Mucosal Integration of Machined versus Anodized Titanium Implants.","authors":"J Dworan, F Aellos, J A Grauer, G Fabbri, K G Harder, S Boccardo, P L Cuevas, I Dawid, M Vicini, J A Helms","doi":"10.1177/00220345241296506","DOIUrl":"https://doi.org/10.1177/00220345241296506","url":null,"abstract":"<p><p>The long-term success of dental implants depends on the ability of soft tissues to form a protective barrier, limiting pathogen infiltration into peri-implant tissues. Here, we investigated the impact of an anodized surface modification on mucosal integration. Scanning electron microscopy and surface chemistry characterization were carried out on miniaturized implants. Following placement in fresh extraction sockets of mice, peri-implant tissues were examined at 4 time points. Histology along with quantitative immunohistochemistry for Keratin14, Vimentin, Laminin5, and CD68 were carried out on postimplant day (PID) 3 to assess early events in soft-tissue repair; on PID7, when peri-implant epithelialization was complete; at PID14, when osseointegration was complete; and at PID28, when soft-tissue maturation was nearing completion. In all cases, an intact junctional epithelium served as a reference. These analyses supported 3 conclusions: first, maturation of the peri-implant epithelium (PIE) is a protracted process, consistent with clinical observations. Second, maturation of the soft tissue-implant interface is slower than maturation of the bone-implant interface. Third, there is a benefit, albeit transient, to soft-tissue maturation around an anodized implant surface. Given its prolonged time course, strategies to improve and/or accelerate PIE maturation are likely to have significant clinical benefit.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"220345241296506"},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Epigenetic Dysregulations in Head and Neck Squamous Cell Carcinoma. 靶向头颈部鳞状细胞癌的表观遗传失调。
Pub Date : 2024-12-19 DOI: 10.1177/00220345241297122
Y Li, C Lu

Head and neck squamous cell carcinoma (HNSCC) is one of the deadliest human cancers, with the overall 5-year survival rate stagnating in recent decades due to the lack of innovative treatment approaches. Apart from the recently Food and Drug Administration-approved epidermal growth factor receptor inhibitor and immune checkpoint inhibitor, alternative therapeutic strategies that target epigenetic abnormalities, an emerging cancer hallmark, remain to be fully explored. A pathological epigenetic landscape, characterized by widespread reprogramming of chromatin modifications such as DNA methylation and histone modifications, which drives transcription deregulation and genome reorganization, has been extensively documented in numerous cancers, including HNSCC. Growing evidence indicates that these frequent epigenomic alterations play pivotal roles in regulating malignant transformation, promoting metastasis and invasion, and reshaping the tumor microenvironment. Furthermore, these epigenetic changes also present unique vulnerabilities that open new avenues for identifying novel prognostic biomarkers and developing targeted antitumor therapies. In this review, we summarize recent discoveries of epigenetic dysregulations in HNSCC, with a focus on deregulated chromatin modifications, which include aberrant DNA methylation, oncohistone H3 lysine 36 to methionine (H3K36M) mutation, as well as recurrent mutations or altered expression of chromatin-modifying enzymes such as NSD1, EZH2, and KMT2C/D. Importantly, we discuss the various molecular mechanisms underlying the contributions of these epigenetic alterations to HNSCC development, particularly their involvement in deregulated cell proliferation and cell death, metabolic reprogramming, tumor immune evasion, and phenotypic plasticity. Finally, we conclude by highlighting the translational and clinical implications of targeting the epigenetic machinery, which offers promising prospects for overcoming resistance to conventional radiotherapy/chemotherapy and enhancing the response to immunotherapy in HNSCC.

头颈部鳞状细胞癌(HNSCC)是最致命的人类癌症之一,近几十年来,由于缺乏创新的治疗方法,其总体5年生存率停滞不前。除了最近美国食品和药物管理局批准的表皮生长因子受体抑制剂和免疫检查点抑制剂外,针对表观遗传异常(一种新出现的癌症标志)的替代治疗策略仍有待充分探索。病理表观遗传景观的特点是染色质修饰的广泛重编程,如DNA甲基化和组蛋白修饰,其驱动转录失调和基因组重组,已在包括HNSCC在内的许多癌症中得到广泛记录。越来越多的证据表明,这些频繁的表观基因组改变在调节恶性转化、促进转移和侵袭以及重塑肿瘤微环境中起着关键作用。此外,这些表观遗传变化也呈现出独特的脆弱性,为识别新的预后生物标志物和开发靶向抗肿瘤疗法开辟了新的途径。在这篇综述中,我们总结了最近在HNSCC中发现的表观遗传失调,重点是染色质修饰的失调,包括异常DNA甲基化,组蛋白H3赖氨酸36到蛋氨酸(H3K36M)突变,以及染色质修饰酶如NSD1, EZH2和KMT2C/D的复发突变或表达改变。重要的是,我们讨论了这些表观遗传改变对HNSCC发展贡献的各种分子机制,特别是它们参与细胞增殖和细胞死亡,代谢重编程,肿瘤免疫逃避和表型可塑性。最后,我们强调了靶向表观遗传机制的翻译和临床意义,这为克服传统放疗/化疗的耐药性和增强对HNSCC的免疫治疗反应提供了广阔的前景。
{"title":"Targeting Epigenetic Dysregulations in Head and Neck Squamous Cell Carcinoma.","authors":"Y Li, C Lu","doi":"10.1177/00220345241297122","DOIUrl":"https://doi.org/10.1177/00220345241297122","url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) is one of the deadliest human cancers, with the overall 5-year survival rate stagnating in recent decades due to the lack of innovative treatment approaches. Apart from the recently Food and Drug Administration-approved epidermal growth factor receptor inhibitor and immune checkpoint inhibitor, alternative therapeutic strategies that target epigenetic abnormalities, an emerging cancer hallmark, remain to be fully explored. A pathological epigenetic landscape, characterized by widespread reprogramming of chromatin modifications such as DNA methylation and histone modifications, which drives transcription deregulation and genome reorganization, has been extensively documented in numerous cancers, including HNSCC. Growing evidence indicates that these frequent epigenomic alterations play pivotal roles in regulating malignant transformation, promoting metastasis and invasion, and reshaping the tumor microenvironment. Furthermore, these epigenetic changes also present unique vulnerabilities that open new avenues for identifying novel prognostic biomarkers and developing targeted antitumor therapies. In this review, we summarize recent discoveries of epigenetic dysregulations in HNSCC, with a focus on deregulated chromatin modifications, which include aberrant DNA methylation, oncohistone H3 lysine 36 to methionine (H3K36M) mutation, as well as recurrent mutations or altered expression of chromatin-modifying enzymes such as NSD1, EZH2, and KMT2C/D. Importantly, we discuss the various molecular mechanisms underlying the contributions of these epigenetic alterations to HNSCC development, particularly their involvement in deregulated cell proliferation and cell death, metabolic reprogramming, tumor immune evasion, and phenotypic plasticity. Finally, we conclude by highlighting the translational and clinical implications of targeting the epigenetic machinery, which offers promising prospects for overcoming resistance to conventional radiotherapy/chemotherapy and enhancing the response to immunotherapy in HNSCC.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"220345241297122"},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiancestry Genome-Wide Association Study of Early Childhood Caries. 儿童早期龋齿多祖先全基因组关联研究。
Pub Date : 2024-12-19 DOI: 10.1177/00220345241291528
P Shrestha, M Graff, Y Gu, Y Wang, C L Avery, J Ginnis, M A Simancas-Pallares, A G Ferreira Zandoná, R N Alotaibi, E Orlova, H S Ahn, K N Nguyen, H M Highland, D Y Lin, J S Preisser, G D Slade, M L Marazita, K E North, K Divaris

Early childhood caries (ECC) is the most common noncommunicable childhood disease-an important health problem with known environmental and social/behavioral influences lacking consensus genetic risk loci. To address this knowledge gap, we conducted a genome-wide association study of ECC in a multiancestry population of U.S. preschool-age children (N = 6,103) ages 3 to 5 y participating in a community-based epidemiologic study of early childhood oral health. Calibrated examiners used International Caries Detection and Assessment System criteria to measure ECC; the primary trait was the number of primary tooth surfaces with caries experience (i.e., dmfs index). We estimated heritability and concordance rates and conducted genome-wide association analyses to estimate overall genetic effects as well as stratified by sex, household water fluoride, and dietary sugar and leveraged combined gene/gene-environment effects using 2-degree-of-freedom joint tests. Common genetic variants explained 24% of ECC phenotypic variance among unrelated individuals, while concordance rates were 0.64 (95% confidence interval [CI] = 0.42-0.79) among monozygotic twins and 0.44 (95% CI = 0.34-0.53) among first-degree relatives. Across all analyses, we identified 21 novel nonoverlapping genome-wide significant loci (P < 5 × 10-8) and 1 genome-wide significant gene (TAAR6) associated with ECC. The taste receptor activity gene set, with known roles in chemosensing, bacterial recognition, and innate immunity in the oral cavity, was strongly associated with ECC. While no locus remained significant after studywise multiple-testing correction, 3 loci were nominally significant (P < 0.05) and directionally consistent in external cohorts of 285,248 adults (rs1442369, DLGAP1 and rs74606067, RP11-856F16.2) and 18,994 children (rs71327750, SLC41A3). Meanwhile, the strongest marker known to be associated with adult caries (rs1122171, tagging the long noncoding RNA PITX1-AS1) was nominally significant (P = 0.01) and directionally consistent with ECC in our study. Taken together, the results of this study add to the genomics knowledge base for early childhood caries, offer several plausible candidates for future mechanistic studies, and underscore the importance of accounting for sex and pertinent environmental exposures in genetic investigations.

儿童早期龋齿(ECC)是最常见的儿童非传染性疾病,是一种已知环境和社会/行为影响的重要健康问题,缺乏共识的遗传风险位点。为了解决这方面的知识差距,我们在一项以社区为基础的儿童早期口腔健康流行病学研究中,对3至5岁的美国学龄前儿童(N = 6103)进行了一项ECC全基因组关联研究。校正后的审查员使用国际龋齿检测和评估系统标准测量ECC;主要特征是有蛀牙经历的乳牙面数量(即DMFS指数)。我们估计了遗传率和一致性率,并进行了全基因组关联分析,以估计总体遗传效应,并按性别、家庭用水氟化物和膳食糖分层,并利用2自由度联合测试利用基因/基因-环境综合效应。在无亲缘关系的个体中,常见遗传变异解释了24%的ECC表型变异,而同卵双胞胎的一致性率为0.64(95%可信区间[CI] = 0.42-0.79),一级亲缘关系的一致性率为0.44 (95% CI = 0.34-0.53)。在所有的分析中,我们发现了21个新的非重叠全基因组显著位点(P -8)和1个与ECC相关的全基因组显著基因(TAAR6)。味觉受体活性基因组,已知在口腔化学感应、细菌识别和先天免疫中起作用,与ECC密切相关。虽然经多项检验校正后,没有位点保持显著性,但有3个位点(P DLGAP1和rs74606067, RP11-856F16.2)和18,994名儿童(rs71327750, SLC41A3)具有名义显著性。与此同时,已知与成人龋齿相关的最强标记(rs1122171,标记长链非编码RNA PITX1-AS1)在我们的研究中具有名义显著性(P = 0.01),方向与ECC一致。综上所述,本研究的结果增加了早期儿童龋齿的基因组学知识库,为未来的机制研究提供了几个可信的候选对象,并强调了在遗传调查中考虑性别和相关环境暴露的重要性。
{"title":"Multiancestry Genome-Wide Association Study of Early Childhood Caries.","authors":"P Shrestha, M Graff, Y Gu, Y Wang, C L Avery, J Ginnis, M A Simancas-Pallares, A G Ferreira Zandoná, R N Alotaibi, E Orlova, H S Ahn, K N Nguyen, H M Highland, D Y Lin, J S Preisser, G D Slade, M L Marazita, K E North, K Divaris","doi":"10.1177/00220345241291528","DOIUrl":"10.1177/00220345241291528","url":null,"abstract":"<p><p>Early childhood caries (ECC) is the most common noncommunicable childhood disease-an important health problem with known environmental and social/behavioral influences lacking consensus genetic risk loci. To address this knowledge gap, we conducted a genome-wide association study of ECC in a multiancestry population of U.S. preschool-age children (<i>N</i> = 6,103) ages 3 to 5 y participating in a community-based epidemiologic study of early childhood oral health. Calibrated examiners used International Caries Detection and Assessment System criteria to measure ECC; the primary trait was the number of primary tooth surfaces with caries experience (i.e., dmfs index). We estimated heritability and concordance rates and conducted genome-wide association analyses to estimate overall genetic effects as well as stratified by sex, household water fluoride, and dietary sugar and leveraged combined gene/gene-environment effects using 2-degree-of-freedom joint tests. Common genetic variants explained 24% of ECC phenotypic variance among unrelated individuals, while concordance rates were 0.64 (95% confidence interval [CI] = 0.42-0.79) among monozygotic twins and 0.44 (95% CI = 0.34-0.53) among first-degree relatives. Across all analyses, we identified 21 novel nonoverlapping genome-wide significant loci (<i>P</i> < 5 × 10<sup>-8</sup>) and 1 genome-wide significant gene (<i>TAAR6</i>) associated with ECC. The taste receptor activity gene set, with known roles in chemosensing, bacterial recognition, and innate immunity in the oral cavity, was strongly associated with ECC. While no locus remained significant after studywise multiple-testing correction, 3 loci were nominally significant (<i>P</i> < 0.05) and directionally consistent in external cohorts of 285,248 adults (rs1442369, <i>DLGAP1</i> and rs74606067, <i>RP11-856F16.2</i>) and 18,994 children (rs71327750, <i>SLC41A3</i>). Meanwhile, the strongest marker known to be associated with adult caries (rs1122171, tagging the long noncoding RNA <i>PITX1-AS1</i>) was nominally significant (<i>P</i> = 0.01) and directionally consistent with ECC in our study. Taken together, the results of this study add to the genomics knowledge base for early childhood caries, offer several plausible candidates for future mechanistic studies, and underscore the importance of accounting for sex and pertinent environmental exposures in genetic investigations.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"220345241291528"},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Childhood Exposures to Fluorides and Cognitive Neurodevelopment: A Population-Based Longitudinal Study. 儿童早期接触氟化物与认知神经发育:一项基于人群的纵向研究。
Pub Date : 2024-12-18 DOI: 10.1177/00220345241299352
L G Do, A Sawyer, A John Spencer, S Leary, J K Kuring, A L Jones, T Le, C E Reece, D H Ha

It is important to maintain confidence in the risk and benefit balance of major caries-preventive programs using fluoride. The ongoing debate about potential effects of early-life exposures to fluoride on cognitive neurodevelopment requires high-quality scientific evidence. This study aimed to investigate the potential effects of fluoride exposure on cognitive neurodevelopment assessed with the Wechsler Adult Intelligence Scale 4th edition (WAIS-IV) in an Australian population-based sample. The sample was selected from the National Child Oral Health Study (NCOHS) 2012-2014. NCOHS collected data on socioeconomic factors, oral health behaviors, and residential history to estimate percentage lifetime exposure to fluoridated water during the first 5 y of life (%LEFW). NCOHS children were also examined by trained and calibrated examiners to assess dental fluorosis (a reliable and valid individual biomarker of total fluoride intake during early childhood). The sample was followed up in 2022-2023 to collect data on cognitive neurodevelopment (intelligence quotient [IQ]) using the WAIS-IV, which was administered by trained and calibrated qualified psychologists. Multivariable regression models were generated to investigate associations between the 2 exposure measurements (%LEFW and dental fluorosis) with full-scale IQ (FSIQ) scores, controlling for important confounding effects. Hypotheses of noninferiority were also tested, contrasting different levels of exposure to fluoride. Some 357 participants aged 16 to 26 y completed the WAIS-IV, with a mean FSIQ score of 109.2 (95% confidence interval [CI]: 107.8-110.5). The estimates of the multivariable regression models demonstrated slightly higher FSIQ scores among the exposed than the nonexposed. The adjusted β of 100%LEFW versus 0%LEFW was 1.07 (95% CI: -2.86, 5.01) and of having dental fluorosis versus no fluorosis was 0.28 (95% CI: -3.00, 3.57). The hypothesis of noninferiority tests found that FSIQ scores of those exposed and nonexposed to fluoride were equivalent. The study provided consistent evidence that early childhood exposure to fluoride does not have effects on cognitive neurodevelopment.

重要的是要对使用氟化物的主要龋齿预防计划的风险和收益平衡保持信心。关于生命早期接触氟化物对认知神经发育的潜在影响的持续争论需要高质量的科学证据。本研究旨在调查氟化物暴露对认知神经发育的潜在影响,该影响采用韦氏成人智力量表第4版(WAIS-IV)在澳大利亚人群中进行评估。样本选自2012-2014年全国儿童口腔健康研究(NCOHS)。NCOHS收集了有关社会经济因素、口腔健康行为和居住史的数据,以估计生命前5年内终生接触氟化水的百分比(%LEFW)。NCOHS儿童也由训练有素和校准的检查员进行检查,以评估氟斑牙(儿童早期总氟摄入量的可靠和有效的个体生物标志物)。研究人员在2022年至2023年期间对样本进行随访,使用WAIS-IV测试收集认知神经发育(智商[IQ])数据,测试由经过培训和校准的合格心理学家进行。建立多变量回归模型,以研究两种暴露测量值(%LEFW和牙氟中毒)与全面智商(FSIQ)评分之间的关系,控制重要的混杂效应。非劣效性假设也被检验,对比不同程度的氟化物暴露。约357名16至26岁的参与者完成了WAIS-IV,平均FSIQ得分为109.2(95%置信区间[CI]: 107.8-110.5)。多变量回归模型的估计表明,接触者的FSIQ分数略高于未接触者。100%LEFW与0%LEFW的校正β为1.07 (95% CI: -2.86, 5.01),有氟牙症与无氟牙症的校正β为0.28 (95% CI: -3.00, 3.57)。非劣效性测试的假设发现,接触氟化物和未接触氟化物的人的FSIQ分数是相等的。这项研究提供了一致的证据,证明儿童早期接触氟化物对认知神经发育没有影响。
{"title":"Early Childhood Exposures to Fluorides and Cognitive Neurodevelopment: A Population-Based Longitudinal Study.","authors":"L G Do, A Sawyer, A John Spencer, S Leary, J K Kuring, A L Jones, T Le, C E Reece, D H Ha","doi":"10.1177/00220345241299352","DOIUrl":"https://doi.org/10.1177/00220345241299352","url":null,"abstract":"<p><p>It is important to maintain confidence in the risk and benefit balance of major caries-preventive programs using fluoride. The ongoing debate about potential effects of early-life exposures to fluoride on cognitive neurodevelopment requires high-quality scientific evidence. This study aimed to investigate the potential effects of fluoride exposure on cognitive neurodevelopment assessed with the Wechsler Adult Intelligence Scale 4th edition (WAIS-IV) in an Australian population-based sample. The sample was selected from the National Child Oral Health Study (NCOHS) 2012-2014. NCOHS collected data on socioeconomic factors, oral health behaviors, and residential history to estimate percentage lifetime exposure to fluoridated water during the first 5 y of life (%LEFW). NCOHS children were also examined by trained and calibrated examiners to assess dental fluorosis (a reliable and valid individual biomarker of total fluoride intake during early childhood). The sample was followed up in 2022-2023 to collect data on cognitive neurodevelopment (intelligence quotient [IQ]) using the WAIS-IV, which was administered by trained and calibrated qualified psychologists. Multivariable regression models were generated to investigate associations between the 2 exposure measurements (%LEFW and dental fluorosis) with full-scale IQ (FSIQ) scores, controlling for important confounding effects. Hypotheses of noninferiority were also tested, contrasting different levels of exposure to fluoride. Some 357 participants aged 16 to 26 y completed the WAIS-IV, with a mean FSIQ score of 109.2 (95% confidence interval [CI]: 107.8-110.5). The estimates of the multivariable regression models demonstrated slightly higher FSIQ scores among the exposed than the nonexposed. The adjusted β of 100%LEFW versus 0%LEFW was 1.07 (95% CI: -2.86, 5.01) and of having dental fluorosis versus no fluorosis was 0.28 (95% CI: -3.00, 3.57). The hypothesis of noninferiority tests found that FSIQ scores of those exposed and nonexposed to fluoride were equivalent. The study provided consistent evidence that early childhood exposure to fluoride does not have effects on cognitive neurodevelopment.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"220345241299352"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Mandible Fractures in CBCT Scans Using a 3-Stage Neural Network. 利用三阶段神经网络检测 CBCT 扫描中的下颌骨骨折
Pub Date : 2024-12-01 Epub Date: 2024-06-24 DOI: 10.1177/00220345241256618
N van Nistelrooij, S Schitter, P van Lierop, K El Ghoul, D König, M Hanisch, A Tel, T Xi, D G E Thiem, R Smeets, L Dubois, T Flügge, B van Ginneken, S Bergé, S Vinayahalingam

After nasal bone fractures, fractures of the mandible are the most frequently encountered injuries of the facial skeleton. Accurate identification of fracture locations is critical for effectively managing these injuries. To address this need, JawFracNet, an innovative artificial intelligence method, has been developed to enable automated detection of mandibular fractures in cone-beam computed tomography (CBCT) scans. JawFracNet employs a 3-stage neural network model that processes 3-dimensional patches from a CBCT scan. Stage 1 predicts a segmentation mask of the mandible in a patch, which is subsequently used in stage 2 to predict a segmentation of the fractures and in stage 3 to classify whether the patch contains any fracture. The final output of JawFracNet is the fracture segmentation of the entire scan, obtained by aggregating and unifying voxel-level and patch-level predictions. A total of 164 CBCT scans without mandibular fractures and 171 CBCT scans with mandibular fractures were included in this study. Evaluation of JawFracNet demonstrated a precision of 0.978 and a sensitivity of 0.956 in detecting mandibular fractures. The current study proposes the first benchmark for mandibular fracture detection in CBCT scans. Straightforward replication is promoted by publicly sharing the code and providing access to JawFracNet on grand-challenge.org.

继鼻骨骨折之后,下颌骨骨折是面部骨骼最常见的损伤。准确识别骨折位置对于有效处理这些损伤至关重要。为了满足这一需求,我们开发了一种创新的人工智能方法--JawFracNet,用于自动检测锥形束计算机断层扫描(CBCT)中的下颌骨骨折。JawFracNet 采用三阶段神经网络模型,处理 CBCT 扫描的三维斑块。第一阶段预测补丁中下颌骨的分割掩模,第二阶段预测骨折的分割,第三阶段对补丁是否包含骨折进行分类。JawFracNet 的最终输出是整个扫描的骨折分割,它是通过汇总和统一体素级和斑块级预测而获得的。本研究共纳入了 164 个无下颌骨骨折的 CBCT 扫描和 171 个有下颌骨骨折的 CBCT 扫描。对 JawFracNet 的评估表明,在检测下颌骨骨折方面,其精确度为 0.978,灵敏度为 0.956。本研究首次提出了在 CBCT 扫描中检测下颌骨骨折的基准。通过在grand-challenge.org网站上公开共享代码和提供JawFracNet的访问权限,促进了直接复制。
{"title":"Detecting Mandible Fractures in CBCT Scans Using a 3-Stage Neural Network.","authors":"N van Nistelrooij, S Schitter, P van Lierop, K El Ghoul, D König, M Hanisch, A Tel, T Xi, D G E Thiem, R Smeets, L Dubois, T Flügge, B van Ginneken, S Bergé, S Vinayahalingam","doi":"10.1177/00220345241256618","DOIUrl":"10.1177/00220345241256618","url":null,"abstract":"<p><p>After nasal bone fractures, fractures of the mandible are the most frequently encountered injuries of the facial skeleton. Accurate identification of fracture locations is critical for effectively managing these injuries. To address this need, JawFracNet, an innovative artificial intelligence method, has been developed to enable automated detection of mandibular fractures in cone-beam computed tomography (CBCT) scans. JawFracNet employs a 3-stage neural network model that processes 3-dimensional patches from a CBCT scan. Stage 1 predicts a segmentation mask of the mandible in a patch, which is subsequently used in stage 2 to predict a segmentation of the fractures and in stage 3 to classify whether the patch contains any fracture. The final output of JawFracNet is the fracture segmentation of the entire scan, obtained by aggregating and unifying voxel-level and patch-level predictions. A total of 164 CBCT scans without mandibular fractures and 171 CBCT scans with mandibular fractures were included in this study. Evaluation of JawFracNet demonstrated a precision of 0.978 and a sensitivity of 0.956 in detecting mandibular fractures. The current study proposes the first benchmark for mandibular fracture detection in CBCT scans. Straightforward replication is promoted by publicly sharing the code and providing access to JawFracNet on grand-challenge.org.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1384-1391"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Imaging in Dental Research: From Gene Mapping to AI Global Data. 牙科研究中的先进成像技术:从基因图谱到人工智能全球数据。
Pub Date : 2024-12-01 Epub Date: 2024-10-27 DOI: 10.1177/00220345241293040
D T Graves, S E Uribe

Advances in imaging technologies combined with artificial intelligence (AI) are transforming dental, oral, and craniofacial research. This editorial highlights breakthroughs ranging from gene expression mapping to visualizing the availability of global AI data, providing new insights into biological complexity and clinical applications.

成像技术与人工智能(AI)的结合正在改变牙科、口腔和颅面研究。这篇社论重点介绍了从基因表达图谱到可视化全球人工智能数据等方面的突破,为生物复杂性和临床应用提供了新的见解。
{"title":"Advanced Imaging in Dental Research: From Gene Mapping to AI Global Data.","authors":"D T Graves, S E Uribe","doi":"10.1177/00220345241293040","DOIUrl":"10.1177/00220345241293040","url":null,"abstract":"<p><p>Advances in imaging technologies combined with artificial intelligence (AI) are transforming dental, oral, and craniofacial research. This editorial highlights breakthroughs ranging from gene expression mapping to visualizing the availability of global AI data, providing new insights into biological complexity and clinical applications.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1329-1330"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonographic Evaluation of Vascular Response to Mechanical Compression during Induced Gingival Inflammation. 超声波评估牙龈发炎时血管对机械压迫的反应
Pub Date : 2024-12-01 Epub Date: 2024-11-24 DOI: 10.1177/00220345241286807
J Woo, O Kripfgans, I-C Wang, A Samal, A R Betancourt, J C Fenno, H-L Chan

The aim of this study was to evaluate the gingival vascular response to mechanical compression during inflammation using ultrasonography. Four female and 4 male Sinclair mini pigs 18 mo of age were included in the study. Pathogenic bacteria-impregnated silk ligatures were placed around the third premolars (PM3), fourth premolars (PM4), and first molars (M1). Ligatures were placed per quadrant at 2-wk intervals in random order. Ultrasonographic study was performed at 2-wk intervals following baseline until the 10th week. Brightness mode (B-mode) images and color flow cine loops were captured at 2 different conditions: 1 with only coupling gel between the ultrasound transducer and the mucosal surface and 1 with the transducer compressing the mucosal surface. The compression was visually adjusted until minimal to no blood flow was detected in color-flow mode. Compression was facilitated using a solid gel pad attached to the transducer. Strain values were obtained from B-mode images of the gel pad and plotted versus study weeks. The t test comparisons were obtained to the baseline (week 0). Data from female and male pigs were plotted and analyzed separately for comparison. Gel pad strain increased with peak around week 4 and gradually decreased in both sexes. In male pigs, the increase in strain was statistically significant in weeks 2, 4, and 6 of all teeth regions and week 8 of PM4 and M1 regions. In female pigs, the increase in strain was significant in only week 4 of PM4. Higher strain required for stoppage of blood flow implies increased gingival blood flow with inflammation, which corresponds with previous studies. Considerably smaller changes in gel pad strain were noted from female pigs, indicating a smaller increase in gingival blood flow compared with males. This study demonstrated a possible application of intraoral ultrasonography for assessment of gingival inflammation.

本研究的目的是利用超声波成像技术评估牙龈血管在炎症期间对机械压迫的反应。研究对象包括 4 头 18 月龄的雌性辛克莱迷你猪和 4 头雄性辛克莱迷你猪。在第三前臼齿(PM3)、第四前臼齿(PM4)和第一臼齿(M1)周围放置浸有病原菌的丝线结扎。每个象限的结扎间隔为 2 周,顺序随机。从基线开始到第 10 周,每隔 2 周进行一次超声波检查。在两种不同的条件下采集亮度模式(B 型)图像和彩色血流显像环:一种情况是在超声换能器和粘膜表面之间仅使用耦合凝胶,另一种情况是换能器压迫粘膜表面。在彩色血流模式下,通过目测调整压迫程度,直到检测到最小血流或无血流。使用连接到换能器上的固体凝胶垫有助于压迫。从凝胶垫的 B 型图像中获得应变值,并绘制出与研究周数的对比图。与基线(第 0 周)进行 t 检验比较。雌性猪和雄性猪的数据分别绘制和分析,以进行比较。雌猪和雄猪的凝胶垫应变都在第 4 周左右达到峰值并逐渐降低。公猪在第 2、4 和 6 周所有牙齿区域以及第 8 周 PM4 和 M1 区域的应变增加具有统计学意义。在雌猪中,应变的增加仅在 PM4 的第 4 周显著。血流停止所需的应变较高,这意味着牙龈血流随炎症而增加,这与之前的研究相符。雌性猪凝胶垫应变的变化要小得多,这表明与雄性猪相比,牙龈血流的增加较小。这项研究证明了口腔内超声波成像在牙龈炎症评估中的应用可能性。
{"title":"Ultrasonographic Evaluation of Vascular Response to Mechanical Compression during Induced Gingival Inflammation.","authors":"J Woo, O Kripfgans, I-C Wang, A Samal, A R Betancourt, J C Fenno, H-L Chan","doi":"10.1177/00220345241286807","DOIUrl":"10.1177/00220345241286807","url":null,"abstract":"<p><p>The aim of this study was to evaluate the gingival vascular response to mechanical compression during inflammation using ultrasonography. Four female and 4 male Sinclair mini pigs 18 mo of age were included in the study. Pathogenic bacteria-impregnated silk ligatures were placed around the third premolars (PM3), fourth premolars (PM4), and first molars (M1). Ligatures were placed per quadrant at 2-wk intervals in random order. Ultrasonographic study was performed at 2-wk intervals following baseline until the 10th week. Brightness mode (B-mode) images and color flow cine loops were captured at 2 different conditions: 1 with only coupling gel between the ultrasound transducer and the mucosal surface and 1 with the transducer compressing the mucosal surface. The compression was visually adjusted until minimal to no blood flow was detected in color-flow mode. Compression was facilitated using a solid gel pad attached to the transducer. Strain values were obtained from B-mode images of the gel pad and plotted versus study weeks. The <i>t</i> test comparisons were obtained to the baseline (week 0). Data from female and male pigs were plotted and analyzed separately for comparison. Gel pad strain increased with peak around week 4 and gradually decreased in both sexes. In male pigs, the increase in strain was statistically significant in weeks 2, 4, and 6 of all teeth regions and week 8 of PM4 and M1 regions. In female pigs, the increase in strain was significant in only week 4 of PM4. Higher strain required for stoppage of blood flow implies increased gingival blood flow with inflammation, which corresponds with previous studies. Considerably smaller changes in gel pad strain were noted from female pigs, indicating a smaller increase in gingival blood flow compared with males. This study demonstrated a possible application of intraoral ultrasonography for assessment of gingival inflammation.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1403-1411"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Transcriptomics Unravel the Tissue Complexity of Oral Pathogenesis. 空间转录组学揭示口腔发病的组织复杂性
Pub Date : 2024-12-01 Epub Date: 2024-10-09 DOI: 10.1177/00220345241271934
J Haller, N Abedi, A Hafedi, O Shehab, M S Wietecha

Spatial transcriptomics (ST) is a cutting-edge methodology that enables the simultaneous profiling of global gene expression and spatial information within histological tissue sections. Traditional transcriptomic methods lack the spatial resolution required to sufficiently examine the complex interrelationships between cellular regions in diseased and healthy tissue states. We review the general workflows for ST, from specimen processing to ST data analysis and interpretations of the ST dataset using visualizations and cell deconvolution approaches. We show how recent studies used ST to explore the development or pathogenesis of specific craniofacial regions, including the cranium, palate, salivary glands, tongue, floor of mouth, oropharynx, and periodontium. Analyses of cranial suture patency and palatal fusion during development using ST identified spatial patterns of bone morphogenetic protein in sutures and osteogenic differentiation pathways in the palate, in addition to the discovery of several genes expressed at critical locations during craniofacial development. ST of salivary glands from patients with Sjögren's disease revealed co-localization of autoimmune antigens with ductal cells and a subpopulation of acinar cells that was specifically depleted by the dysregulated autoimmune response. ST of head and neck lesions, such as premalignant leukoplakia progressing to established oral squamous cell carcinomas, oral cancers with perineural invasions, and oropharyngeal lesions associated with HPV infection spatially profiled the complex tumor microenvironment, showing functionally important gene signatures of tumor cell differentiation, invasion, and nontumor cell dysregulation within patient biopsies. ST also enabled the localization of periodontal disease-associated gene expression signatures within gingival tissues, including genes involved in inflammation, and the discovery of a fibroblast subtype mediating the transition between innate and adaptive immune responses in periodontitis. The increased use of ST, especially in conjunction with single-cell analyses, promises to improve our understandings of craniofacial development and pathogenesis at unprecedented tissue-level resolution in both space and time.

空间转录组学(ST)是一种前沿方法,可同时分析组织学切片中的全局基因表达和空间信息。传统的转录组学方法缺乏必要的空间分辨率,无法充分研究疾病和健康组织状态下细胞区域之间复杂的相互关系。我们回顾了 ST 的一般工作流程,从标本处理到 ST 数据分析,以及使用可视化和细胞解卷积方法对 ST 数据集进行解读。我们展示了最近的研究如何利用 ST 来探索特定颅面部区域的发育或发病机制,包括颅骨、腭、唾液腺、舌、口底、口咽和牙周。利用 ST 对发育过程中的颅缝通畅性和腭部融合进行分析,确定了缝中骨形态发生蛋白的空间模式和腭部的成骨分化途径,此外还发现了颅面发育过程中在关键位置表达的几个基因。对斯约格伦病患者唾液腺的 ST 发现了自身免疫抗原与导管细胞的共定位,以及因自身免疫反应失调而特异性耗竭的尖突细胞亚群。对头颈部病变(如进展为口腔鳞状细胞癌的前恶性白斑、有神经周围侵犯的口腔癌以及与人乳头瘤病毒感染相关的口咽部病变)进行的 ST 分析对复杂的肿瘤微环境进行了空间剖析,显示了患者活检组织中肿瘤细胞分化、侵袭和非肿瘤细胞失调的重要功能基因特征。ST 还能定位牙龈组织中牙周疾病相关基因的表达特征,包括参与炎症的基因,并发现了一种介导牙周炎先天性免疫反应和适应性免疫反应之间转变的成纤维细胞亚型。越来越多地使用 ST,特别是与单细胞分析相结合,有望在空间和时间上以前所未有的组织级分辨率提高我们对颅面发育和发病机制的认识。
{"title":"Spatial Transcriptomics Unravel the Tissue Complexity of Oral Pathogenesis.","authors":"J Haller, N Abedi, A Hafedi, O Shehab, M S Wietecha","doi":"10.1177/00220345241271934","DOIUrl":"10.1177/00220345241271934","url":null,"abstract":"<p><p>Spatial transcriptomics (ST) is a cutting-edge methodology that enables the simultaneous profiling of global gene expression and spatial information within histological tissue sections. Traditional transcriptomic methods lack the spatial resolution required to sufficiently examine the complex interrelationships between cellular regions in diseased and healthy tissue states. We review the general workflows for ST, from specimen processing to ST data analysis and interpretations of the ST dataset using visualizations and cell deconvolution approaches. We show how recent studies used ST to explore the development or pathogenesis of specific craniofacial regions, including the cranium, palate, salivary glands, tongue, floor of mouth, oropharynx, and periodontium. Analyses of cranial suture patency and palatal fusion during development using ST identified spatial patterns of bone morphogenetic protein in sutures and osteogenic differentiation pathways in the palate, in addition to the discovery of several genes expressed at critical locations during craniofacial development. ST of salivary glands from patients with Sjögren's disease revealed co-localization of autoimmune antigens with ductal cells and a subpopulation of acinar cells that was specifically depleted by the dysregulated autoimmune response. ST of head and neck lesions, such as premalignant leukoplakia progressing to established oral squamous cell carcinomas, oral cancers with perineural invasions, and oropharyngeal lesions associated with HPV infection spatially profiled the complex tumor microenvironment, showing functionally important gene signatures of tumor cell differentiation, invasion, and nontumor cell dysregulation within patient biopsies. ST also enabled the localization of periodontal disease-associated gene expression signatures within gingival tissues, including genes involved in inflammation, and the discovery of a fibroblast subtype mediating the transition between innate and adaptive immune responses in periodontitis. The increased use of ST, especially in conjunction with single-cell analyses, promises to improve our understandings of craniofacial development and pathogenesis at unprecedented tissue-level resolution in both space and time.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1331-1339"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Multi-omics Reveals the Role of the Wnt Modulator, Dkk2, in Palatogenesis'. 空间多组学揭示了 Wnt 调制器 Dkk2 在腭裂发生过程中的作用"。
Pub Date : 2024-12-01 Epub Date: 2024-06-23 DOI: 10.1177/00220345241256600
J O Piña, R Raju, D M Roth, E W Winchester, C Padilla, J Iben, F R Faucz, J L Cotney, R N D'Souza

Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which is the most common of the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study used the Pax9-/- mouse model with a consistent phenotype of cleft secondary palate to investigate the role of Pax9 in the process of palatal osteogenesis. Although prior research has identified the upregulation of Wnt pathway modulators Dkk1 and Dkk2 in Pax9-/- palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between Pax9+ and osteogenic populations. Loss of Pax9 results in spatially restricted osteogenic domains bounded by Dkk2, which normally interfaces with Pax9 in the mesenchyme. Moreover, the loss of Pax9 leads to a disruption in the normal osteodifferentiaion of palatal osteogenic mesenchymal cells. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.

腭裂是颅面综合征中最常见的遗传性疾病,多种遗传和环境病因是腭裂的发病机理。目前对胚胎发育过程中调控腭骨分化和模式化的分子机制的了解还很有限,需要开发创新的诊断和治疗方法。本研究使用具有一致继发性腭裂表型的 Pax9-/- 小鼠模型来研究 Pax9 在腭骨生成过程中的作用。虽然之前的研究发现了Pax9-/-腭间质中Wnt通路调节剂Dkk1和Dkk2的上调,但空间分辨率和技术的限制限制了更有力的分析。在这里,通过原位高度多重靶向单细胞空间谱分析技术验证的单核转录组学和染色质可及性测定的数据表明,Pax9+和成骨细胞群之间存在不同的关系。缺失 Pax9 会导致空间受限的成骨域,该域以 Dkk2 为界,而 Dkk2 通常与间充质中的 Pax9 相互连接。此外,Pax9的缺失还导致腭骨成骨间充质细胞的正常成骨分化过程中断。这些结果表明,依赖于Pax9的Wnt信号调节器会影响腭形成过程中的成骨编程,从而可能导致观察到的腭裂表型。
{"title":"Spatial Multi-omics Reveals the Role of the Wnt Modulator, Dkk2, in Palatogenesis'.","authors":"J O Piña, R Raju, D M Roth, E W Winchester, C Padilla, J Iben, F R Faucz, J L Cotney, R N D'Souza","doi":"10.1177/00220345241256600","DOIUrl":"10.1177/00220345241256600","url":null,"abstract":"<p><p>Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which is the most common of the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study used the <i>Pax9</i><sup>-/-</sup> mouse model with a consistent phenotype of cleft secondary palate to investigate the role of <i>Pax9</i> in the process of palatal osteogenesis. Although prior research has identified the upregulation of Wnt pathway modulators <i>Dkk1</i> and <i>Dkk2</i> in <i>Pax9</i><sup>-/-</sup> palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between <i>Pax9+</i> and osteogenic populations. Loss of <i>Pax9</i> results in spatially restricted osteogenic domains bounded by <i>Dkk2</i>, which normally interfaces with <i>Pax9</i> in the mesenchyme. Moreover, the loss of <i>Pax9</i> leads to a disruption in the normal osteodifferentiaion of palatal osteogenic mesenchymal cells. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1412-1420"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Visualization of Oral Microbial Consortia. 改进口腔微生物群的可视化。
Pub Date : 2024-12-01 Epub Date: 2024-06-03 DOI: 10.1177/00220345241251784
S T Ramirez-Puebla, J L Mark Welch, G G Borisy

Bacteria on the tongue dorsum (TD) form consortia tens to hundreds of microns in diameter organized around a core of epithelial cells. Whole-mount preparations have been instrumental in revealing their organization and specific microbial associations. However, their thickness and intricate 3-dimensional complexity present challenges for a comprehensive spatial analysis. To overcome these challenges, we employed a complementary approach: embedding in hydrophilic plastic followed by sectioning and postsectioning labeling. Samples were labeled by hybridization with multiplexed fluorescent oligonucleotide probes and visualized by spectral imaging and linear unmixing. Application of this strategy to TD biofilms improved the visualization of bacteria that were difficult to resolve in whole-mount imaging. Actinomyces, previously detected as patches, became resolved at the single-cell level. The filamentous taxa Leptotrichia and Lachnospiraceae, located at the core of the consortium, were regularly visualized whereas previously they were rarely detected when using whole mounts. Streptococcus salivarius, heterogeneously detected in whole mounts, were regularly and homogenously observed. Two-dimensional images provide valuable information about the organization of bacterial biofilms. However, they offer only a single plane of view for objects that can extend to hundreds of microns in thickness, and information obtained from such images may not always reflect the complexity of a 3-dimensional object. We combined serial physical sectioning with optical sectioning to facilitate the 3-dimensional reconstruction of consortia, spanning over 100 µm in thickness. Our work showcases the use of hydrophilic plastic embedding and sectioning for examining the structure of TD biofilms through spectral imaging fluorescence in situ hybridization. The result was improved visualization of important members of the human oral microbiome. This technique serves as a complementary method to the previously employed whole-mount analysis, offering its own set of advantages and limitations. Addressing the spatial complexity of bacterial consortia demands a multifaceted approach for a comprehensive and effective analysis.

舌背(TD)上的细菌围绕上皮细胞核心形成直径数十到数百微米的联合体。整片制备有助于揭示它们的组织和特定的微生物关联。然而,它们的厚度和错综复杂的三维复杂性给全面的空间分析带来了挑战。为了克服这些挑战,我们采用了一种补充方法:将样本包埋在亲水性塑料中,然后进行切片和切片后标记。样品通过与多重荧光寡核苷酸探针杂交进行标记,并通过光谱成像和线性非混合成像进行可视化。将这一策略应用于 TD 生物膜,可改善整片成像中难以分辨的细菌的可视化。以前检测到的片状放线菌,现在可以在单细胞水平上分辨出来。位于菌群核心的丝状类群 Leptotrichia 和 Lachnospiraceae 也能经常被观察到,而以前在使用全装片时很少能检测到它们。唾液链球菌(Streptococcus salivarius)在整片装片中检测不均一,而在二维图像中则可以定期观察到。二维图像提供了有关细菌生物膜组织的宝贵信息。然而,对于厚度可达数百微米的物体,二维图像只能提供单一视角,而且从二维图像中获得的信息并不总能反映三维物体的复杂性。我们将序列物理切片与光学切片相结合,促进了厚度超过 100 微米的联合体的三维重建。我们的工作展示了如何利用亲水性塑料包埋和切片技术,通过光谱成像荧光原位杂交技术检查 TD 生物膜的结构。结果改善了人类口腔微生物群重要成员的可视化。这项技术是对之前采用的整片分析方法的补充,有其自身的优势和局限性。要解决细菌群的空间复杂性问题,需要采用多方面的方法进行全面有效的分析。
{"title":"Improved Visualization of Oral Microbial Consortia.","authors":"S T Ramirez-Puebla, J L Mark Welch, G G Borisy","doi":"10.1177/00220345241251784","DOIUrl":"10.1177/00220345241251784","url":null,"abstract":"<p><p>Bacteria on the tongue dorsum (TD) form consortia tens to hundreds of microns in diameter organized around a core of epithelial cells. Whole-mount preparations have been instrumental in revealing their organization and specific microbial associations. However, their thickness and intricate 3-dimensional complexity present challenges for a comprehensive spatial analysis. To overcome these challenges, we employed a complementary approach: embedding in hydrophilic plastic followed by sectioning and postsectioning labeling. Samples were labeled by hybridization with multiplexed fluorescent oligonucleotide probes and visualized by spectral imaging and linear unmixing. Application of this strategy to TD biofilms improved the visualization of bacteria that were difficult to resolve in whole-mount imaging. <i>Actinomyces</i>, previously detected as patches, became resolved at the single-cell level. The filamentous taxa <i>Leptotrichia</i> and Lachnospiraceae, located at the core of the consortium, were regularly visualized whereas previously they were rarely detected when using whole mounts. <i>Streptococcus salivarius</i>, heterogeneously detected in whole mounts, were regularly and homogenously observed. Two-dimensional images provide valuable information about the organization of bacterial biofilms. However, they offer only a single plane of view for objects that can extend to hundreds of microns in thickness, and information obtained from such images may not always reflect the complexity of a 3-dimensional object. We combined serial physical sectioning with optical sectioning to facilitate the 3-dimensional reconstruction of consortia, spanning over 100 µm in thickness. Our work showcases the use of hydrophilic plastic embedding and sectioning for examining the structure of TD biofilms through spectral imaging fluorescence in situ hybridization. The result was improved visualization of important members of the human oral microbiome. This technique serves as a complementary method to the previously employed whole-mount analysis, offering its own set of advantages and limitations. Addressing the spatial complexity of bacterial consortia demands a multifaceted approach for a comprehensive and effective analysis.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"1421-1427"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of dental research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1