首页 > 最新文献

Cancer & Metabolism最新文献

英文 中文
Unraveling the glycosphingolipid metabolism by leveraging transcriptome-weighted network analysis on neuroblastic tumors. 利用神经母细胞瘤转录组加权网络分析揭示糖磷脂代谢过程
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-24 DOI: 10.1186/s40170-024-00358-y
Arsenij Ustjanzew, Annekathrin Silvia Nedwed, Roger Sandhoff, Jörg Faber, Federico Marini, Claudia Paret

Background: Glycosphingolipids (GSLs) are membrane lipids composed of a ceramide backbone linked to a glycan moiety. Ganglioside biosynthesis is a part of the GSL metabolism, which involves sequential reactions catalyzed by specific enzymes that in part have a poor substrate specificity. GSLs are deregulated in cancer, thus playing a role as potential biomarkers for personalized therapy or subtype classification. However, the analysis of GSL profiles is complex and requires dedicated technologies, that are currently not included in the commonly utilized high-throughput assays adopted in contexts such as molecular tumor boards.

Methods: In this study, we developed a method to discriminate the enzyme activity among the four series of the ganglioside metabolism pathway by incorporating transcriptome data and topological information of the metabolic network. We introduced three adjustment options for reaction activity scores (RAS) and demonstrated their application in both exploratory and comparative analyses by applying the method on neuroblastic tumors (NTs), encompassing neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Furthermore, we interpreted the results in the context of earlier published GSL measurements in the same tumors.

Results: By adjusting RAS values using a weighting scheme based on network topology and transition probabilities (TPs), the individual series of ganglioside metabolism can be differentiated, enabling a refined analysis of the GSL profile in NT entities. Notably, the adjustment method we propose reveals the differential engagement of the ganglioside series between NB and GNB. Moreover, MYCN gene expression, a well-known prognostic marker in NTs, appears to correlate with the expression of therapeutically relevant gangliosides, such as GD2. Using unsupervised learning, we identified subclusters within NB based on altered GSL metabolism.

Conclusion: Our study demonstrates the utility of adjusting RAS values in discriminating ganglioside metabolism subtypes, highlighting the potential for identifying novel cancer subgroups based on sphingolipid profiles. These findings contribute to a better understanding of ganglioside dysregulation in NT and may have implications for stratification and targeted therapeutic strategies in these tumors and other tumor entities with a deregulated GSL metabolism.

背景:糖磷脂(GSL)是一种膜脂,由神经酰胺骨架与糖分子连接组成。神经节苷脂的生物合成是 GSL 新陈代谢的一部分,其中涉及由特定酶催化的连续反应,这些酶部分具有较差的底物特异性。GSL 在癌症中会发生失调,因此可作为潜在的生物标记物用于个性化治疗或亚型分类。然而,GSL 图谱的分析非常复杂,需要专门的技术,而这些技术目前并不包括在肿瘤分子委员会等场合普遍采用的高通量检测方法中:在这项研究中,我们结合转录组数据和代谢网络的拓扑信息,开发了一种方法来区分神经节苷脂代谢途径中四个系列的酶活性。我们为反应活性评分(RAS)引入了三种调整选项,并通过将该方法应用于神经母细胞瘤(NTs),包括神经母细胞瘤(NB)、神经节母细胞瘤(GNB)和神经节细胞瘤(GN),证明了它们在探索性分析和比较分析中的应用。此外,我们还结合早先发表的相同肿瘤的 GSL 测量结果对结果进行了解释:结果:通过使用基于网络拓扑和转换概率(TPs)的加权方案调整RAS值,神经节苷脂代谢的各个系列得以区分,从而能够对NT实体中的GSL概况进行精细分析。值得注意的是,我们提出的调整方法揭示了神经节苷脂系列在 NB 和 GNB 之间的不同参与。此外,MYCN基因的表达是众所周知的NT预后标志,它似乎与GD2等治疗相关神经节苷脂的表达相关。通过无监督学习,我们发现了基于GSL代谢改变的NB亚群:我们的研究证明了调整RAS值在区分神经节苷脂代谢亚型中的作用,突出了根据鞘脂特征识别新型癌症亚群的潜力。这些发现有助于更好地了解NT中神经节苷脂的失调,并可能对这些肿瘤和其他GSL代谢失调的肿瘤实体的分层和靶向治疗策略产生影响。
{"title":"Unraveling the glycosphingolipid metabolism by leveraging transcriptome-weighted network analysis on neuroblastic tumors.","authors":"Arsenij Ustjanzew, Annekathrin Silvia Nedwed, Roger Sandhoff, Jörg Faber, Federico Marini, Claudia Paret","doi":"10.1186/s40170-024-00358-y","DOIUrl":"10.1186/s40170-024-00358-y","url":null,"abstract":"<p><strong>Background: </strong>Glycosphingolipids (GSLs) are membrane lipids composed of a ceramide backbone linked to a glycan moiety. Ganglioside biosynthesis is a part of the GSL metabolism, which involves sequential reactions catalyzed by specific enzymes that in part have a poor substrate specificity. GSLs are deregulated in cancer, thus playing a role as potential biomarkers for personalized therapy or subtype classification. However, the analysis of GSL profiles is complex and requires dedicated technologies, that are currently not included in the commonly utilized high-throughput assays adopted in contexts such as molecular tumor boards.</p><p><strong>Methods: </strong>In this study, we developed a method to discriminate the enzyme activity among the four series of the ganglioside metabolism pathway by incorporating transcriptome data and topological information of the metabolic network. We introduced three adjustment options for reaction activity scores (RAS) and demonstrated their application in both exploratory and comparative analyses by applying the method on neuroblastic tumors (NTs), encompassing neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Furthermore, we interpreted the results in the context of earlier published GSL measurements in the same tumors.</p><p><strong>Results: </strong>By adjusting RAS values using a weighting scheme based on network topology and transition probabilities (TPs), the individual series of ganglioside metabolism can be differentiated, enabling a refined analysis of the GSL profile in NT entities. Notably, the adjustment method we propose reveals the differential engagement of the ganglioside series between NB and GNB. Moreover, MYCN gene expression, a well-known prognostic marker in NTs, appears to correlate with the expression of therapeutically relevant gangliosides, such as GD2. Using unsupervised learning, we identified subclusters within NB based on altered GSL metabolism.</p><p><strong>Conclusion: </strong>Our study demonstrates the utility of adjusting RAS values in discriminating ganglioside metabolism subtypes, highlighting the potential for identifying novel cancer subgroups based on sphingolipid profiles. These findings contribute to a better understanding of ganglioside dysregulation in NT and may have implications for stratification and targeted therapeutic strategies in these tumors and other tumor entities with a deregulated GSL metabolism.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"29"},"PeriodicalIF":6.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pancreatic cancer tumor organoids exhibit subtype-specific differences in metabolic profiles. 胰腺癌肿瘤器官组织的代谢特征表现出亚型特异性差异。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-03 DOI: 10.1186/s40170-024-00357-z
Hassan A Ali, Joanna M Karasinska, James T Topham, Danisha Johal, Steve Kalloger, Andrew Metcalfe, Cassia S Warren, Anthony Miyagi, Lan V Tao, Maya Kevorkova, Shawn C Chafe, Paul C McDonald, Shoukat Dedhar, Seth J Parker, Daniel J Renouf, David F Schaeffer

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease characterized by complex metabolic rewiring that enables growth in changing nutrient availability and oxygen conditions. Transcriptome-based prognostic PDAC tumor subtypes, known as 'basal-like' and 'classical' subtypes are associated with differences in metabolic gene expression including genes involved in glycolysis. Tumor subtype-specific metabolism phenotypes may provide new targets for treatment development in PDAC, but their functional relevance has not been fully elucidated. We aimed to investigate differences in metabolic profiles and transcriptomes in tumor models derived from patients with basal-like and classical tumors.

Methods: Patient-derived organoids (PDOs) were established from tumor biopsies collected from patients with metastatic PDAC, including three PDOs from basal-like and five PDOs from classical tumors. Metabolic analyses included assessment of differences in metabolic activity using Seahorse Glycolysis and Mito Stress tests and 13C-glucose metabolites tracing analysis. In order to investigate the influence of mitochondrial pyruvate transport on metabolic differences, PDOs were treated with the mitochondrial pyruvate carrier 1 (MPC1) inhibitor UK-5099. Prognostic relevance of MPC1 was determined using a tumor tissue microarray (TMA) in resectable, and proteomics profiling in metastatic PDAC datasets. Whole genome and transcriptome sequencing, differential gene expression and gene set enrichment analyses were performed in PDOs.

Results: Metastatic PDAC PDOs showed subtype-specific differences in glycolysis and oxidative phosphorylation (OXPHOS). Basal-like tumor-derived PDOs had a lower baseline extracellular acidification rate, but higher glycolytic reserves and oxygen consumption rate (OCR) than classical tumor-derived PDOs. OCR difference was eliminated following treatment with UK-5099. In the 13C-glucose metabolites tracing experiment, a basal-like tumor PDO showed lower fractions of some M + 2 metabolites but higher sensitivity to UK-5099 mediated reduction in M + 2 metabolites than a classical tumor PDO. Protein level analyses revealed lower MPC1 protein levels in basal-like PDAC cases and association of low MPC1 levels with clinicopathologic parameters of tumor aggressiveness in PDAC. PDO differential gene expression analyses identified additional subtype-specific cellular pathways and potential disease outcome biomarkers.

Conclusions: Our findings point to distinct metabolic profiles in PDAC subtypes with basal-like tumor PDOs showing higher OXPHOS and sensitivity to MPC1 inhibition. Subtypes-specific metabolic vulnerabilities may be exploited for selective therapeutic targeting.

背景:胰腺导管腺癌(PDAC)是一种侵袭性很强的疾病,其特点是复杂的代谢重构,能在不断变化的营养供应和氧气条件下生长。基于转录组的预后PDAC肿瘤亚型,即 "基底样 "亚型和 "经典 "亚型,与代谢基因(包括参与糖酵解的基因)表达的差异有关。肿瘤亚型特异性代谢表型可为 PDAC 的治疗开发提供新靶点,但其功能相关性尚未完全阐明。我们的目的是研究基底样肿瘤和典型肿瘤患者的肿瘤模型中代谢谱和转录组的差异:从转移性 PDAC 患者的肿瘤活检组织中建立了患者衍生的器官组织(PDOs),其中包括 3 个基底样肿瘤的 PDOs 和 5 个典型肿瘤的 PDOs。代谢分析包括使用海马糖酵解和线粒体应激试验评估代谢活动的差异,以及 13C 葡萄糖代谢物追踪分析。为了研究线粒体丙酮酸转运对代谢差异的影响,用线粒体丙酮酸载体1(MPC1)抑制剂UK-5099处理PDOs。使用肿瘤组织芯片(TMA)确定了MPC1与可切除PDAC的预后相关性,并对转移性PDAC数据集进行了蛋白质组学分析。对PDAC数据集进行了全基因组和转录组测序、差异基因表达和基因组富集分析:结果:转移性 PDAC PDOs 在糖酵解和氧化磷酸化(OXPHOS)方面表现出亚型特异性差异。基底样肿瘤来源的 PDOs 基线细胞外酸化率较低,但糖酵解储备和耗氧率(OCR)高于经典肿瘤来源的 PDOs。在使用 UK-5099 治疗后,OCR 差异被消除。在 13C- 葡萄糖代谢物追踪实验中,与经典肿瘤 PDO 相比,基底样肿瘤 PDO 的一些 M + 2 代谢物含量较低,但对 UK-5099 介导的 M + 2 代谢物减少的敏感性较高。蛋白质水平分析表明,基底样PDAC病例的MPC1蛋白质水平较低,而低MPC1水平与PDAC肿瘤侵袭性的临床病理参数有关。PDAC差异基因表达分析发现了更多亚型特异性细胞通路和潜在的疾病结局生物标志物:我们的研究结果表明,PDAC亚型的代谢特征各不相同,基底样肿瘤的PDO显示出更高的氧合休克和对MPC1抑制的敏感性。亚型特异性代谢弱点可用于选择性靶向治疗。
{"title":"Pancreatic cancer tumor organoids exhibit subtype-specific differences in metabolic profiles.","authors":"Hassan A Ali, Joanna M Karasinska, James T Topham, Danisha Johal, Steve Kalloger, Andrew Metcalfe, Cassia S Warren, Anthony Miyagi, Lan V Tao, Maya Kevorkova, Shawn C Chafe, Paul C McDonald, Shoukat Dedhar, Seth J Parker, Daniel J Renouf, David F Schaeffer","doi":"10.1186/s40170-024-00357-z","DOIUrl":"10.1186/s40170-024-00357-z","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease characterized by complex metabolic rewiring that enables growth in changing nutrient availability and oxygen conditions. Transcriptome-based prognostic PDAC tumor subtypes, known as 'basal-like' and 'classical' subtypes are associated with differences in metabolic gene expression including genes involved in glycolysis. Tumor subtype-specific metabolism phenotypes may provide new targets for treatment development in PDAC, but their functional relevance has not been fully elucidated. We aimed to investigate differences in metabolic profiles and transcriptomes in tumor models derived from patients with basal-like and classical tumors.</p><p><strong>Methods: </strong>Patient-derived organoids (PDOs) were established from tumor biopsies collected from patients with metastatic PDAC, including three PDOs from basal-like and five PDOs from classical tumors. Metabolic analyses included assessment of differences in metabolic activity using Seahorse Glycolysis and Mito Stress tests and <sup>13</sup>C-glucose metabolites tracing analysis. In order to investigate the influence of mitochondrial pyruvate transport on metabolic differences, PDOs were treated with the mitochondrial pyruvate carrier 1 (MPC1) inhibitor UK-5099. Prognostic relevance of MPC1 was determined using a tumor tissue microarray (TMA) in resectable, and proteomics profiling in metastatic PDAC datasets. Whole genome and transcriptome sequencing, differential gene expression and gene set enrichment analyses were performed in PDOs.</p><p><strong>Results: </strong>Metastatic PDAC PDOs showed subtype-specific differences in glycolysis and oxidative phosphorylation (OXPHOS). Basal-like tumor-derived PDOs had a lower baseline extracellular acidification rate, but higher glycolytic reserves and oxygen consumption rate (OCR) than classical tumor-derived PDOs. OCR difference was eliminated following treatment with UK-5099. In the <sup>13</sup>C-glucose metabolites tracing experiment, a basal-like tumor PDO showed lower fractions of some M + 2 metabolites but higher sensitivity to UK-5099 mediated reduction in M + 2 metabolites than a classical tumor PDO. Protein level analyses revealed lower MPC1 protein levels in basal-like PDAC cases and association of low MPC1 levels with clinicopathologic parameters of tumor aggressiveness in PDAC. PDO differential gene expression analyses identified additional subtype-specific cellular pathways and potential disease outcome biomarkers.</p><p><strong>Conclusions: </strong>Our findings point to distinct metabolic profiles in PDAC subtypes with basal-like tumor PDOs showing higher OXPHOS and sensitivity to MPC1 inhibition. Subtypes-specific metabolic vulnerabilities may be exploited for selective therapeutic targeting.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"28"},"PeriodicalIF":6.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolism of primary high-grade serous ovarian carcinoma (HGSOC) cells under limited glutamine or glucose availability 原发性高级别浆液性卵巢癌(HGSOC)细胞在谷氨酰胺或葡萄糖供应受限情况下的新陈代谢
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-16 DOI: 10.1186/s40170-024-00355-1
Daniela Šimčíková, Dominik Gardáš, Tomáš Pelikán, Lukáš Moráň, Martin Hruda, Kateřina Hložková, Tiziana Pivetta, Michal Hendrych, Júlia Starková, Lukáš Rob, Petr Vaňhara, Petr Heneberg
High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive subtype of epithelial ovarian carcinoma. It is primarily diagnosed at stage III or IV when the 5-year survival rate ranges between 20% and 40%. Here, we aimed to validate the hypothesis, based on HGSOC cell lines, that proposed the existence of two distinct groups of HGSOC cells with high and low oxidative phosphorylation (OXPHOS) metabolism, respectively, which are associated with their responses to glucose and glutamine withdrawal. We isolated and cultivated primary cancer cell cultures from HGSOC and nontransformed ovarian fibroblasts from the surrounding ovarium of 45 HGSOC patients. We tested the metabolic flexibility of the primary cells, particularly in response to glucose and glutamine depletion, analyzed and modulated endoplasmic reticulum stress, and searched for indices of the existence of previously reported groups of HGSOC cells with high and low OXPHOS metabolism. The primary HGSOC cells did not form two groups with high and low OXPHOS that responded differently to glucose and glutamine availabilities in the cell culture medium. Instead, they exhibited a continuum of OXPHOS phenotypes. In most tumor cell isolates, the responses to glucose or glutamine withdrawal were mild and surprisingly correlated with those of nontransformed ovarian fibroblasts from the same patients. The growth of tumor-derived cells in the absence of glucose was positively correlated with the lipid trafficking regulator FABP4 and was negatively correlated with the expression levels of HK2 and HK1. The correlations between the expression of electron transport chain (ETC) proteins and the oxygen consumption rates or extracellular acidification rates were weak. ER stress markers were strongly expressed in all the analyzed tumors. ER stress was further potentiated by tunicamycin but not by the recently proposed ER stress inducers based on copper(II)-phenanthroline complexes. ER stress modulation increased autophagy in tumor cell isolates but not in nontransformed ovarian fibroblasts. Analysis of the metabolism of primary HGSOC cells rejects the previously proposed hypothesis that there are distinct groups of HGSOC cells with high and low OXPHOS metabolism that respond differently to glutamine or glucose withdrawal and are characterized by ETC protein levels.
高级别浆液性卵巢癌(HGSOC)是上皮性卵巢癌中最常见、最具侵袭性的亚型。它主要诊断为 III 期或 IV 期,5 年生存率在 20% 到 40% 之间。在此,我们旨在验证基于 HGSOC 细胞系的假说,该假说认为 HGSOC 细胞中存在两组不同的细胞,它们分别具有高和低氧化磷酸化(OXPHOS)代谢,这与它们对葡萄糖和谷氨酰胺戒断的反应有关。我们分离并培养了来自 HGSOC 的原代癌细胞培养物和来自 45 名 HGSOC 患者卵巢周围的未转化卵巢成纤维细胞。我们测试了原代细胞的代谢灵活性,尤其是对葡萄糖和谷氨酰胺耗竭的反应,分析并调节了内质网应激,并寻找了之前报道的高OXPHOS代谢和低OXPHOS代谢的HGSOC细胞群的存在指标。原代HGSOC细胞并没有形成高OXPHOS和低OXPHOS两组,它们对细胞培养基中葡萄糖和谷氨酰胺的利用率反应不同。相反,它们表现出连续的 OXPHOS 表型。在大多数肿瘤细胞分离物中,对葡萄糖或谷氨酰胺停用的反应是温和的,并且与来自同一患者的未转化卵巢成纤维细胞的反应惊人地相关。肿瘤细胞在无葡萄糖条件下的生长与脂质运输调节因子 FABP4 呈正相关,而与 HK2 和 HK1 的表达水平呈负相关。电子传递链(ETC)蛋白的表达与耗氧率或细胞外酸化率之间的相关性较弱。ER应激标记物在所有分析的肿瘤中都有较强的表达。图尼霉素能进一步增强ER应激反应,而最近提出的基于铜(II)-菲罗啉复合物的ER应激反应诱导剂则不能。ER应激调节增加了肿瘤细胞分离物的自噬,但没有增加未转化卵巢成纤维细胞的自噬。对原代 HGSOC 细胞新陈代谢的分析否定了之前提出的假说,即 HGSOC 细胞有高和低 OXPHOS 新陈代谢的不同组别,它们对谷氨酰胺或葡萄糖戒断的反应不同,并以 ETC 蛋白水平为特征。
{"title":"Metabolism of primary high-grade serous ovarian carcinoma (HGSOC) cells under limited glutamine or glucose availability","authors":"Daniela Šimčíková, Dominik Gardáš, Tomáš Pelikán, Lukáš Moráň, Martin Hruda, Kateřina Hložková, Tiziana Pivetta, Michal Hendrych, Júlia Starková, Lukáš Rob, Petr Vaňhara, Petr Heneberg","doi":"10.1186/s40170-024-00355-1","DOIUrl":"https://doi.org/10.1186/s40170-024-00355-1","url":null,"abstract":"High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive subtype of epithelial ovarian carcinoma. It is primarily diagnosed at stage III or IV when the 5-year survival rate ranges between 20% and 40%. Here, we aimed to validate the hypothesis, based on HGSOC cell lines, that proposed the existence of two distinct groups of HGSOC cells with high and low oxidative phosphorylation (OXPHOS) metabolism, respectively, which are associated with their responses to glucose and glutamine withdrawal. We isolated and cultivated primary cancer cell cultures from HGSOC and nontransformed ovarian fibroblasts from the surrounding ovarium of 45 HGSOC patients. We tested the metabolic flexibility of the primary cells, particularly in response to glucose and glutamine depletion, analyzed and modulated endoplasmic reticulum stress, and searched for indices of the existence of previously reported groups of HGSOC cells with high and low OXPHOS metabolism. The primary HGSOC cells did not form two groups with high and low OXPHOS that responded differently to glucose and glutamine availabilities in the cell culture medium. Instead, they exhibited a continuum of OXPHOS phenotypes. In most tumor cell isolates, the responses to glucose or glutamine withdrawal were mild and surprisingly correlated with those of nontransformed ovarian fibroblasts from the same patients. The growth of tumor-derived cells in the absence of glucose was positively correlated with the lipid trafficking regulator FABP4 and was negatively correlated with the expression levels of HK2 and HK1. The correlations between the expression of electron transport chain (ETC) proteins and the oxygen consumption rates or extracellular acidification rates were weak. ER stress markers were strongly expressed in all the analyzed tumors. ER stress was further potentiated by tunicamycin but not by the recently proposed ER stress inducers based on copper(II)-phenanthroline complexes. ER stress modulation increased autophagy in tumor cell isolates but not in nontransformed ovarian fibroblasts. Analysis of the metabolism of primary HGSOC cells rejects the previously proposed hypothesis that there are distinct groups of HGSOC cells with high and low OXPHOS metabolism that respond differently to glutamine or glucose withdrawal and are characterized by ETC protein levels.","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"206 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAF1/HIF1α axis rewires the glycolytic metabolism to fuel aggressiveness of pancreatic cancer. PAF1/HIF1α轴重构了糖代谢,助长了胰腺癌的侵袭性。
IF 5.3 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-06 DOI: 10.1186/s40170-024-00354-2
Ayoola O Ogunleye, Neelanjana Gayen, Sanchita Rauth, Saravanakumar Marimuthu, Rama Krishna Nimmakayala, Zahraa W Alsafwani, Jesse L Cox, Surinder K Batra, Moorthy P Ponnusamy

Background: PAF1/PD2 deregulation contributes to tumorigenesis, drug resistance, and cancer stem cell maintenance in Pancreatic Cancer (PC). Recent studies demonstrate that metabolic reprogramming plays a role in PC progression, but the mechanism is poorly understood. Here, we focused on examining the role of PAF1/PD2 in the metabolic rewiring of PC.

Methods: Cell lines were transfected with shRNAs to knockdown PAF1/PD2. Metabolic genes regulated by PAF1/PD2 were identified by qPCR/western blot, and metabolic assays were performed. Immunoprecipitations/ChIP were performed to identify PAF1/PD2 protein partners and confirm PAF1/HIF1α sub-complex binding to LDHA.

Results: PAF1 and LDHA showed progressively increased expression in human pancreatic tumor sections. Aerobic glycolysis genes were downregulated in PAF1-depleted PC cells. Metabolic assays indicated a decreased lactate production and glucose uptake in knockdown cells. Furthermore, PAF1/PD2 depletion showed a reduced glycolytic rate and increased oxidative phosphorylation by ECAR and OCR analysis. Interestingly, we identified that HIF1α interacts and co-localizes with PAF1, specifically in PC cells. We also observed that the PAF1/PD2-HIF1α complex binds to the LDHA promoter to regulate its expression, reprogramming the metabolism to utilize the aerobic glycolysis pathway preferentially.

Conclusion: Overall, the results indicate that PAF1/PD2 rewires PC metabolism by interacting with HIF1α to regulate the expression of LDHA.

背景:PAF1/PD2失调导致了胰腺癌(PC)的肿瘤发生、耐药性和癌症干细胞的维持。最近的研究表明,代谢重编程在胰腺癌的进展中起着一定的作用,但对其机制还不甚了解。在此,我们重点研究了 PAF1/PD2 在 PC 代谢重构中的作用:方法:用 shRNA 转染细胞系以敲除 PAF1/PD2。方法:用 shRNAs 转染细胞株以敲除 PAF1/PD2,通过 qPCR/western 印迹鉴定受 PAF1/PD2 调控的代谢基因,并进行代谢测定。通过免疫沉淀/ChIP鉴定PAF1/PD2蛋白伴侣并确认PAF1/HIF1α亚复合物与LDHA的结合:结果:PAF1和LDHA在人胰腺肿瘤切片中的表达逐渐增加。在 PAF1 缺失的 PC 细胞中,有氧糖酵解基因下调。代谢测定显示,基因敲除细胞的乳酸生成和葡萄糖摄取均有所减少。此外,通过 ECAR 和 OCR 分析,PAF1/PD2 缺失显示糖酵解率降低,氧化磷酸化增加。有趣的是,我们发现 HIF1α 与 PAF1 相互作用并共定位,特别是在 PC 细胞中。我们还观察到,PAF1/PD2-HIF1α复合物与LDHA启动子结合,调控其表达,使新陈代谢重编程,优先利用有氧糖酵解途径:总之,研究结果表明,PAF1/PD2 通过与 HIF1α 相互作用来调节 LDHA 的表达,从而重塑了 PC 的新陈代谢。
{"title":"PAF1/HIF1α axis rewires the glycolytic metabolism to fuel aggressiveness of pancreatic cancer.","authors":"Ayoola O Ogunleye, Neelanjana Gayen, Sanchita Rauth, Saravanakumar Marimuthu, Rama Krishna Nimmakayala, Zahraa W Alsafwani, Jesse L Cox, Surinder K Batra, Moorthy P Ponnusamy","doi":"10.1186/s40170-024-00354-2","DOIUrl":"10.1186/s40170-024-00354-2","url":null,"abstract":"<p><strong>Background: </strong>PAF1/PD2 deregulation contributes to tumorigenesis, drug resistance, and cancer stem cell maintenance in Pancreatic Cancer (PC). Recent studies demonstrate that metabolic reprogramming plays a role in PC progression, but the mechanism is poorly understood. Here, we focused on examining the role of PAF1/PD2 in the metabolic rewiring of PC.</p><p><strong>Methods: </strong>Cell lines were transfected with shRNAs to knockdown PAF1/PD2. Metabolic genes regulated by PAF1/PD2 were identified by qPCR/western blot, and metabolic assays were performed. Immunoprecipitations/ChIP were performed to identify PAF1/PD2 protein partners and confirm PAF1/HIF1α sub-complex binding to LDHA.</p><p><strong>Results: </strong>PAF1 and LDHA showed progressively increased expression in human pancreatic tumor sections. Aerobic glycolysis genes were downregulated in PAF1-depleted PC cells. Metabolic assays indicated a decreased lactate production and glucose uptake in knockdown cells. Furthermore, PAF1/PD2 depletion showed a reduced glycolytic rate and increased oxidative phosphorylation by ECAR and OCR analysis. Interestingly, we identified that HIF1α interacts and co-localizes with PAF1, specifically in PC cells. We also observed that the PAF1/PD2-HIF1α complex binds to the LDHA promoter to regulate its expression, reprogramming the metabolism to utilize the aerobic glycolysis pathway preferentially.</p><p><strong>Conclusion: </strong>Overall, the results indicate that PAF1/PD2 rewires PC metabolism by interacting with HIF1α to regulate the expression of LDHA.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"26"},"PeriodicalIF":5.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time assessment of relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE). 实时评估线粒体 ATP 合成对抑制底物和刺激底物的相对反应(MitoRAISE)。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-08-29 DOI: 10.1186/s40170-024-00353-3
Eun Sol Chang, Kyoung Song, Ji-Young Song, Minjung Sung, Mi-Sook Lee, Jung Han Oh, Ji-Yeon Kim, Yeon Hee Park, Kyungsoo Jung, Yoon-La Choi

Background: Mitochondria are known to synthesize adenosine triphosphate (ATP) through oxidative phosphorylation. Understanding and accurately measuring mitochondrial ATP synthesis rate can provide insights into the functional status of mitochondria and how it contributes to overall cellular energy homeostasis. Traditional methods only estimate mitochondrial function by measuring ATP levels at a single point in time or through oxygen consumption rates. This study introduced the relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE), designed to detect real-time changes in ATP levels as the cells respond to substrates.

Methods: The sensitivity and specificity of the MitoRAISE assay were verified under various conditions, including the isolation of mitochondria, variations in cell numbers, cells exhibiting mitochondrial damage, and heterogeneous mixtures. Using peripheral blood mononuclear cells (PBMCs), we analyzed MitoRAISE data from 19 patients with breast cancer and 23 healthy women.

Results: The parameters observed in the MitoRAISE data increased depending on the quantity of isolated mitochondria and cell count, whereas it remained unmeasured in mitochondrial-damaged cell lines. Basal ATP, rotenone response, malonate response, and mitochondrial DNA copy numbers were lower in PBMCs from patients with breast cancer than in those from healthy women.

Conclusions: The MitoRAISE assay has demonstrated its sensitivity and specificity by measuring relative ATP synthesis rates under various conditions. We propose MitoRAISE assay as a potential tool for monitoring changes in the mitochondrial metabolic status associated with various diseases.

背景:线粒体可通过氧化磷酸化合成三磷酸腺苷(ATP)。了解并精确测量线粒体的 ATP 合成率可以帮助人们深入了解线粒体的功能状态,以及线粒体对整个细胞能量平衡的贡献。传统方法只能通过测量单个时间点的 ATP 水平或耗氧量来估计线粒体功能。本研究引入了线粒体 ATP 合成对抑制性和刺激性底物的相对反应(MitoRAISE),旨在检测细胞对底物反应时 ATP 水平的实时变化:方法:在各种条件下验证了 MitoRAISE 分析法的灵敏度和特异性,包括线粒体的分离、细胞数量的变化、线粒体受损的细胞和异质混合物。我们利用外周血单核细胞(PBMCs)分析了 19 名乳腺癌患者和 23 名健康女性的线粒体分析数据:结果:MitoRAISE 数据中观察到的参数随分离线粒体数量和细胞数量的增加而增加,而在线粒体受损的细胞系中仍无法测量。在乳腺癌患者的 PBMCs 中,基础 ATP、鱼藤酮反应、丙二酸盐反应和线粒体 DNA 拷贝数均低于健康妇女的 PBMCs:MitoRAISE 检测法通过测量各种条件下的相对 ATP 合成率,证明了其灵敏性和特异性。我们建议将 MitoRAISE 检测法作为一种潜在的工具,用于监测与各种疾病相关的线粒体代谢状态的变化。
{"title":"Real-time assessment of relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE).","authors":"Eun Sol Chang, Kyoung Song, Ji-Young Song, Minjung Sung, Mi-Sook Lee, Jung Han Oh, Ji-Yeon Kim, Yeon Hee Park, Kyungsoo Jung, Yoon-La Choi","doi":"10.1186/s40170-024-00353-3","DOIUrl":"10.1186/s40170-024-00353-3","url":null,"abstract":"<p><strong>Background: </strong>Mitochondria are known to synthesize adenosine triphosphate (ATP) through oxidative phosphorylation. Understanding and accurately measuring mitochondrial ATP synthesis rate can provide insights into the functional status of mitochondria and how it contributes to overall cellular energy homeostasis. Traditional methods only estimate mitochondrial function by measuring ATP levels at a single point in time or through oxygen consumption rates. This study introduced the relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE), designed to detect real-time changes in ATP levels as the cells respond to substrates.</p><p><strong>Methods: </strong>The sensitivity and specificity of the MitoRAISE assay were verified under various conditions, including the isolation of mitochondria, variations in cell numbers, cells exhibiting mitochondrial damage, and heterogeneous mixtures. Using peripheral blood mononuclear cells (PBMCs), we analyzed MitoRAISE data from 19 patients with breast cancer and 23 healthy women.</p><p><strong>Results: </strong>The parameters observed in the MitoRAISE data increased depending on the quantity of isolated mitochondria and cell count, whereas it remained unmeasured in mitochondrial-damaged cell lines. Basal ATP, rotenone response, malonate response, and mitochondrial DNA copy numbers were lower in PBMCs from patients with breast cancer than in those from healthy women.</p><p><strong>Conclusions: </strong>The MitoRAISE assay has demonstrated its sensitivity and specificity by measuring relative ATP synthesis rates under various conditions. We propose MitoRAISE assay as a potential tool for monitoring changes in the mitochondrial metabolic status associated with various diseases.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"25"},"PeriodicalIF":6.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells. 多不饱和脂肪酸二十二碳六烯酸会影响前列腺癌细胞的线粒体功能。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-08-07 DOI: 10.1186/s40170-024-00348-0
Guilherme Henrique Tamarindo, Caroline Fidalgo Ribeiro, Alana Della Torre Silva, Alex Castro, Ícaro Putinhon Caruso, Fátima Pereira Souza, Sebastião Roberto Taboga, Massimo Loda, Rejane Maira Góes

Background: Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines.

Methods: Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation.

Results: In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1.

Conclusion: In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.

背景:前列腺癌(PCa)的新陈代谢线被重新连接,其特点是脂肪酸摄取量和通过新脂肪生成的合成量增加,这两者都与线粒体的生理机能密切相关。二十二碳六烯酸(DHA)是一种欧米伽-3 多不饱和脂肪酸(PUFA),可通过不同机制发挥抗肿瘤作用,但其对 PCa 线粒体的具体作用尚不清楚。因此,我们研究了 DHA 是否能调节 PCa 细胞系的线粒体功能。方法:在此,我们评估了非恶性 PNT1A 和对阉割有抵抗力(CRPC)的前列腺 22Rv1 和 PC3 细胞系的线粒体功能对 DHA 培养的反应。为此,我们使用海马细胞外通量测定法评估线粒体功能,使用[14C]-葡萄糖评估其氧化作用及其对脂肪酸合成的贡献,使用 1H-NMR 测定代谢物概况,使用 MitoSOX 测定超氧阴离子的产生,使用 JC-1 测定线粒体膜极化、质谱法测定磷脂酰甘油的水平和组成,MitoTracker 染色法在超分辨率下评估线粒体形态,此外还有透射电子显微镜,细胞内 ELISA 检测 COX-I 和 SDH-A 蛋白表达,流式细胞术(Annexin V 和 7-AAD)评估细胞死亡。结果在所有细胞系中,DHA 都会降低线粒体的基础呼吸活性、ATP 产量和备用容量。此外,欧米伽-3 还诱导线粒体超极化、ROS 过度产生和膜磷脂酰甘油成分的变化。在 PNT1A 中,DHA 会导致线粒体破碎,并增加糖酵解,而在癌细胞中,DHA 会刺激葡萄糖氧化,但会减少 22Rv1 中的新生脂肪生成,这表明新陈代谢发生了转变。在所有细胞系中,DHA 都能调节与能量代谢有关的几种代谢物,并与磷脂酰甘油(心磷脂的前体)结合,增加线粒体膜的不饱和指数。因此,DHA 主要在 PNT1A 和 22Rv1 中引发细胞死亡:总之,线粒体代谢受到 PUFA 补充剂的显著影响,以至于细胞无法在富含 DHA 的条件下增殖或存活。此外,补充 DHA 与抑制新陈代谢相关途径(如新脂肪生成)相结合,可能会对阉割耐药前列腺癌产生协同作用。
{"title":"The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells.","authors":"Guilherme Henrique Tamarindo, Caroline Fidalgo Ribeiro, Alana Della Torre Silva, Alex Castro, Ícaro Putinhon Caruso, Fátima Pereira Souza, Sebastião Roberto Taboga, Massimo Loda, Rejane Maira Góes","doi":"10.1186/s40170-024-00348-0","DOIUrl":"10.1186/s40170-024-00348-0","url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines.</p><p><strong>Methods: </strong>Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [<sup>14</sup>C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, <sup>1</sup>H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation.</p><p><strong>Results: </strong>In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1.</p><p><strong>Conclusion: </strong>In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"24"},"PeriodicalIF":6.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic repression of de novo cysteine synthetases induces intra-cellular accumulation of cysteine in hepatocarcinoma by up-regulating the cystine uptake transporter xCT. 通过上调胱氨酸摄取转运体 xCT,对半胱氨酸合成酶的表观遗传抑制诱导肝癌细胞内半胱氨酸的积累。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-08-07 DOI: 10.1186/s40170-024-00352-4
Tomoaki Yamauchi, Yumi Okano, Daishu Terada, Sai Yasukochi, Akito Tsuruta, Yuya Tsurudome, Kentaro Ushijima, Naoya Matsunaga, Satoru Koyanagi, Shigehiro Ohdo

Background: The metabolic reprogramming of amino acids is critical for cancer cell growth and survival. Notably, intracellular accumulation of cysteine is often observed in various cancers, suggesting its potential role in alleviating the oxidative stress associated with rapid proliferation. The liver is the primary organ for cysteine biosynthesis, but much remains unknown about the metabolic alterations of cysteine and their mechanisms in hepatocellular carcinoma cells.

Methods: RNA-seq data from patients with hepatocarcinoma were analyzed using the TNMplot database. The underlying mechanism of the oncogenic alteration of cysteine metabolism was studied in mice implanted with BNL 1ME A.7 R.1 hepatocarcinoma.

Results: Database analysis of patients with hepatocellular carcinoma revealed that the expression of enzymes involved in de novo cysteine synthesis was down-regulated accompanying with increased expression of the cystine uptake transporter xCT. Similar alterations in gene expression have also been observed in a syngeneic mouse model of hepatocarcinoma. The enhanced expression of DNA methyltransferase in murine hepatocarcinoma cells caused methylation of the upstream regions of cysteine synthesis genes, thereby repressing their expression. Conversely, suppression of de novo cysteine synthesis in healthy liver cells induced xCT expression by up-regulating the oxidative-stress response factor NRF2, indicating that reduced de novo cysteine synthesis repulsively increases cystine uptake via enhanced xCT expression, leading to intracellular cysteine accumulation. Furthermore, the pharmacological inhibition of xCT activity decreased intracellular cysteine levels and suppressed hepatocarcinoma tumor growth in mice.

Conclusions: Our findings indicate an underlying mechanism of the oncogenic alteration of cysteine metabolism in hepatocarcinoma and highlight the efficacy of alteration of cysteine metabolism as a viable therapeutic target in cancer.

背景:氨基酸的代谢重编程对癌细胞的生长和存活至关重要。值得注意的是,在各种癌症中经常观察到细胞内半胱氨酸的积累,这表明半胱氨酸在缓解与快速增殖相关的氧化应激方面具有潜在作用。肝脏是半胱氨酸生物合成的主要器官,但肝癌细胞中半胱氨酸的代谢改变及其机制仍有许多未知之处:利用 TNMplot 数据库分析了肝癌患者的 RNA-seq 数据。方法:利用 TNMplot 数据库分析肝癌患者的 RNA-seq 数据,并在植入 BNL 1ME A.7 R.1 肝癌的小鼠体内研究半胱氨酸代谢致癌改变的内在机制:对肝细胞癌患者的数据库分析表明,参与半胱氨酸新合成的酶的表达下调,同时胱氨酸摄取转运体 xCT 的表达增加。在肝癌的合成小鼠模型中也观察到了类似的基因表达变化。DNA 甲基转移酶在小鼠肝癌细胞中的表达增强,导致半胱氨酸合成基因上游区域发生甲基化,从而抑制了这些基因的表达。相反,抑制健康肝细胞中半胱氨酸的从头合成会通过上调氧化应激反应因子 NRF2 来诱导 xCT 的表达,这表明半胱氨酸从头合成的减少会通过增强 xCT 的表达来增加胱氨酸的摄取,从而导致细胞内半胱氨酸的积累。此外,药物抑制 xCT 活性可降低细胞内半胱氨酸水平,抑制小鼠肝癌肿瘤的生长:我们的研究结果表明了肝癌中半胱氨酸代谢改变的潜在机制,并强调了半胱氨酸代谢改变作为癌症治疗靶点的有效性。
{"title":"Epigenetic repression of de novo cysteine synthetases induces intra-cellular accumulation of cysteine in hepatocarcinoma by up-regulating the cystine uptake transporter xCT.","authors":"Tomoaki Yamauchi, Yumi Okano, Daishu Terada, Sai Yasukochi, Akito Tsuruta, Yuya Tsurudome, Kentaro Ushijima, Naoya Matsunaga, Satoru Koyanagi, Shigehiro Ohdo","doi":"10.1186/s40170-024-00352-4","DOIUrl":"10.1186/s40170-024-00352-4","url":null,"abstract":"<p><strong>Background: </strong>The metabolic reprogramming of amino acids is critical for cancer cell growth and survival. Notably, intracellular accumulation of cysteine is often observed in various cancers, suggesting its potential role in alleviating the oxidative stress associated with rapid proliferation. The liver is the primary organ for cysteine biosynthesis, but much remains unknown about the metabolic alterations of cysteine and their mechanisms in hepatocellular carcinoma cells.</p><p><strong>Methods: </strong>RNA-seq data from patients with hepatocarcinoma were analyzed using the TNMplot database. The underlying mechanism of the oncogenic alteration of cysteine metabolism was studied in mice implanted with BNL 1ME A.7 R.1 hepatocarcinoma.</p><p><strong>Results: </strong>Database analysis of patients with hepatocellular carcinoma revealed that the expression of enzymes involved in de novo cysteine synthesis was down-regulated accompanying with increased expression of the cystine uptake transporter xCT. Similar alterations in gene expression have also been observed in a syngeneic mouse model of hepatocarcinoma. The enhanced expression of DNA methyltransferase in murine hepatocarcinoma cells caused methylation of the upstream regions of cysteine synthesis genes, thereby repressing their expression. Conversely, suppression of de novo cysteine synthesis in healthy liver cells induced xCT expression by up-regulating the oxidative-stress response factor NRF2, indicating that reduced de novo cysteine synthesis repulsively increases cystine uptake via enhanced xCT expression, leading to intracellular cysteine accumulation. Furthermore, the pharmacological inhibition of xCT activity decreased intracellular cysteine levels and suppressed hepatocarcinoma tumor growth in mice.</p><p><strong>Conclusions: </strong>Our findings indicate an underlying mechanism of the oncogenic alteration of cysteine metabolism in hepatocarcinoma and highlight the efficacy of alteration of cysteine metabolism as a viable therapeutic target in cancer.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"23"},"PeriodicalIF":6.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL16 regulates the mRNA stability of FBXO5 via m6A modification to facilitate the malignant behavior of breast cancer. METTL16 通过 m6A 修饰调节 FBXO5 的 mRNA 稳定性,从而促进乳腺癌的恶性行为。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-07-25 DOI: 10.1186/s40170-024-00351-5
Runying Wang, Xingjie Gao, Luhan Xie, Jiaqi Lin, Yanying Ren

Background: N6-methyladenosine (m6A) regulates the progression of breast cancer (BC). We aimed to investigate the action and mechanism involved of methyltransferase-like protein 16 (METTL16) in BC growth and metastasis.

Methods: RT-qPCR, immunoblotting, and IHC were performed to test the levels of gene expression. CCK-8, clone formation, wound healing, and transwell assays were applied to measure the cell proliferation, migration, and invasion. m6A RNA methylation and MeRIP assay were utilized to confirm the m6A level of total RNA and FBXO5 mRNA. RIP was utilized to ascertain the interaction between METTL16 and FBXO5 mRNA. The in vivo murine subcutaneous tumor and metastasis model were constructed to further confirm the action of METTL16.

Results: METTL16 was overexpression in BC cells and tissues. Inhibition of METTL16 restrained the growth and metastasis of BC. Furthermore, the METTL16 level and FBXO5 level was positively correlated in BC tissues, and METTL16 aggrandized the stability of FBXO5 mRNA depending on the m6A modification. Overexpression of FBXO5 antagonized the restrained function of METTL16 knockdown on BC cells' proliferation, migration, invasion, and EMT.

Conclusion: METTL16 boosts the mRNA stability of FBXO5 via m6A modification to facilitate the malignant action of BC in vitro and in vivo, offering new latent targets for cure of BC.

背景:N6-甲基腺苷(m6AN6-甲基腺苷(m6A)调控乳腺癌(BC)的进展。我们旨在研究甲基转移酶样蛋白 16(METTL16)在乳腺癌生长和转移中的作用和机制:方法:采用 RT-qPCR、免疫印迹和 IHC 检测基因表达水平。采用 CCK-8、克隆形成、伤口愈合和透孔试验测定细胞的增殖、迁移和侵袭。m6A RNA 甲基化和 MeRIP 试验确认总 RNA 和 FBXO5 mRNA 的 m6A 水平。利用 RIP 法确定 METTL16 和 FBXO5 mRNA 之间的相互作用。为进一步证实 METTL16 的作用,构建了体内小鼠皮下肿瘤和转移模型:结果:METTL16在BC细胞和组织中过表达。结果:METTL16在BC细胞和组织中过表达,抑制METTL16可抑制BC的生长和转移。此外,在 BC 组织中,METTL16 的水平与 FBXO5 的水平呈正相关,METTL16 依赖于 m6A 修饰增强了 FBXO5 mRNA 的稳定性。FBXO5的过表达拮抗了METTL16敲除对BC细胞增殖、迁移、侵袭和EMT的抑制作用:结论:METTL16通过m6A修饰提高了FBXO5的mRNA稳定性,从而促进了BC在体外和体内的恶性作用,为治疗BC提供了新的潜在靶点。
{"title":"METTL16 regulates the mRNA stability of FBXO5 via m6A modification to facilitate the malignant behavior of breast cancer.","authors":"Runying Wang, Xingjie Gao, Luhan Xie, Jiaqi Lin, Yanying Ren","doi":"10.1186/s40170-024-00351-5","DOIUrl":"10.1186/s40170-024-00351-5","url":null,"abstract":"<p><strong>Background: </strong>N6-methyladenosine (m6A) regulates the progression of breast cancer (BC). We aimed to investigate the action and mechanism involved of methyltransferase-like protein 16 (METTL16) in BC growth and metastasis.</p><p><strong>Methods: </strong>RT-qPCR, immunoblotting, and IHC were performed to test the levels of gene expression. CCK-8, clone formation, wound healing, and transwell assays were applied to measure the cell proliferation, migration, and invasion. m6A RNA methylation and MeRIP assay were utilized to confirm the m6A level of total RNA and FBXO5 mRNA. RIP was utilized to ascertain the interaction between METTL16 and FBXO5 mRNA. The in vivo murine subcutaneous tumor and metastasis model were constructed to further confirm the action of METTL16.</p><p><strong>Results: </strong>METTL16 was overexpression in BC cells and tissues. Inhibition of METTL16 restrained the growth and metastasis of BC. Furthermore, the METTL16 level and FBXO5 level was positively correlated in BC tissues, and METTL16 aggrandized the stability of FBXO5 mRNA depending on the m6A modification. Overexpression of FBXO5 antagonized the restrained function of METTL16 knockdown on BC cells' proliferation, migration, invasion, and EMT.</p><p><strong>Conclusion: </strong>METTL16 boosts the mRNA stability of FBXO5 via m6A modification to facilitate the malignant action of BC in vitro and in vivo, offering new latent targets for cure of BC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"22"},"PeriodicalIF":6.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The relationship between Stroma AReactive Invasion Front Areas (SARIFA), Warburg-subtype and survival: results from a large prospective series of colorectal cancer patients. 基质活性侵袭前区(SARIFA)、沃伯格亚型与生存之间的关系:大型前瞻性结直肠癌患者系列研究的结果。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-07-11 DOI: 10.1186/s40170-024-00349-z
Kelly Offermans, Nic G Reitsam, Colinda C J M Simons, Bianca Grosser, Jessica Zimmermann, Heike I Grabsch, Bruno Märkl, Piet A van den Brandt

Background: Stroma AReactive Invasion Front Areas (SARIFA) is a recently identified haematoxylin & eosin (H&E)based histopathologic biomarker in gastrointestinal cancers, including colorectal cancer (CRC), defined as direct contact between tumour cells and adipocytes at the tumour invasion front. The current study aimed at validating the prognostic relevance of SARIFA in a large population-based CRC series as well as at investigating the relationship between SARIFA-status and previously established Warburg-subtypes, both surrogates of the metabolic state of the tumour cells.

Methods: SARIFA-status (positive versus negative) was determined on H&E slides of 1,727 CRC specimens. Warburg-subtype (high versus moderate versus low) data was available from our previous study. The associations between SARIFA-status, Warburg-subtype, clinicopathological characteristics and CRC-specific as well as overall survival were investigated.

Results: 28.7% (n=496) CRC were SARIFA-positive. SARIFA-positivity was associated with more advanced disease stage, higher pT category, and more frequent lymph node involvement (all p<0.001). SARIFA-positivity was more common in Warburg-high CRC. 44.2% (n=219) of SARIFA-positive CRCs were Warburg-high compared to 22.8% (n=113) being Warburg-low and 33.1% (n=164) being Warburg-moderate (p<0.001). In multivariable-adjusted analysis, patients with SARIFA-positive CRCs had significantly poorer CRC-specific (HRCRC-specific 1.65; 95% CI 1.41-1.93) and overall survival (HRoverall survival 1.46; 95% CI 1.28-1.67) independent of clinically known risk factors and independent of Warburg-subtype. Combining the SARIFA-status and the Warburg-subtype to a combination score (SARIFA-negative/Warburg-high versus SARIFA-positive/Warburg-low versus SARIFA-positive/Warburg-high, and so on) did not improve the survival prediction compared to the use of SARIFA-status alone (SARIFA-negative + Warburg-high: HRCRC-specific 1.08; 95% CI 0.84-1.38; SARIFA-positive + Warburg-low: HRCRC-specific 1.79; 95% CI 1.32-2.41; SARIFA-positive + Warburg-high: HRCRC-specific 1.58; 95% CI 1.23-2.04).

Conclusions: Our current study is the by far largest external validation of SARIFA-positivity as a novel independent negative prognostic H&E-based biomarker in CRC. In addition, our study shows that SARIFA-positivity is associated with the Warburg-high subtype. Further research is warranted to provide a more mechanistic understanding of the underlying tumour biology. Based on our data, we conclude SARIFA-status should be implemented in pathologic routine practice to stratify CRC patients.

背景:基质活性侵袭前区(SARIFA)是最近在包括结直肠癌(CRC)在内的胃肠道癌症中发现的一种基于血涂片和伊红(H&E)的组织病理学生物标志物,它被定义为肿瘤细胞和脂肪细胞在肿瘤侵袭前区的直接接触。目前的研究旨在验证 SARIFA 在大型人群 CRC 系列中的预后相关性,并调查 SARIFA 状态与之前确定的沃伯格亚型(均为肿瘤细胞代谢状态的替代物)之间的关系:方法:在1,727份CRC标本的H&E切片上确定SARIFA状态(阳性与阴性)。沃伯格亚型(高、中、低)数据来自我们之前的研究。结果:28.7%(n=496)的 CRC 呈 SARIFA 阳性。SARIFA阳性与更晚的疾病分期、更高的pT分类、更频繁的淋巴结受累(所有pCRC特异性为1.65;95% CI为1.41-1.93)和总生存率(总生存率为1.46;95% CI为1.28-1.67)相关,与临床已知的风险因素无关,也与沃伯格亚型无关。与单独使用SARIFA状态相比,将SARIFA状态和沃伯格亚型合并为一个组合评分(SARIFA阴性/沃伯格-高与SARIFA阳性/沃伯格-低与SARIFA阳性/沃伯格-高,以此类推)并不能改善生存预测(SARIFA阴性+沃伯格-高:HRC特异性1.08;95% CI 0.84-1.38;SARIFA阳性+沃伯格-低:HRC特异性1.79;95% CI 0.84-1.38):结论:我们目前的研究是迄今为止对 SARIFA 阳性作为一种基于 H&E 的新型独立阴性预后生物标志物进行的最大规模的外部验证。此外,我们的研究还表明,SARIFA 阳性与沃伯格高亚型相关。我们有必要开展进一步的研究,以便从机制上更深入地了解潜在的肿瘤生物学。根据我们的数据,我们得出结论:SARIFA 状态应在病理常规实践中用于对 CRC 患者进行分层。
{"title":"The relationship between Stroma AReactive Invasion Front Areas (SARIFA), Warburg-subtype and survival: results from a large prospective series of colorectal cancer patients.","authors":"Kelly Offermans, Nic G Reitsam, Colinda C J M Simons, Bianca Grosser, Jessica Zimmermann, Heike I Grabsch, Bruno Märkl, Piet A van den Brandt","doi":"10.1186/s40170-024-00349-z","DOIUrl":"10.1186/s40170-024-00349-z","url":null,"abstract":"<p><strong>Background: </strong>Stroma AReactive Invasion Front Areas (SARIFA) is a recently identified haematoxylin & eosin (H&E)based histopathologic biomarker in gastrointestinal cancers, including colorectal cancer (CRC), defined as direct contact between tumour cells and adipocytes at the tumour invasion front. The current study aimed at validating the prognostic relevance of SARIFA in a large population-based CRC series as well as at investigating the relationship between SARIFA-status and previously established Warburg-subtypes, both surrogates of the metabolic state of the tumour cells.</p><p><strong>Methods: </strong>SARIFA-status (positive versus negative) was determined on H&E slides of 1,727 CRC specimens. Warburg-subtype (high versus moderate versus low) data was available from our previous study. The associations between SARIFA-status, Warburg-subtype, clinicopathological characteristics and CRC-specific as well as overall survival were investigated.</p><p><strong>Results: </strong>28.7% (n=496) CRC were SARIFA-positive. SARIFA-positivity was associated with more advanced disease stage, higher pT category, and more frequent lymph node involvement (all p<0.001). SARIFA-positivity was more common in Warburg-high CRC. 44.2% (n=219) of SARIFA-positive CRCs were Warburg-high compared to 22.8% (n=113) being Warburg-low and 33.1% (n=164) being Warburg-moderate (p<0.001). In multivariable-adjusted analysis, patients with SARIFA-positive CRCs had significantly poorer CRC-specific (HR<sub>CRC-specific</sub> 1.65; 95% CI 1.41-1.93) and overall survival (HR<sub>overall survival</sub> 1.46; 95% CI 1.28-1.67) independent of clinically known risk factors and independent of Warburg-subtype. Combining the SARIFA-status and the Warburg-subtype to a combination score (SARIFA-negative/Warburg-high versus SARIFA-positive/Warburg-low versus SARIFA-positive/Warburg-high, and so on) did not improve the survival prediction compared to the use of SARIFA-status alone (SARIFA-negative + Warburg-high: HR<sub>CRC-specific</sub> 1.08; 95% CI 0.84-1.38; SARIFA-positive + Warburg-low: HR<sub>CRC-specific</sub> 1.79; 95% CI 1.32-2.41; SARIFA-positive + Warburg-high: HR<sub>CRC-specific</sub> 1.58; 95% CI 1.23-2.04).</p><p><strong>Conclusions: </strong>Our current study is the by far largest external validation of SARIFA-positivity as a novel independent negative prognostic H&E-based biomarker in CRC. In addition, our study shows that SARIFA-positivity is associated with the Warburg-high subtype. Further research is warranted to provide a more mechanistic understanding of the underlying tumour biology. Based on our data, we conclude SARIFA-status should be implemented in pathologic routine practice to stratify CRC patients.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"21"},"PeriodicalIF":6.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subclinical dose irradiation triggers human breast cancer migration via mitochondrial reactive oxygen species. 亚临床剂量辐照通过线粒体活性氧引发人类乳腺癌迁移
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-07-08 DOI: 10.1186/s40170-024-00347-1
Justin D Rondeau, Justine A Van de Velde, Yasmine Bouidida, Pierre Sonveaux

Background: Despite technological advances in radiotherapy, cancer cells at the tumor margin and in diffusive infiltrates can receive subcytotoxic doses of photons. Even if only a minority of cancer cells are concerned, phenotypic consequences could be important considering that mitochondrial DNA (mtDNA) is a primary target of radiation and that damage to mtDNA can persist. In turn, mitochondrial dysfunction associated with enhanced mitochondrial ROS (mtROS) production could promote cancer cell migration out of the irradiation field in a natural attempt to escape therapy. In this study, using MCF7 and MDA-MB-231 human breast cancer cells as models, we aimed to elucidate the molecular mechanisms supporting a mitochondrial contribution to cancer cell migration induced by subclinical doses of irradiation (< 2 Gy).

Methods: Mitochondrial dysfunction was tested using mtDNA multiplex PCR, oximetry, and ROS-sensitive fluorescent reporters. Migration was tested in transwells 48 h after irradiation in the presence or absence of inhibitors targeting specific ROS or downstream effectors. Among tested inhibitors, we designed a mitochondria-targeted version of human catalase (mtCAT) to selectively inactivate mitochondrial H2O2.

Results: Photon irradiation at subclinical doses (0.5 Gy for MCF7 and 0.125 Gy for MDA-MB-231 cells) sequentially affected mtDNA levels and/or integrity, increased mtROS production, increased MAP2K1/MEK1 gene expression, activated ROS-sensitive transcription factors NF-κB and AP1 and stimulated breast cancer cell migration. Targeting mtROS pharmacologically by MitoQ or genetically by mtCAT expression mitigated migration induced by a subclinical dose of irradiation.

Conclusion: Subclinical doses of photon irradiation promote human breast cancer migration, which can be countered by selectively targeting mtROS.

背景:尽管放疗技术不断进步,但肿瘤边缘和弥漫浸润的癌细胞仍会受到亚细胞毒性剂量的光子照射。即使只有少数癌细胞受到影响,考虑到线粒体 DNA(mtDNA)是辐射的主要靶点,而且对 mtDNA 的损伤可能会持续存在,其表型后果也可能非常重要。反过来,与线粒体 ROS(mtROS)产生增强相关的线粒体功能障碍可能会促进癌细胞迁移到辐照区域之外,从而自然地试图逃避治疗。在本研究中,我们以 MCF7 和 MDA-MB-231 人类乳腺癌细胞为模型,旨在阐明支持线粒体促进亚临床剂量辐照诱导的癌细胞迁移的分子机制(方法:使用 mtDNA 多重 PCR、血氧测定法和 ROS 敏感荧光报告器检测线粒体功能障碍。辐照 48 小时后,在存在或不存在针对特定 ROS 或下游效应物的抑制剂的情况下,在转孔中检测迁移情况。在测试的抑制剂中,我们设计了一种线粒体靶向的人类过氧化氢酶(mtCAT),以选择性地灭活线粒体中的H2O2:亚临床剂量的光子照射(MCF7 细胞为 0.5 Gy,MDA-MB-231 细胞为 0.125 Gy)会连续影响线粒体 DNA 的水平和/或完整性,增加线粒体 ROS 的产生,增加 MAP2K1/MEK1 基因的表达,激活对 ROS 敏感的转录因子 NF-κB 和 AP1,并刺激乳腺癌细胞的迁移。通过 MitoQ 的药理作用或 mtCAT 的基因表达来靶向 mtROS,可减轻亚临床剂量辐照诱导的迁移:结论:亚临床剂量的光子照射会促进人类乳腺癌的迁移,而选择性地靶向mtROS可以对抗这种迁移。
{"title":"Subclinical dose irradiation triggers human breast cancer migration via mitochondrial reactive oxygen species.","authors":"Justin D Rondeau, Justine A Van de Velde, Yasmine Bouidida, Pierre Sonveaux","doi":"10.1186/s40170-024-00347-1","DOIUrl":"10.1186/s40170-024-00347-1","url":null,"abstract":"<p><strong>Background: </strong>Despite technological advances in radiotherapy, cancer cells at the tumor margin and in diffusive infiltrates can receive subcytotoxic doses of photons. Even if only a minority of cancer cells are concerned, phenotypic consequences could be important considering that mitochondrial DNA (mtDNA) is a primary target of radiation and that damage to mtDNA can persist. In turn, mitochondrial dysfunction associated with enhanced mitochondrial ROS (mtROS) production could promote cancer cell migration out of the irradiation field in a natural attempt to escape therapy. In this study, using MCF7 and MDA-MB-231 human breast cancer cells as models, we aimed to elucidate the molecular mechanisms supporting a mitochondrial contribution to cancer cell migration induced by subclinical doses of irradiation (< 2 Gy).</p><p><strong>Methods: </strong>Mitochondrial dysfunction was tested using mtDNA multiplex PCR, oximetry, and ROS-sensitive fluorescent reporters. Migration was tested in transwells 48 h after irradiation in the presence or absence of inhibitors targeting specific ROS or downstream effectors. Among tested inhibitors, we designed a mitochondria-targeted version of human catalase (mtCAT) to selectively inactivate mitochondrial H<sub>2</sub>O<sub>2</sub>.</p><p><strong>Results: </strong>Photon irradiation at subclinical doses (0.5 Gy for MCF7 and 0.125 Gy for MDA-MB-231 cells) sequentially affected mtDNA levels and/or integrity, increased mtROS production, increased MAP2K1/MEK1 gene expression, activated ROS-sensitive transcription factors NF-κB and AP1 and stimulated breast cancer cell migration. Targeting mtROS pharmacologically by MitoQ or genetically by mtCAT expression mitigated migration induced by a subclinical dose of irradiation.</p><p><strong>Conclusion: </strong>Subclinical doses of photon irradiation promote human breast cancer migration, which can be countered by selectively targeting mtROS.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"20"},"PeriodicalIF":6.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer & Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1