Pub Date : 2024-08-01Epub Date: 2024-06-24DOI: 10.1177/00220345241256306
T Komori, V Kram, S Perry, H T Pham, P Jani, T M Kilts, K Watanabe, D G Kim, D Martin, M F Young
The periodontal ligament (PDL) is a fibrillar connective tissue that lies between the alveolar bone and the tooth and is composed of highly specialized extracellular matrix (ECM) molecules and a heterogeneous population of cells that are responsible for collagen formation, immune response, bone formation, and chewing force sensation. Type VI collagen (COL6), a widely distributed ECM molecule, plays a critical role in the structural integrity and mechanical properties of various tissues including muscle, tendon, bone, cartilage, and skin. However, its role in the PDL remains largely unknown. Our study shows that deficiency of COL6 impairs PDL fibrillogenesis and exacerbates tissue destruction in ligature-induced periodontitis (LIP). We found that COL6-deficient mice exhibited increased bone loss and degraded PDL in LIP and that fibroblasts expressing high levels of Col6α2 are pivotal in ECM organization and cell-ECM interactions. Moreover, COL6 deficiency in the PDL led to an increased number of fibroblasts geared toward the inflammatory response. We also observed that cultured COL6-deficient fibroblasts from the PDL exhibited decreased expression of genes related to collagen fiber turnover and ECM organization as well as migration and proliferation. Our findings suggest that COL6 plays a crucial role in the PDL, influencing fibroblast function in fibrillogenesis and affecting the immune response in periodontitis. These insights advance our understanding of the molecular mechanisms underlying PDL maturation and periodontal disease.
{"title":"Type VI Collagen Deficiency Causes Enhanced Periodontal Tissue Destruction.","authors":"T Komori, V Kram, S Perry, H T Pham, P Jani, T M Kilts, K Watanabe, D G Kim, D Martin, M F Young","doi":"10.1177/00220345241256306","DOIUrl":"10.1177/00220345241256306","url":null,"abstract":"<p><p>The periodontal ligament (PDL) is a fibrillar connective tissue that lies between the alveolar bone and the tooth and is composed of highly specialized extracellular matrix (ECM) molecules and a heterogeneous population of cells that are responsible for collagen formation, immune response, bone formation, and chewing force sensation. Type VI collagen (COL6), a widely distributed ECM molecule, plays a critical role in the structural integrity and mechanical properties of various tissues including muscle, tendon, bone, cartilage, and skin. However, its role in the PDL remains largely unknown. Our study shows that deficiency of COL6 impairs PDL fibrillogenesis and exacerbates tissue destruction in ligature-induced periodontitis (LIP). We found that COL6-deficient mice exhibited increased bone loss and degraded PDL in LIP and that fibroblasts expressing high levels of <i>Col6α2</i> are pivotal in ECM organization and cell-ECM interactions. Moreover, COL6 deficiency in the PDL led to an increased number of fibroblasts geared toward the inflammatory response. We also observed that cultured COL6-deficient fibroblasts from the PDL exhibited decreased expression of genes related to collagen fiber turnover and ECM organization as well as migration and proliferation. Our findings suggest that COL6 plays a crucial role in the PDL, influencing fibroblast function in fibrillogenesis and affecting the immune response in periodontitis. These insights advance our understanding of the molecular mechanisms underlying PDL maturation and periodontal disease.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"878-888"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-08-05DOI: 10.1177/00220345241261980
B Srivichit, C Thonusin, R Aeimlapa, A Arinno, T Chunchai, N Charoenphandhu, N Chattipakorn, S C Chattipakorn
Evidence concerning the osteotoxic effects of chemotherapy (doxorubicin) has been previously described. Periodontitis also progressively increases in patients receiving chemotherapy; however, the beneficial effects of melatonin and metformin on the alleviation of doxorubicin-induced osteotoxicity have never been investigated. Therefore, we investigated the negative impact of doxorubicin on alveolar bone homeostasis and the benefits of melatonin and metformin on the attenuation of doxorubicin-induced alveolar bone toxicity. Male Wistar rats were divided into 4 groups to receive either 1 mL of normal saline solution as a control group, 3 mg/kg of doxorubicin, 3 mg/kg of doxorubicin plus 10 mg/kg of melatonin, or 3 mg/kg of doxorubicin plus 250 mg/kg of metformin. Doxorubicin treatment was given on days 0, 4, 8, 15, 22, and 29, while interventions were given daily on days 0 to 29. Following euthanasia, blood and alveolar bones were collected for evaluation of oxidative stress, bone remodeling, inflammation, microarchitecture, and periodontal condition. We found that doxorubicin increased systemic oxidative stress, decreased antioxidative capacity, increased inflammation, decreased bone formation, increased bone reabsorption, impaired microarchitecture, and impaired periodontal condition of the alveolar bone. Although cotreatment with melatonin or metformin resulted in some improvement in these parameters, cotreatment with melatonin was more effective than cotreatment with metformin in terms of decreasing oxidative stress, reducing bone resorption, and improving microarchitecture and periodontal condition. All of these findings highlight the potential for antioxidants, especially melatonin, to ameliorate doxorubicin-induced alveolar bone toxicity.
{"title":"Melatonin and Metformin Mitigate Doxorubicin-Induced Alveolar Bone Toxicity.","authors":"B Srivichit, C Thonusin, R Aeimlapa, A Arinno, T Chunchai, N Charoenphandhu, N Chattipakorn, S C Chattipakorn","doi":"10.1177/00220345241261980","DOIUrl":"10.1177/00220345241261980","url":null,"abstract":"<p><p>Evidence concerning the osteotoxic effects of chemotherapy (doxorubicin) has been previously described. Periodontitis also progressively increases in patients receiving chemotherapy; however, the beneficial effects of melatonin and metformin on the alleviation of doxorubicin-induced osteotoxicity have never been investigated. Therefore, we investigated the negative impact of doxorubicin on alveolar bone homeostasis and the benefits of melatonin and metformin on the attenuation of doxorubicin-induced alveolar bone toxicity. Male Wistar rats were divided into 4 groups to receive either 1 mL of normal saline solution as a control group, 3 mg/kg of doxorubicin, 3 mg/kg of doxorubicin plus 10 mg/kg of melatonin, or 3 mg/kg of doxorubicin plus 250 mg/kg of metformin. Doxorubicin treatment was given on days 0, 4, 8, 15, 22, and 29, while interventions were given daily on days 0 to 29. Following euthanasia, blood and alveolar bones were collected for evaluation of oxidative stress, bone remodeling, inflammation, microarchitecture, and periodontal condition. We found that doxorubicin increased systemic oxidative stress, decreased antioxidative capacity, increased inflammation, decreased bone formation, increased bone reabsorption, impaired microarchitecture, and impaired periodontal condition of the alveolar bone. Although cotreatment with melatonin or metformin resulted in some improvement in these parameters, cotreatment with melatonin was more effective than cotreatment with metformin in terms of decreasing oxidative stress, reducing bone resorption, and improving microarchitecture and periodontal condition. All of these findings highlight the potential for antioxidants, especially melatonin, to ameliorate doxorubicin-induced alveolar bone toxicity.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"916-925"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-08-05DOI: 10.1177/00220345241259417
K L Kirkwood, T E Van Dyke, C L Kirkwood, L Zhang, J Panezai, A E Duran-Pinedo, E L Figgins, L K Ryan, J J Frias-Lopez, G Diamond
There is a strong association between vitamin D levels and periodontal disease based on numerous epidemiological studies. We have previously shown that experimental deficiency of serum vitamin D in mice leads to gingival inflammation and alveolar bone loss. Treatment of cultured oral epithelial cells with the active form of vitamin D, 1,25(OH)2 vitamin D3 (1,25(OH)2D3), inhibits the extracellular growth and intracellular invasion of bacteria associated with periodontal disease. Maintenance of periodontal health may be due in part to the anti-inflammatory activities of vitamin D. Furthermore, this hormone can induce the expression of an antimicrobial peptide in cultured oral epithelial cells. We have shown that oral epithelial cells are capable of converting inactive vitamin D to the active form, suggesting that topical treatment of the oral epithelium with inactive vitamin D could prevent the development of periodontitis. We subjected mice to ligature-induced periodontitis (LIP), followed by daily treatment with inactive vitamin D or 1,25(OH)2D3. Treatment with both forms led to a reduction in ligature-induced bone loss and inflammation. Gingival tissues obtained from vitamin D-treated LIP showed production of specialized proresolving mediators (SPM) of inflammation. To examine the mechanism, we demonstrated that apical treatment of 3-dimensional cultures of primary gingival epithelial cells with vitamin D prevented lipopolysaccharide-induced secretion of proinflammatory cytokines and led to a similar production of SPM. Analysis of the oral microbiome of the mice treated with vitamin D showed significant changes in resident bacteria, which reflects a shift toward health-associated species. Together, our results show that topical treatment of oral tissues with inactive vitamin D can lead to the maintenance of periodontal health through the regulation of a healthy microbiome and the stimulation of resolution of inflammation. This strongly supports the development of a safe and effective vitamin D-based topical treatment or preventive agent for periodontal inflammation and disease.
根据大量流行病学研究,维生素 D 水平与牙周病之间存在密切联系。我们以前的研究表明,小鼠实验性血清维生素 D 缺乏会导致牙龈炎症和牙槽骨流失。用维生素 D 的活性形式--1,25(OH)2 维生素 D3(1,25(OH)2D3)处理培养的口腔上皮细胞,可抑制与牙周病相关的细菌的胞外生长和胞内侵袭。此外,这种激素还能诱导培养的口腔上皮细胞表达一种抗菌肽。我们已经证明,口腔上皮细胞能够将非活性维生素 D 转化为活性形式,这表明用非活性维生素 D 局部治疗口腔上皮细胞可以预防牙周炎的发生。我们对小鼠进行了结扎诱导的牙周炎(LIP)治疗,然后每天用非活性维生素 D 或 1,25(OH)2D3进行治疗。这两种维生素都能减少结扎诱发的骨质流失和炎症。从经维生素 D 处理的 LIP 中获得的牙龈组织显示,产生了专门的炎症促溶解介质(SPM)。为了研究其机理,我们证明了用维生素 D 对原代牙龈上皮细胞的三维培养物进行根尖处理可防止脂多糖诱导的促炎细胞因子的分泌,并导致产生类似的 SPM。对接受维生素 D 治疗的小鼠口腔微生物组的分析表明,常驻细菌发生了显著变化,这反映出小鼠口腔微生物组向与健康相关的菌种转变。总之,我们的研究结果表明,用非活性维生素 D 局部治疗口腔组织可通过调节健康的微生物群和刺激炎症消退来维持牙周健康。这有力地支持了以安全有效的维生素 D 为基础的牙周炎症和疾病局部治疗或预防剂的开发。
{"title":"Topical Vitamin D Prevents Bone Loss and Inflammation in a Mouse Model.","authors":"K L Kirkwood, T E Van Dyke, C L Kirkwood, L Zhang, J Panezai, A E Duran-Pinedo, E L Figgins, L K Ryan, J J Frias-Lopez, G Diamond","doi":"10.1177/00220345241259417","DOIUrl":"10.1177/00220345241259417","url":null,"abstract":"<p><p>There is a strong association between vitamin D levels and periodontal disease based on numerous epidemiological studies. We have previously shown that experimental deficiency of serum vitamin D in mice leads to gingival inflammation and alveolar bone loss. Treatment of cultured oral epithelial cells with the active form of vitamin D, 1,25(OH)<sub>2</sub> vitamin D<sub>3</sub> (1,25(OH)<sub>2</sub>D<sub>3</sub>), inhibits the extracellular growth and intracellular invasion of bacteria associated with periodontal disease. Maintenance of periodontal health may be due in part to the anti-inflammatory activities of vitamin D. Furthermore, this hormone can induce the expression of an antimicrobial peptide in cultured oral epithelial cells. We have shown that oral epithelial cells are capable of converting inactive vitamin D to the active form, suggesting that topical treatment of the oral epithelium with inactive vitamin D could prevent the development of periodontitis. We subjected mice to ligature-induced periodontitis (LIP), followed by daily treatment with inactive vitamin D or 1,25(OH)<sub>2</sub>D<sub>3</sub>. Treatment with both forms led to a reduction in ligature-induced bone loss and inflammation. Gingival tissues obtained from vitamin D-treated LIP showed production of specialized proresolving mediators (SPM) of inflammation. To examine the mechanism, we demonstrated that apical treatment of 3-dimensional cultures of primary gingival epithelial cells with vitamin D prevented lipopolysaccharide-induced secretion of proinflammatory cytokines and led to a similar production of SPM. Analysis of the oral microbiome of the mice treated with vitamin D showed significant changes in resident bacteria, which reflects a shift toward health-associated species. Together, our results show that topical treatment of oral tissues with inactive vitamin D can lead to the maintenance of periodontal health through the regulation of a healthy microbiome and the stimulation of resolution of inflammation. This strongly supports the development of a safe and effective vitamin D-based topical treatment or preventive agent for periodontal inflammation and disease.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"908-915"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465324/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-08-05DOI: 10.1177/00220345241258990
A Soundia, N Elzakra, D Hadaya, I Gkouveris, O Bezouglaia, S Dry, T Aghaloo, S Tetradis
Macrophages are important regulators of bone remodeling, and M1 polarization is observed in the setting of medication-related osteonecrosis of the jaws (MRONJ). Here, we characterize the phenotype of macrophages during early stages of MRONJ development in zoledronate (ZA)-treated mice with periodontal disease and explore the role of rosiglitazone, a drug that has been reported to lower the M1/M2 macrophage ratio, in MRONJ burden. Mice received ZA, and experimental periodontal disease (EPD) was induced around their second left maxillary molar. The mice were euthanized 1, 2, or 4 wk later. Micro-computed tomography and histologic and immunohistochemical analyses were carried out. In a separate experiment, mice were treated with ZA in the absence or presence of rosiglitazone, EPD was induced for 5 wk, and the MRONJ burden was assessed. An M1 predilection was noted in ZA versus vehicle (Veh) mice at 1, 2, or 4 wk after ligature placement. M1 cells were found to be positive for MMP-13, and their presence coincided with disruption of the surrounding collagen network in ZA mice. Rosiglitazone caused a reversal in the M1/M2 polarization in Veh and ZA mice. Rosiglitazone did not cause significant radiographic changes 5 wk after EPD in Veh or ZA animals. Importantly, percentage osteonecrosis and bone exposure were decreased in the rosiglitazone-treated versus nontreated ZA sites 5 wk after EPD. Our data point to an important role of M1 macrophage polarization with an overexpression of MMP-13 in the early phases of MRONJ development and provide insight into the use of interventional approaches promoting an M2 phenotype as a preventative means to alleviate MRONJ burden.
{"title":"Macrophage Polarization during MRONJ Development in Mice.","authors":"A Soundia, N Elzakra, D Hadaya, I Gkouveris, O Bezouglaia, S Dry, T Aghaloo, S Tetradis","doi":"10.1177/00220345241258990","DOIUrl":"10.1177/00220345241258990","url":null,"abstract":"<p><p>Macrophages are important regulators of bone remodeling, and M1 polarization is observed in the setting of medication-related osteonecrosis of the jaws (MRONJ). Here, we characterize the phenotype of macrophages during early stages of MRONJ development in zoledronate (ZA)-treated mice with periodontal disease and explore the role of rosiglitazone, a drug that has been reported to lower the M1/M2 macrophage ratio, in MRONJ burden. Mice received ZA, and experimental periodontal disease (EPD) was induced around their second left maxillary molar. The mice were euthanized 1, 2, or 4 wk later. Micro-computed tomography and histologic and immunohistochemical analyses were carried out. In a separate experiment, mice were treated with ZA in the absence or presence of rosiglitazone, EPD was induced for 5 wk, and the MRONJ burden was assessed. An M1 predilection was noted in ZA versus vehicle (Veh) mice at 1, 2, or 4 wk after ligature placement. M1 cells were found to be positive for MMP-13, and their presence coincided with disruption of the surrounding collagen network in ZA mice. Rosiglitazone caused a reversal in the M1/M2 polarization in Veh and ZA mice. Rosiglitazone did not cause significant radiographic changes 5 wk after EPD in Veh or ZA animals. Importantly, percentage osteonecrosis and bone exposure were decreased in the rosiglitazone-treated versus nontreated ZA sites 5 wk after EPD. Our data point to an important role of M1 macrophage polarization with an overexpression of MMP-13 in the early phases of MRONJ development and provide insight into the use of interventional approaches promoting an M2 phenotype as a preventative means to alleviate MRONJ burden.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"899-907"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-08DOI: 10.1177/00220345241248630
M-M Uhlen-Strand, L Stangvaltaite-Mouhat, I Mdala, I Volden Klepaker, N J Wang, R Skudutyte-Rysstad
This study aimed to compare the clinical effectiveness of resin-based fissure sealants (FS) and fluoride varnish (FV) in children at high caries risk. A practice-based split-mouth randomized clinical trial was conducted at 9 Public Dental Service (PDS) clinics in Norway. In total, 409 children age 6 to 10 y at high caries risk (d3mft > 0) meeting inclusion criteria were recruited by dentists and dental hygienists during routine examination. Eligibility criteria were 2 fully erupted first permanent molars (FPMs) in the same jaw, with sound occlusal surfaces or with initial caries. Participation was voluntary, caregivers and eligible children were informed about the study, and written parental consent was obtained. FS and FV were randomly applied on contralateral FPMs in the same jaw, with each participant serving as their own control. FS was applied at baseline and thereafter maintained according to clinicians' conventional procedures, whereas FV was applied at baseline, 6 mo, and 12 mo. The study outcome was success, with no need for invasive treatment (caries control), while failure was defined as dentin carious lesion or restoration. Two-level mixed-effects logistic regression analysis was used to compare FS and FV groups. Of 409 recruited children, 369 (90%) children/tooth pairs were examined after 36 mo. Intention-to-treat analysis showed 94.1% adjusted predicted probability (aPP) of success (95% confidence interval [CI] 91.7 to 96.4) in the FS group and 89.6% aPP (95% CI 86.5 to 92.7) in the FV group. In the adjusted analysis, the FV group had a lower OR for success compared with the FS group (OR 0.54, 95% CI 0.24 to 0.87). In the population studied, the clinical effectiveness of FS was statistically significantly higher compared with FV but below the estimated minimal clinically important difference of 10%.
{"title":"Fissure Sealants or Fluoride Varnish? A Randomized Pragmatic Split-Mouth Trial.","authors":"M-M Uhlen-Strand, L Stangvaltaite-Mouhat, I Mdala, I Volden Klepaker, N J Wang, R Skudutyte-Rysstad","doi":"10.1177/00220345241248630","DOIUrl":"10.1177/00220345241248630","url":null,"abstract":"<p><p>This study aimed to compare the clinical effectiveness of resin-based fissure sealants (FS) and fluoride varnish (FV) in children at high caries risk. A practice-based split-mouth randomized clinical trial was conducted at 9 Public Dental Service (PDS) clinics in Norway. In total, 409 children age 6 to 10 y at high caries risk (d<sub>3</sub>mft > 0) meeting inclusion criteria were recruited by dentists and dental hygienists during routine examination. Eligibility criteria were 2 fully erupted first permanent molars (FPMs) in the same jaw, with sound occlusal surfaces or with initial caries. Participation was voluntary, caregivers and eligible children were informed about the study, and written parental consent was obtained. FS and FV were randomly applied on contralateral FPMs in the same jaw, with each participant serving as their own control. FS was applied at baseline and thereafter maintained according to clinicians' conventional procedures, whereas FV was applied at baseline, 6 mo, and 12 mo. The study outcome was success, with no need for invasive treatment (caries control), while failure was defined as dentin carious lesion or restoration. Two-level mixed-effects logistic regression analysis was used to compare FS and FV groups. Of 409 recruited children, 369 (90%) children/tooth pairs were examined after 36 mo. Intention-to-treat analysis showed 94.1% adjusted predicted probability (<sup>a</sup>PP) of success (95% confidence interval [CI] 91.7 to 96.4) in the FS group and 89.6% <sup>a</sup>PP (95% CI 86.5 to 92.7) in the FV group. In the adjusted analysis, the FV group had a lower OR for success compared with the FS group (OR 0.54, 95% CI 0.24 to 0.87). In the population studied, the clinical effectiveness of FS was statistically significantly higher compared with FV but below the estimated minimal clinically important difference of 10%.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"705-711"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-13DOI: 10.1177/00220345241253526
H M Wang, K X Li, Z L Tian, Y L Zhu, X Y Liu, S H Yang, S W Qiao, S Zhu, Z S Shi
The water-rich nature of the dentin bonding microenvironment, coupled with the stresses on the bonding interface, contributes to the hydrolytic degradation of the hybrid layer, resulting in a decline in bonding durability and, ultimately, restoration failure. Currently, the 3-step etch-and-rinse technique remains the gold standard for dentin bonding, and the bonding mechanism mainly involves a physical interaction with little chemical bonding. In this study, we have developed a siloxane-modified polyurethane monomer (SPU) with acrylate and siloxane modifications that chemically binds to both collagen and hydroxyapatite in dentin. Formulated as a bisphenol A-glycidyl methacrylate alternative, the SPU monomer-based adhesive was designed to improve dentin bonding quality and durability. Attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscope, and hydroxyproline release assays were performed on SPU-treated collagen, hydroxyapatite, and acid-etched dentin slices to dentin. The physicochemical properties of the configured SPU adhesives were profiled for polymerization behavior, water contact angle, and tensile strain and strength. The bonding effectiveness was assessed through micro-tensile strength, nano-leakage tests conducted on the bonded samples before and after thermal cycle aging. Finally, we further conducted in vivo and in vitro experiments to assess the biocompatibility of adhesives. The results showed that the siloxane groups of SPU monomer could covalently bind to dentin collagen and hydroxyapatite. The incorporation of SPU in the adhesive led to a significant increase in adhesive polymerization (P < 0.05) and tensile strain at break up to 134.11%. Furthermore, the SPU adhesive significantly improved dentin bond strength (P < 0.05), reduced interfacial nano-leakage (P < 0.05), and displayed good biocompatibility. In conclusion, the application of SPU, which achieves dual chemical bonding with dentin, can improve the quality of the hybrid layer, buffer the interfacial stresses, enhance the interfacial resistance to hydrolysis, and provide a feasible strategy to extend the service life of adhesive restorations.
{"title":"New Monomer Capable of Dual Chemical Binding with Dentin to Improve Bonding Durability.","authors":"H M Wang, K X Li, Z L Tian, Y L Zhu, X Y Liu, S H Yang, S W Qiao, S Zhu, Z S Shi","doi":"10.1177/00220345241253526","DOIUrl":"10.1177/00220345241253526","url":null,"abstract":"<p><p>The water-rich nature of the dentin bonding microenvironment, coupled with the stresses on the bonding interface, contributes to the hydrolytic degradation of the hybrid layer, resulting in a decline in bonding durability and, ultimately, restoration failure. Currently, the 3-step etch-and-rinse technique remains the gold standard for dentin bonding, and the bonding mechanism mainly involves a physical interaction with little chemical bonding. In this study, we have developed a siloxane-modified polyurethane monomer (SPU) with acrylate and siloxane modifications that chemically binds to both collagen and hydroxyapatite in dentin. Formulated as a bisphenol A-glycidyl methacrylate alternative, the SPU monomer-based adhesive was designed to improve dentin bonding quality and durability. Attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscope, and hydroxyproline release assays were performed on SPU-treated collagen, hydroxyapatite, and acid-etched dentin slices to dentin. The physicochemical properties of the configured SPU adhesives were profiled for polymerization behavior, water contact angle, and tensile strain and strength. The bonding effectiveness was assessed through micro-tensile strength, nano-leakage tests conducted on the bonded samples before and after thermal cycle aging. Finally, we further conducted in vivo and in vitro experiments to assess the biocompatibility of adhesives. The results showed that the siloxane groups of SPU monomer could covalently bind to dentin collagen and hydroxyapatite. The incorporation of SPU in the adhesive led to a significant increase in adhesive polymerization (<i>P</i> < 0.05) and tensile strain at break up to 134.11%. Furthermore, the SPU adhesive significantly improved dentin bond strength (<i>P</i> < 0.05), reduced interfacial nano-leakage (<i>P</i> < 0.05), and displayed good biocompatibility. In conclusion, the application of SPU, which achieves dual chemical bonding with dentin, can improve the quality of the hybrid layer, buffer the interfacial stresses, enhance the interfacial resistance to hydrolysis, and provide a feasible strategy to extend the service life of adhesive restorations.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"820-829"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-18DOI: 10.1177/00220345241252118
V Chrepa, S Villasenor, A Mauney, G Kotsakis, L Macpherson
{"title":"Response to the Letter to the Editor, \"Cannabinoids and Acute Dental Pain\".","authors":"V Chrepa, S Villasenor, A Mauney, G Kotsakis, L Macpherson","doi":"10.1177/00220345241252118","DOIUrl":"10.1177/00220345241252118","url":null,"abstract":"","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":"103 7","pages":"766"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-07DOI: 10.1177/00220345241247484
R Sekiguchi, D Martin, A D Doyle, S Wang, K M Yamada
Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.
{"title":"Salivary Gland Tissue Recombination Can Modify Cell Fate.","authors":"R Sekiguchi, D Martin, A D Doyle, S Wang, K M Yamada","doi":"10.1177/00220345241247484","DOIUrl":"10.1177/00220345241247484","url":null,"abstract":"<p><p>Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"755-764"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-29DOI: 10.1177/00220345241253781
S Imazato
{"title":"We Are the Ones Who Make a Brighter Day. So, Let's Start Research!!","authors":"S Imazato","doi":"10.1177/00220345241253781","DOIUrl":"10.1177/00220345241253781","url":null,"abstract":"","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"777"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-18DOI: 10.1177/00220345241257653
{"title":"Corrigendum to \"Cannabidiol as an Alternative Analgesic for Acute Dental Pain\".","authors":"","doi":"10.1177/00220345241257653","DOIUrl":"https://doi.org/10.1177/00220345241257653","url":null,"abstract":"","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":"103 7","pages":"767-768"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}