首页 > 最新文献

Cancer & Metabolism最新文献

英文 中文
CYP19A1 regulates chemoresistance in colorectal cancer through modulation of estrogen biosynthesis and mitochondrial function. CYP19A1通过调节雌激素的生物合成和线粒体功能调节结直肠癌的化疗耐药性
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1186/s40170-024-00360-4
Yang Wang, Qiang Ji, Ning Cao, Guijie Ge, Xiaomin Li, Xiangdong Liu, Yanqi Mi

Chemoresistance remains a major challenge in the effective treatment of colorectal cancer (CRC), contributing to poor patient outcomes. While the molecular mechanisms underlying chemoresistance are complex and multifaceted, emerging evidence suggests that altered mitochondrial function and hormone signaling play crucial roles. In this study, we investigated the role of CYP19A1, a key enzyme in estrogen biosynthesis, in regulating chemoresistance in CRC. Using a combination of in vitro functional assays, transcriptomic analysis, and clinical data mining, we demonstrate that CYP19A1 expression is significantly upregulated in CRC cells and patient-derived samples compared to normal controls. Mechanistically, we found that CYP19A1 regulates chemoresistance through modulation of mitochondrial function and complex I activity, which is mediated by CYP19A1-dependent estrogen biosynthesis. Notably, targeted inhibition of CYP19A1 and complex I using specific inhibitors effectively reversed the chemoresistance of CRC cells to chemotherapeutic drugs. Moreover, analysis of the TCGA CRC dataset revealed that high CYP19A1 expression correlates with poor overall survival in chemotherapy-treated patients. Taken together, our findings uncover a novel role for CYP19A1 in regulating chemoresistance in CRC through modulation of mitochondrial function and estrogen signaling, and highlight the potential of targeting the CYP19A1/estrogen/complex I axis as a therapeutic strategy to overcome chemoresistance and improve patient outcomes.

化疗耐药性仍是有效治疗结直肠癌(CRC)的一大挑战,导致患者预后不佳。虽然化疗耐药性的分子机制复杂而多面,但新出现的证据表明线粒体功能和激素信号转导的改变起着至关重要的作用。在本研究中,我们研究了雌激素生物合成的关键酶 CYP19A1 在调节 CRC 化疗耐药性中的作用。通过体外功能测试、转录组分析和临床数据挖掘相结合的方法,我们证明与正常对照组相比,CYP19A1 在 CRC 细胞和患者来源样本中的表达显著上调。从机理上讲,我们发现 CYP19A1 通过调节线粒体功能和复合体 I 活性来调节化疗耐药性,而线粒体功能和复合体 I 活性是由 CYP19A1 依赖性雌激素生物合成介导的。值得注意的是,使用特异性抑制剂靶向抑制 CYP19A1 和复合体 I 能有效逆转 CRC 细胞对化疗药物的化疗耐药性。此外,对 TCGA CRC 数据集的分析表明,CYP19A1 的高表达与化疗患者的总生存率低有关。综上所述,我们的发现揭示了 CYP19A1 通过调节线粒体功能和雌激素信号转导在调节 CRC 化疗耐药性中的新作用,并强调了靶向 CYP19A1/雌激素/复合物 I 轴作为克服化疗耐药性和改善患者预后的治疗策略的潜力。
{"title":"CYP19A1 regulates chemoresistance in colorectal cancer through modulation of estrogen biosynthesis and mitochondrial function.","authors":"Yang Wang, Qiang Ji, Ning Cao, Guijie Ge, Xiaomin Li, Xiangdong Liu, Yanqi Mi","doi":"10.1186/s40170-024-00360-4","DOIUrl":"10.1186/s40170-024-00360-4","url":null,"abstract":"<p><p>Chemoresistance remains a major challenge in the effective treatment of colorectal cancer (CRC), contributing to poor patient outcomes. While the molecular mechanisms underlying chemoresistance are complex and multifaceted, emerging evidence suggests that altered mitochondrial function and hormone signaling play crucial roles. In this study, we investigated the role of CYP19A1, a key enzyme in estrogen biosynthesis, in regulating chemoresistance in CRC. Using a combination of in vitro functional assays, transcriptomic analysis, and clinical data mining, we demonstrate that CYP19A1 expression is significantly upregulated in CRC cells and patient-derived samples compared to normal controls. Mechanistically, we found that CYP19A1 regulates chemoresistance through modulation of mitochondrial function and complex I activity, which is mediated by CYP19A1-dependent estrogen biosynthesis. Notably, targeted inhibition of CYP19A1 and complex I using specific inhibitors effectively reversed the chemoresistance of CRC cells to chemotherapeutic drugs. Moreover, analysis of the TCGA CRC dataset revealed that high CYP19A1 expression correlates with poor overall survival in chemotherapy-treated patients. Taken together, our findings uncover a novel role for CYP19A1 in regulating chemoresistance in CRC through modulation of mitochondrial function and estrogen signaling, and highlight the potential of targeting the CYP19A1/estrogen/complex I axis as a therapeutic strategy to overcome chemoresistance and improve patient outcomes.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"33"},"PeriodicalIF":6.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation. GCN2-SLC7A11轴协调自噬、细胞周期和细胞凋亡,并在精氨酸缺乏时调节视网膜母细胞瘤的细胞生长。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-26 DOI: 10.1186/s40170-024-00361-3
Dan Wang, Wai Kit Chu, Jason Cheuk Sing Yam, Chi Pui Pang, Yun Chung Leung, Alisa Sau Wun Shum, Sun-On Chan

Background: Arginine deprivation was previously shown to inhibit retinoblastoma cell proliferation and induce cell death in vitro. However, the mechanisms by which retinoblastoma cells respond to arginine deprivation remain to be elucidated.

Methods: The human-derived retinoblastoma cell lines Y79 and WERI-Rb-1 were subjected to arginine depletion, and the effects on inhibiting cell growth and survival were evaluated. This study investigated potential mechanisms, including autophagy, cell cycle arrest and apoptosis. Moreover, the roles of the general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways in these processes were examined.

Results: We demonstrated that arginine deprivation effectively inhibited the growth of retinoblastoma cells in vitro. This treatment caused an increase in the autophagic response. Additionally, prolonged arginine deprivation induced G2 cell cycle arrest and was accompanied by an increase in early apoptotic cells. Importantly, arginine depletion also induced the activation of GCN2 and the inhibition of mTOR signaling. We also discovered that the activation of SLC7A11 was regulated by GCN2 upon arginine deprivation. Knockdown of SLC7A11 rendered retinoblastoma cells partially resistant to arginine deprivation. Furthermore, we found that knockdown of GCN2 led to a decrease in the autophagic response in WERI-Rb-1 cells and arrested more cells in S phase, which was accompanied by fewer apoptotic cells. Moreover, knockdown of GCN2 induced the constant expression of ATF4 and the phosphorylation of 70S6K and 4E-BP1 regardless of arginine deprivation.

Conclusions: Collectively, our findings suggest that the GCN2‒SLC7A11 axis regulates cell growth and survival upon arginine deprivation through coordinating autophagy, cell cycle arrest, and apoptosis in retinoblastoma cells. This work paves the way for the development of a novel treatment for retinoblastoma.

背景:先前的研究表明,精氨酸剥夺可抑制视网膜母细胞瘤细胞增殖并诱导体外细胞死亡。然而,视网膜母细胞瘤细胞对精氨酸剥夺的反应机制仍有待阐明:方法:对来源于人类的视网膜母细胞瘤细胞株 Y79 和 WERI-Rb-1 进行精氨酸缺失,并评估其对抑制细胞生长和存活的影响。这项研究调查了潜在的机制,包括自噬、细胞周期停滞和细胞凋亡。此外,还研究了一般控制非去极化 2(GCN2)和雷帕霉素复合体 1(mTORC1)信号通路在这些过程中的作用:结果:我们证实,精氨酸剥夺能有效抑制视网膜母细胞瘤细胞在体外的生长。结果:我们证明了精氨酸剥夺能有效抑制视网膜母细胞瘤细胞在体外的生长。此外,长时间的精氨酸缺乏会诱导 G2 细胞周期停滞,并伴随着早期凋亡细胞的增加。重要的是,精氨酸缺失还诱导了 GCN2 的激活和 mTOR 信号转导的抑制。我们还发现,精氨酸缺乏时,SLC7A11 的活化受 GCN2 的调控。敲除 SLC7A11 可使视网膜母细胞瘤细胞对精氨酸匮乏产生部分抵抗力。此外,我们发现敲除 GCN2 会导致 WERI-Rb-1 细胞的自噬反应减弱,更多的细胞停滞在 S 期,同时凋亡细胞减少。此外,无论精氨酸是否被剥夺,敲除 GCN2 都会诱导 ATF4 的持续表达以及 70S6K 和 4E-BP1 的磷酸化:总之,我们的研究结果表明,GCN2-SLC7A11轴通过协调视网膜母细胞瘤细胞的自噬、细胞周期停滞和细胞凋亡,在精氨酸缺乏时调节细胞的生长和存活。这项工作为开发治疗视网膜母细胞瘤的新型疗法铺平了道路。
{"title":"GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation.","authors":"Dan Wang, Wai Kit Chu, Jason Cheuk Sing Yam, Chi Pui Pang, Yun Chung Leung, Alisa Sau Wun Shum, Sun-On Chan","doi":"10.1186/s40170-024-00361-3","DOIUrl":"10.1186/s40170-024-00361-3","url":null,"abstract":"<p><strong>Background: </strong>Arginine deprivation was previously shown to inhibit retinoblastoma cell proliferation and induce cell death in vitro. However, the mechanisms by which retinoblastoma cells respond to arginine deprivation remain to be elucidated.</p><p><strong>Methods: </strong>The human-derived retinoblastoma cell lines Y79 and WERI-Rb-1 were subjected to arginine depletion, and the effects on inhibiting cell growth and survival were evaluated. This study investigated potential mechanisms, including autophagy, cell cycle arrest and apoptosis. Moreover, the roles of the general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways in these processes were examined.</p><p><strong>Results: </strong>We demonstrated that arginine deprivation effectively inhibited the growth of retinoblastoma cells in vitro. This treatment caused an increase in the autophagic response. Additionally, prolonged arginine deprivation induced G2 cell cycle arrest and was accompanied by an increase in early apoptotic cells. Importantly, arginine depletion also induced the activation of GCN2 and the inhibition of mTOR signaling. We also discovered that the activation of SLC7A11 was regulated by GCN2 upon arginine deprivation. Knockdown of SLC7A11 rendered retinoblastoma cells partially resistant to arginine deprivation. Furthermore, we found that knockdown of GCN2 led to a decrease in the autophagic response in WERI-Rb-1 cells and arrested more cells in S phase, which was accompanied by fewer apoptotic cells. Moreover, knockdown of GCN2 induced the constant expression of ATF4 and the phosphorylation of 70S6K and 4E-BP1 regardless of arginine deprivation.</p><p><strong>Conclusions: </strong>Collectively, our findings suggest that the GCN2‒SLC7A11 axis regulates cell growth and survival upon arginine deprivation through coordinating autophagy, cell cycle arrest, and apoptosis in retinoblastoma cells. This work paves the way for the development of a novel treatment for retinoblastoma.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"31"},"PeriodicalIF":6.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition. RHOF 通过增强 PKM2 介导的糖酵解促进 Snail1 乳化,从而诱导胰腺癌细胞的内皮-间充质转化。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-26 DOI: 10.1186/s40170-024-00362-2
Rui Zhao, Yanmin Yi, Han Liu, Jianwei Xu, Shuhai Chen, Dong Wu, Lei Wang, Feng Li

Background: The influence of the small Rho GTPase Rif (RHOF) on tumor growth, glycolysis, endothelial-mesenchymal transition (EMT), and the potential mechanism of RHOF in pancreatic cancer (PC) were explored.

Methods: RHOF expression in PC tissues and cells was assessed by qRT-PCR and western blotting. The viability, proliferation, apoptosis, migration, and invasion of PC cells were assessed using CCK-8, colony formation, EdU, flow cytometry, scratch, and Transwell assays. The expression of EMT- and glycolysis-related proteins was determined using western blotting. The potential mechanisms of action of RHOF in PC were identified using bioinformatic analysis. The effects of RHOF were assessed in vivo using a xenograft mouse model.

Results: PC cell proliferation, migration, and invasion are accelerated by RHOF overexpression, which inhibited apoptosis. RHOF overexpression promoted EMT and glycolysis as evidenced by a decrease in E-cadherin expression and an increase in N-cadherin, Vimentin, HK2, PKM2, and LDHA expression. Bioinformatic analysis indicated that RHOF activated EMT, glycolysis, and Myc targets and that c-Myc could bind to the PKM2 promoter. RHOF overexpression promotes the lactylation and nuclear translocation of Snail1. Silencing Snail1 reversed the promoting effects of RHOF and lactate on cell migration, invasion, and EMT. Moreover, in vivo tumor growth and EMT were inhibited by RHOF silencing.

Conclusion: RHOF plays an oncogenic role in PC. c-Myc is upregulated by RHOF and promotes PKM2 transcription. PKM2 further induces glycolysis, and the lactate produced by glycolysis causes the lactylation of Snail1, ultimately promoting EMT.

背景:探讨了小Rho GTP酶Rif(RHOF)对肿瘤生长、糖酵解、内皮-间质转化(EMT)的影响,以及RHOF在胰腺癌(PC)中的潜在机制:方法:采用 qRT-PCR 和免疫印迹法评估 RHOF 在 PC 组织和细胞中的表达。采用 CCK-8、集落形成、EdU、流式细胞术、划痕和 Transwell 试验评估了 PC 细胞的活力、增殖、凋亡、迁移和侵袭。采用 Western 印迹法测定了 EMT 和糖酵解相关蛋白的表达。利用生物信息学分析确定了 RHOF 在 PC 中的潜在作用机制。使用异种移植小鼠模型评估了RHOF在体内的作用:结果:过表达 RHOF 会加速 PC 细胞的增殖、迁移和侵袭,并抑制细胞凋亡。RHOF过表达促进了EMT和糖酵解,表现为E-cadherin表达减少,N-cadherin、Vimentin、HK2、PKM2和LDHA表达增加。生物信息学分析表明,RHOF激活了EMT、糖酵解和Myc靶标,而且c-Myc能与PKM2启动子结合。RHOF的过表达促进了Snail1的乳化和核转位。沉默Snail1可逆转RHOF和乳酸对细胞迁移、侵袭和EMT的促进作用。此外,RHOF沉默可抑制体内肿瘤生长和EMT:RHOF在PC中起着致癌作用。PKM2进一步诱导糖酵解,糖酵解产生的乳酸导致蜗牛1乳化,最终促进EMT。
{"title":"RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition.","authors":"Rui Zhao, Yanmin Yi, Han Liu, Jianwei Xu, Shuhai Chen, Dong Wu, Lei Wang, Feng Li","doi":"10.1186/s40170-024-00362-2","DOIUrl":"10.1186/s40170-024-00362-2","url":null,"abstract":"<p><strong>Background: </strong>The influence of the small Rho GTPase Rif (RHOF) on tumor growth, glycolysis, endothelial-mesenchymal transition (EMT), and the potential mechanism of RHOF in pancreatic cancer (PC) were explored.</p><p><strong>Methods: </strong>RHOF expression in PC tissues and cells was assessed by qRT-PCR and western blotting. The viability, proliferation, apoptosis, migration, and invasion of PC cells were assessed using CCK-8, colony formation, EdU, flow cytometry, scratch, and Transwell assays. The expression of EMT- and glycolysis-related proteins was determined using western blotting. The potential mechanisms of action of RHOF in PC were identified using bioinformatic analysis. The effects of RHOF were assessed in vivo using a xenograft mouse model.</p><p><strong>Results: </strong>PC cell proliferation, migration, and invasion are accelerated by RHOF overexpression, which inhibited apoptosis. RHOF overexpression promoted EMT and glycolysis as evidenced by a decrease in E-cadherin expression and an increase in N-cadherin, Vimentin, HK2, PKM2, and LDHA expression. Bioinformatic analysis indicated that RHOF activated EMT, glycolysis, and Myc targets and that c-Myc could bind to the PKM2 promoter. RHOF overexpression promotes the lactylation and nuclear translocation of Snail1. Silencing Snail1 reversed the promoting effects of RHOF and lactate on cell migration, invasion, and EMT. Moreover, in vivo tumor growth and EMT were inhibited by RHOF silencing.</p><p><strong>Conclusion: </strong>RHOF plays an oncogenic role in PC. c-Myc is upregulated by RHOF and promotes PKM2 transcription. PKM2 further induces glycolysis, and the lactate produced by glycolysis causes the lactylation of Snail1, ultimately promoting EMT.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"32"},"PeriodicalIF":6.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNF2 promotes chondrosarcoma progression by regulating ubiquitination and degradation of CBX7. RNF2 通过调控 CBX7 的泛素化和降解促进软骨肉瘤的发展。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-25 DOI: 10.1186/s40170-024-00359-x
Yue Wu, Zheng Huang, Ping Luo, Zhong Xiang, Meng Zhang, Zhiwu Chen, Yalu Zhou, Jiameng Li

Objective: Chondrosarcoma (CHS) is resistant to conventional chemotherapy and radiotherapy and currently lacks effective treatment options when in advanced stages. Accordingly, this research investigated the mechanism of RNF2/CBX7 in CHS to drive the development of molecularly targeted drugs for CHS.

Methods: RNF2 and CBX7 levels were detected in CHS cells and tissues. RNF2 and CBX7 expression was modulated through cell transfection to examine their effects on cell proliferation, apoptosis, migration, and angiogenesis. The correlation between RNF2 and CBX7 levels was determined, and the ubiquitination level of CBX7 was tested. Protein synthesis was blocked in RNF2-knockdown/overexpressing cells with CHX to assess the effect of RNF2 on CBX7 stability. JJ012 cells transfected with LV-sh-RNF2 were subcutaneously injected into nu/nu nude mice to ascertain the action of RNF2 in the growth and metastasis of CHS.

Results: RNF2 was highly expressed in CHS cells and tissues. RNF2 knockdown curbed CHS cell proliferation, migration, and angiogenesis while promoting apoptosis. RNF2 knockdown in JJ012 cells upregulated CBX7 protein levels and reduced CBX7 ubiquitination, whilst RNF2 had no effect on CBX7 mRNA expression. CBX7 knockdown partially nullified the repressing effects of RNF2 knockdown on CHS cell proliferation, migration, and angiogenesis, and CBX7 overexpression partially abolished the promotional effects of RNF2 overexpression. LV-sh-RNF2 prominently restricted tumor growth and weight and declined lung metastatic nodules and Ki-67-positive cells in mice.

Conclusion: RNF2 fosters CHS progression by elevating CBX7 degradation via the ubiquitination pathway.

目的:软骨肉瘤(CHS软骨肉瘤(Chondrosarcoma,CHS)对传统化疗和放疗具有耐药性,目前在晚期阶段缺乏有效的治疗方案。因此,本研究探讨了 RNF2/CBX7 在 CHS 中的作用机制,以推动 CHS 分子靶向药物的开发:方法:检测CHS细胞和组织中的RNF2和CBX7水平。方法:检测 CHS 细胞和组织中 RNF2 和 CBX7 的水平,通过细胞转染调节 RNF2 和 CBX7 的表达,研究它们对细胞增殖、凋亡、迁移和血管生成的影响。测定了 RNF2 和 CBX7 水平之间的相关性,并检测了 CBX7 的泛素化水平。用 CHX 阻断 RNF2 敲除/高表达细胞的蛋白质合成,以评估 RNF2 对 CBX7 稳定性的影响。将转染了LV-sh-RNF2的JJ012细胞皮下注射到nu/nu裸鼠体内,以确定RNF2在CHS生长和转移中的作用:结果:RNF2在CHS细胞和组织中高表达。结果:RNF2在CHS细胞和组织中高表达,敲除RNF2可抑制CHS细胞的增殖、迁移和血管生成,同时促进细胞凋亡。在 JJ012 细胞中敲除 RNF2 会上调 CBX7 蛋白水平并减少 CBX7 泛素化,而 RNF2 对 CBX7 mRNA 的表达没有影响。CBX7 基因敲除部分抵消了 RNF2 基因敲除对 CHS 细胞增殖、迁移和血管生成的抑制作用,而 CBX7 基因过表达则部分抵消了 RNF2 基因过表达的促进作用。LV-sh-RNF2显著限制了肿瘤的生长和重量,并减少了小鼠肺转移结节和Ki-67阳性细胞:结论:RNF2通过泛素化途径促进CBX7降解,从而促进CHS进展。
{"title":"RNF2 promotes chondrosarcoma progression by regulating ubiquitination and degradation of CBX7.","authors":"Yue Wu, Zheng Huang, Ping Luo, Zhong Xiang, Meng Zhang, Zhiwu Chen, Yalu Zhou, Jiameng Li","doi":"10.1186/s40170-024-00359-x","DOIUrl":"10.1186/s40170-024-00359-x","url":null,"abstract":"<p><strong>Objective: </strong>Chondrosarcoma (CHS) is resistant to conventional chemotherapy and radiotherapy and currently lacks effective treatment options when in advanced stages. Accordingly, this research investigated the mechanism of RNF2/CBX7 in CHS to drive the development of molecularly targeted drugs for CHS.</p><p><strong>Methods: </strong>RNF2 and CBX7 levels were detected in CHS cells and tissues. RNF2 and CBX7 expression was modulated through cell transfection to examine their effects on cell proliferation, apoptosis, migration, and angiogenesis. The correlation between RNF2 and CBX7 levels was determined, and the ubiquitination level of CBX7 was tested. Protein synthesis was blocked in RNF2-knockdown/overexpressing cells with CHX to assess the effect of RNF2 on CBX7 stability. JJ012 cells transfected with LV-sh-RNF2 were subcutaneously injected into nu/nu nude mice to ascertain the action of RNF2 in the growth and metastasis of CHS.</p><p><strong>Results: </strong>RNF2 was highly expressed in CHS cells and tissues. RNF2 knockdown curbed CHS cell proliferation, migration, and angiogenesis while promoting apoptosis. RNF2 knockdown in JJ012 cells upregulated CBX7 protein levels and reduced CBX7 ubiquitination, whilst RNF2 had no effect on CBX7 mRNA expression. CBX7 knockdown partially nullified the repressing effects of RNF2 knockdown on CHS cell proliferation, migration, and angiogenesis, and CBX7 overexpression partially abolished the promotional effects of RNF2 overexpression. LV-sh-RNF2 prominently restricted tumor growth and weight and declined lung metastatic nodules and Ki-67-positive cells in mice.</p><p><strong>Conclusion: </strong>RNF2 fosters CHS progression by elevating CBX7 degradation via the ubiquitination pathway.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"30"},"PeriodicalIF":6.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the glycosphingolipid metabolism by leveraging transcriptome-weighted network analysis on neuroblastic tumors. 利用神经母细胞瘤转录组加权网络分析揭示糖磷脂代谢过程
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-24 DOI: 10.1186/s40170-024-00358-y
Arsenij Ustjanzew, Annekathrin Silvia Nedwed, Roger Sandhoff, Jörg Faber, Federico Marini, Claudia Paret

Background: Glycosphingolipids (GSLs) are membrane lipids composed of a ceramide backbone linked to a glycan moiety. Ganglioside biosynthesis is a part of the GSL metabolism, which involves sequential reactions catalyzed by specific enzymes that in part have a poor substrate specificity. GSLs are deregulated in cancer, thus playing a role as potential biomarkers for personalized therapy or subtype classification. However, the analysis of GSL profiles is complex and requires dedicated technologies, that are currently not included in the commonly utilized high-throughput assays adopted in contexts such as molecular tumor boards.

Methods: In this study, we developed a method to discriminate the enzyme activity among the four series of the ganglioside metabolism pathway by incorporating transcriptome data and topological information of the metabolic network. We introduced three adjustment options for reaction activity scores (RAS) and demonstrated their application in both exploratory and comparative analyses by applying the method on neuroblastic tumors (NTs), encompassing neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Furthermore, we interpreted the results in the context of earlier published GSL measurements in the same tumors.

Results: By adjusting RAS values using a weighting scheme based on network topology and transition probabilities (TPs), the individual series of ganglioside metabolism can be differentiated, enabling a refined analysis of the GSL profile in NT entities. Notably, the adjustment method we propose reveals the differential engagement of the ganglioside series between NB and GNB. Moreover, MYCN gene expression, a well-known prognostic marker in NTs, appears to correlate with the expression of therapeutically relevant gangliosides, such as GD2. Using unsupervised learning, we identified subclusters within NB based on altered GSL metabolism.

Conclusion: Our study demonstrates the utility of adjusting RAS values in discriminating ganglioside metabolism subtypes, highlighting the potential for identifying novel cancer subgroups based on sphingolipid profiles. These findings contribute to a better understanding of ganglioside dysregulation in NT and may have implications for stratification and targeted therapeutic strategies in these tumors and other tumor entities with a deregulated GSL metabolism.

背景:糖磷脂(GSL)是一种膜脂,由神经酰胺骨架与糖分子连接组成。神经节苷脂的生物合成是 GSL 新陈代谢的一部分,其中涉及由特定酶催化的连续反应,这些酶部分具有较差的底物特异性。GSL 在癌症中会发生失调,因此可作为潜在的生物标记物用于个性化治疗或亚型分类。然而,GSL 图谱的分析非常复杂,需要专门的技术,而这些技术目前并不包括在肿瘤分子委员会等场合普遍采用的高通量检测方法中:在这项研究中,我们结合转录组数据和代谢网络的拓扑信息,开发了一种方法来区分神经节苷脂代谢途径中四个系列的酶活性。我们为反应活性评分(RAS)引入了三种调整选项,并通过将该方法应用于神经母细胞瘤(NTs),包括神经母细胞瘤(NB)、神经节母细胞瘤(GNB)和神经节细胞瘤(GN),证明了它们在探索性分析和比较分析中的应用。此外,我们还结合早先发表的相同肿瘤的 GSL 测量结果对结果进行了解释:结果:通过使用基于网络拓扑和转换概率(TPs)的加权方案调整RAS值,神经节苷脂代谢的各个系列得以区分,从而能够对NT实体中的GSL概况进行精细分析。值得注意的是,我们提出的调整方法揭示了神经节苷脂系列在 NB 和 GNB 之间的不同参与。此外,MYCN基因的表达是众所周知的NT预后标志,它似乎与GD2等治疗相关神经节苷脂的表达相关。通过无监督学习,我们发现了基于GSL代谢改变的NB亚群:我们的研究证明了调整RAS值在区分神经节苷脂代谢亚型中的作用,突出了根据鞘脂特征识别新型癌症亚群的潜力。这些发现有助于更好地了解NT中神经节苷脂的失调,并可能对这些肿瘤和其他GSL代谢失调的肿瘤实体的分层和靶向治疗策略产生影响。
{"title":"Unraveling the glycosphingolipid metabolism by leveraging transcriptome-weighted network analysis on neuroblastic tumors.","authors":"Arsenij Ustjanzew, Annekathrin Silvia Nedwed, Roger Sandhoff, Jörg Faber, Federico Marini, Claudia Paret","doi":"10.1186/s40170-024-00358-y","DOIUrl":"10.1186/s40170-024-00358-y","url":null,"abstract":"<p><strong>Background: </strong>Glycosphingolipids (GSLs) are membrane lipids composed of a ceramide backbone linked to a glycan moiety. Ganglioside biosynthesis is a part of the GSL metabolism, which involves sequential reactions catalyzed by specific enzymes that in part have a poor substrate specificity. GSLs are deregulated in cancer, thus playing a role as potential biomarkers for personalized therapy or subtype classification. However, the analysis of GSL profiles is complex and requires dedicated technologies, that are currently not included in the commonly utilized high-throughput assays adopted in contexts such as molecular tumor boards.</p><p><strong>Methods: </strong>In this study, we developed a method to discriminate the enzyme activity among the four series of the ganglioside metabolism pathway by incorporating transcriptome data and topological information of the metabolic network. We introduced three adjustment options for reaction activity scores (RAS) and demonstrated their application in both exploratory and comparative analyses by applying the method on neuroblastic tumors (NTs), encompassing neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Furthermore, we interpreted the results in the context of earlier published GSL measurements in the same tumors.</p><p><strong>Results: </strong>By adjusting RAS values using a weighting scheme based on network topology and transition probabilities (TPs), the individual series of ganglioside metabolism can be differentiated, enabling a refined analysis of the GSL profile in NT entities. Notably, the adjustment method we propose reveals the differential engagement of the ganglioside series between NB and GNB. Moreover, MYCN gene expression, a well-known prognostic marker in NTs, appears to correlate with the expression of therapeutically relevant gangliosides, such as GD2. Using unsupervised learning, we identified subclusters within NB based on altered GSL metabolism.</p><p><strong>Conclusion: </strong>Our study demonstrates the utility of adjusting RAS values in discriminating ganglioside metabolism subtypes, highlighting the potential for identifying novel cancer subgroups based on sphingolipid profiles. These findings contribute to a better understanding of ganglioside dysregulation in NT and may have implications for stratification and targeted therapeutic strategies in these tumors and other tumor entities with a deregulated GSL metabolism.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"29"},"PeriodicalIF":6.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pancreatic cancer tumor organoids exhibit subtype-specific differences in metabolic profiles. 胰腺癌肿瘤器官组织的代谢特征表现出亚型特异性差异。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-03 DOI: 10.1186/s40170-024-00357-z
Hassan A Ali, Joanna M Karasinska, James T Topham, Danisha Johal, Steve Kalloger, Andrew Metcalfe, Cassia S Warren, Anthony Miyagi, Lan V Tao, Maya Kevorkova, Shawn C Chafe, Paul C McDonald, Shoukat Dedhar, Seth J Parker, Daniel J Renouf, David F Schaeffer

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease characterized by complex metabolic rewiring that enables growth in changing nutrient availability and oxygen conditions. Transcriptome-based prognostic PDAC tumor subtypes, known as 'basal-like' and 'classical' subtypes are associated with differences in metabolic gene expression including genes involved in glycolysis. Tumor subtype-specific metabolism phenotypes may provide new targets for treatment development in PDAC, but their functional relevance has not been fully elucidated. We aimed to investigate differences in metabolic profiles and transcriptomes in tumor models derived from patients with basal-like and classical tumors.

Methods: Patient-derived organoids (PDOs) were established from tumor biopsies collected from patients with metastatic PDAC, including three PDOs from basal-like and five PDOs from classical tumors. Metabolic analyses included assessment of differences in metabolic activity using Seahorse Glycolysis and Mito Stress tests and 13C-glucose metabolites tracing analysis. In order to investigate the influence of mitochondrial pyruvate transport on metabolic differences, PDOs were treated with the mitochondrial pyruvate carrier 1 (MPC1) inhibitor UK-5099. Prognostic relevance of MPC1 was determined using a tumor tissue microarray (TMA) in resectable, and proteomics profiling in metastatic PDAC datasets. Whole genome and transcriptome sequencing, differential gene expression and gene set enrichment analyses were performed in PDOs.

Results: Metastatic PDAC PDOs showed subtype-specific differences in glycolysis and oxidative phosphorylation (OXPHOS). Basal-like tumor-derived PDOs had a lower baseline extracellular acidification rate, but higher glycolytic reserves and oxygen consumption rate (OCR) than classical tumor-derived PDOs. OCR difference was eliminated following treatment with UK-5099. In the 13C-glucose metabolites tracing experiment, a basal-like tumor PDO showed lower fractions of some M + 2 metabolites but higher sensitivity to UK-5099 mediated reduction in M + 2 metabolites than a classical tumor PDO. Protein level analyses revealed lower MPC1 protein levels in basal-like PDAC cases and association of low MPC1 levels with clinicopathologic parameters of tumor aggressiveness in PDAC. PDO differential gene expression analyses identified additional subtype-specific cellular pathways and potential disease outcome biomarkers.

Conclusions: Our findings point to distinct metabolic profiles in PDAC subtypes with basal-like tumor PDOs showing higher OXPHOS and sensitivity to MPC1 inhibition. Subtypes-specific metabolic vulnerabilities may be exploited for selective therapeutic targeting.

背景:胰腺导管腺癌(PDAC)是一种侵袭性很强的疾病,其特点是复杂的代谢重构,能在不断变化的营养供应和氧气条件下生长。基于转录组的预后PDAC肿瘤亚型,即 "基底样 "亚型和 "经典 "亚型,与代谢基因(包括参与糖酵解的基因)表达的差异有关。肿瘤亚型特异性代谢表型可为 PDAC 的治疗开发提供新靶点,但其功能相关性尚未完全阐明。我们的目的是研究基底样肿瘤和典型肿瘤患者的肿瘤模型中代谢谱和转录组的差异:从转移性 PDAC 患者的肿瘤活检组织中建立了患者衍生的器官组织(PDOs),其中包括 3 个基底样肿瘤的 PDOs 和 5 个典型肿瘤的 PDOs。代谢分析包括使用海马糖酵解和线粒体应激试验评估代谢活动的差异,以及 13C 葡萄糖代谢物追踪分析。为了研究线粒体丙酮酸转运对代谢差异的影响,用线粒体丙酮酸载体1(MPC1)抑制剂UK-5099处理PDOs。使用肿瘤组织芯片(TMA)确定了MPC1与可切除PDAC的预后相关性,并对转移性PDAC数据集进行了蛋白质组学分析。对PDAC数据集进行了全基因组和转录组测序、差异基因表达和基因组富集分析:结果:转移性 PDAC PDOs 在糖酵解和氧化磷酸化(OXPHOS)方面表现出亚型特异性差异。基底样肿瘤来源的 PDOs 基线细胞外酸化率较低,但糖酵解储备和耗氧率(OCR)高于经典肿瘤来源的 PDOs。在使用 UK-5099 治疗后,OCR 差异被消除。在 13C- 葡萄糖代谢物追踪实验中,与经典肿瘤 PDO 相比,基底样肿瘤 PDO 的一些 M + 2 代谢物含量较低,但对 UK-5099 介导的 M + 2 代谢物减少的敏感性较高。蛋白质水平分析表明,基底样PDAC病例的MPC1蛋白质水平较低,而低MPC1水平与PDAC肿瘤侵袭性的临床病理参数有关。PDAC差异基因表达分析发现了更多亚型特异性细胞通路和潜在的疾病结局生物标志物:我们的研究结果表明,PDAC亚型的代谢特征各不相同,基底样肿瘤的PDO显示出更高的氧合休克和对MPC1抑制的敏感性。亚型特异性代谢弱点可用于选择性靶向治疗。
{"title":"Pancreatic cancer tumor organoids exhibit subtype-specific differences in metabolic profiles.","authors":"Hassan A Ali, Joanna M Karasinska, James T Topham, Danisha Johal, Steve Kalloger, Andrew Metcalfe, Cassia S Warren, Anthony Miyagi, Lan V Tao, Maya Kevorkova, Shawn C Chafe, Paul C McDonald, Shoukat Dedhar, Seth J Parker, Daniel J Renouf, David F Schaeffer","doi":"10.1186/s40170-024-00357-z","DOIUrl":"10.1186/s40170-024-00357-z","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease characterized by complex metabolic rewiring that enables growth in changing nutrient availability and oxygen conditions. Transcriptome-based prognostic PDAC tumor subtypes, known as 'basal-like' and 'classical' subtypes are associated with differences in metabolic gene expression including genes involved in glycolysis. Tumor subtype-specific metabolism phenotypes may provide new targets for treatment development in PDAC, but their functional relevance has not been fully elucidated. We aimed to investigate differences in metabolic profiles and transcriptomes in tumor models derived from patients with basal-like and classical tumors.</p><p><strong>Methods: </strong>Patient-derived organoids (PDOs) were established from tumor biopsies collected from patients with metastatic PDAC, including three PDOs from basal-like and five PDOs from classical tumors. Metabolic analyses included assessment of differences in metabolic activity using Seahorse Glycolysis and Mito Stress tests and <sup>13</sup>C-glucose metabolites tracing analysis. In order to investigate the influence of mitochondrial pyruvate transport on metabolic differences, PDOs were treated with the mitochondrial pyruvate carrier 1 (MPC1) inhibitor UK-5099. Prognostic relevance of MPC1 was determined using a tumor tissue microarray (TMA) in resectable, and proteomics profiling in metastatic PDAC datasets. Whole genome and transcriptome sequencing, differential gene expression and gene set enrichment analyses were performed in PDOs.</p><p><strong>Results: </strong>Metastatic PDAC PDOs showed subtype-specific differences in glycolysis and oxidative phosphorylation (OXPHOS). Basal-like tumor-derived PDOs had a lower baseline extracellular acidification rate, but higher glycolytic reserves and oxygen consumption rate (OCR) than classical tumor-derived PDOs. OCR difference was eliminated following treatment with UK-5099. In the <sup>13</sup>C-glucose metabolites tracing experiment, a basal-like tumor PDO showed lower fractions of some M + 2 metabolites but higher sensitivity to UK-5099 mediated reduction in M + 2 metabolites than a classical tumor PDO. Protein level analyses revealed lower MPC1 protein levels in basal-like PDAC cases and association of low MPC1 levels with clinicopathologic parameters of tumor aggressiveness in PDAC. PDO differential gene expression analyses identified additional subtype-specific cellular pathways and potential disease outcome biomarkers.</p><p><strong>Conclusions: </strong>Our findings point to distinct metabolic profiles in PDAC subtypes with basal-like tumor PDOs showing higher OXPHOS and sensitivity to MPC1 inhibition. Subtypes-specific metabolic vulnerabilities may be exploited for selective therapeutic targeting.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"28"},"PeriodicalIF":6.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolism of primary high-grade serous ovarian carcinoma (HGSOC) cells under limited glutamine or glucose availability 原发性高级别浆液性卵巢癌(HGSOC)细胞在谷氨酰胺或葡萄糖供应受限情况下的新陈代谢
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-16 DOI: 10.1186/s40170-024-00355-1
Daniela Šimčíková, Dominik Gardáš, Tomáš Pelikán, Lukáš Moráň, Martin Hruda, Kateřina Hložková, Tiziana Pivetta, Michal Hendrych, Júlia Starková, Lukáš Rob, Petr Vaňhara, Petr Heneberg
High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive subtype of epithelial ovarian carcinoma. It is primarily diagnosed at stage III or IV when the 5-year survival rate ranges between 20% and 40%. Here, we aimed to validate the hypothesis, based on HGSOC cell lines, that proposed the existence of two distinct groups of HGSOC cells with high and low oxidative phosphorylation (OXPHOS) metabolism, respectively, which are associated with their responses to glucose and glutamine withdrawal. We isolated and cultivated primary cancer cell cultures from HGSOC and nontransformed ovarian fibroblasts from the surrounding ovarium of 45 HGSOC patients. We tested the metabolic flexibility of the primary cells, particularly in response to glucose and glutamine depletion, analyzed and modulated endoplasmic reticulum stress, and searched for indices of the existence of previously reported groups of HGSOC cells with high and low OXPHOS metabolism. The primary HGSOC cells did not form two groups with high and low OXPHOS that responded differently to glucose and glutamine availabilities in the cell culture medium. Instead, they exhibited a continuum of OXPHOS phenotypes. In most tumor cell isolates, the responses to glucose or glutamine withdrawal were mild and surprisingly correlated with those of nontransformed ovarian fibroblasts from the same patients. The growth of tumor-derived cells in the absence of glucose was positively correlated with the lipid trafficking regulator FABP4 and was negatively correlated with the expression levels of HK2 and HK1. The correlations between the expression of electron transport chain (ETC) proteins and the oxygen consumption rates or extracellular acidification rates were weak. ER stress markers were strongly expressed in all the analyzed tumors. ER stress was further potentiated by tunicamycin but not by the recently proposed ER stress inducers based on copper(II)-phenanthroline complexes. ER stress modulation increased autophagy in tumor cell isolates but not in nontransformed ovarian fibroblasts. Analysis of the metabolism of primary HGSOC cells rejects the previously proposed hypothesis that there are distinct groups of HGSOC cells with high and low OXPHOS metabolism that respond differently to glutamine or glucose withdrawal and are characterized by ETC protein levels.
高级别浆液性卵巢癌(HGSOC)是上皮性卵巢癌中最常见、最具侵袭性的亚型。它主要诊断为 III 期或 IV 期,5 年生存率在 20% 到 40% 之间。在此,我们旨在验证基于 HGSOC 细胞系的假说,该假说认为 HGSOC 细胞中存在两组不同的细胞,它们分别具有高和低氧化磷酸化(OXPHOS)代谢,这与它们对葡萄糖和谷氨酰胺戒断的反应有关。我们分离并培养了来自 HGSOC 的原代癌细胞培养物和来自 45 名 HGSOC 患者卵巢周围的未转化卵巢成纤维细胞。我们测试了原代细胞的代谢灵活性,尤其是对葡萄糖和谷氨酰胺耗竭的反应,分析并调节了内质网应激,并寻找了之前报道的高OXPHOS代谢和低OXPHOS代谢的HGSOC细胞群的存在指标。原代HGSOC细胞并没有形成高OXPHOS和低OXPHOS两组,它们对细胞培养基中葡萄糖和谷氨酰胺的利用率反应不同。相反,它们表现出连续的 OXPHOS 表型。在大多数肿瘤细胞分离物中,对葡萄糖或谷氨酰胺停用的反应是温和的,并且与来自同一患者的未转化卵巢成纤维细胞的反应惊人地相关。肿瘤细胞在无葡萄糖条件下的生长与脂质运输调节因子 FABP4 呈正相关,而与 HK2 和 HK1 的表达水平呈负相关。电子传递链(ETC)蛋白的表达与耗氧率或细胞外酸化率之间的相关性较弱。ER应激标记物在所有分析的肿瘤中都有较强的表达。图尼霉素能进一步增强ER应激反应,而最近提出的基于铜(II)-菲罗啉复合物的ER应激反应诱导剂则不能。ER应激调节增加了肿瘤细胞分离物的自噬,但没有增加未转化卵巢成纤维细胞的自噬。对原代 HGSOC 细胞新陈代谢的分析否定了之前提出的假说,即 HGSOC 细胞有高和低 OXPHOS 新陈代谢的不同组别,它们对谷氨酰胺或葡萄糖戒断的反应不同,并以 ETC 蛋白水平为特征。
{"title":"Metabolism of primary high-grade serous ovarian carcinoma (HGSOC) cells under limited glutamine or glucose availability","authors":"Daniela Šimčíková, Dominik Gardáš, Tomáš Pelikán, Lukáš Moráň, Martin Hruda, Kateřina Hložková, Tiziana Pivetta, Michal Hendrych, Júlia Starková, Lukáš Rob, Petr Vaňhara, Petr Heneberg","doi":"10.1186/s40170-024-00355-1","DOIUrl":"https://doi.org/10.1186/s40170-024-00355-1","url":null,"abstract":"High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive subtype of epithelial ovarian carcinoma. It is primarily diagnosed at stage III or IV when the 5-year survival rate ranges between 20% and 40%. Here, we aimed to validate the hypothesis, based on HGSOC cell lines, that proposed the existence of two distinct groups of HGSOC cells with high and low oxidative phosphorylation (OXPHOS) metabolism, respectively, which are associated with their responses to glucose and glutamine withdrawal. We isolated and cultivated primary cancer cell cultures from HGSOC and nontransformed ovarian fibroblasts from the surrounding ovarium of 45 HGSOC patients. We tested the metabolic flexibility of the primary cells, particularly in response to glucose and glutamine depletion, analyzed and modulated endoplasmic reticulum stress, and searched for indices of the existence of previously reported groups of HGSOC cells with high and low OXPHOS metabolism. The primary HGSOC cells did not form two groups with high and low OXPHOS that responded differently to glucose and glutamine availabilities in the cell culture medium. Instead, they exhibited a continuum of OXPHOS phenotypes. In most tumor cell isolates, the responses to glucose or glutamine withdrawal were mild and surprisingly correlated with those of nontransformed ovarian fibroblasts from the same patients. The growth of tumor-derived cells in the absence of glucose was positively correlated with the lipid trafficking regulator FABP4 and was negatively correlated with the expression levels of HK2 and HK1. The correlations between the expression of electron transport chain (ETC) proteins and the oxygen consumption rates or extracellular acidification rates were weak. ER stress markers were strongly expressed in all the analyzed tumors. ER stress was further potentiated by tunicamycin but not by the recently proposed ER stress inducers based on copper(II)-phenanthroline complexes. ER stress modulation increased autophagy in tumor cell isolates but not in nontransformed ovarian fibroblasts. Analysis of the metabolism of primary HGSOC cells rejects the previously proposed hypothesis that there are distinct groups of HGSOC cells with high and low OXPHOS metabolism that respond differently to glutamine or glucose withdrawal and are characterized by ETC protein levels.","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"206 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAF1/HIF1α axis rewires the glycolytic metabolism to fuel aggressiveness of pancreatic cancer. PAF1/HIF1α轴重构了糖代谢,助长了胰腺癌的侵袭性。
IF 5.3 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-06 DOI: 10.1186/s40170-024-00354-2
Ayoola O Ogunleye, Neelanjana Gayen, Sanchita Rauth, Saravanakumar Marimuthu, Rama Krishna Nimmakayala, Zahraa W Alsafwani, Jesse L Cox, Surinder K Batra, Moorthy P Ponnusamy

Background: PAF1/PD2 deregulation contributes to tumorigenesis, drug resistance, and cancer stem cell maintenance in Pancreatic Cancer (PC). Recent studies demonstrate that metabolic reprogramming plays a role in PC progression, but the mechanism is poorly understood. Here, we focused on examining the role of PAF1/PD2 in the metabolic rewiring of PC.

Methods: Cell lines were transfected with shRNAs to knockdown PAF1/PD2. Metabolic genes regulated by PAF1/PD2 were identified by qPCR/western blot, and metabolic assays were performed. Immunoprecipitations/ChIP were performed to identify PAF1/PD2 protein partners and confirm PAF1/HIF1α sub-complex binding to LDHA.

Results: PAF1 and LDHA showed progressively increased expression in human pancreatic tumor sections. Aerobic glycolysis genes were downregulated in PAF1-depleted PC cells. Metabolic assays indicated a decreased lactate production and glucose uptake in knockdown cells. Furthermore, PAF1/PD2 depletion showed a reduced glycolytic rate and increased oxidative phosphorylation by ECAR and OCR analysis. Interestingly, we identified that HIF1α interacts and co-localizes with PAF1, specifically in PC cells. We also observed that the PAF1/PD2-HIF1α complex binds to the LDHA promoter to regulate its expression, reprogramming the metabolism to utilize the aerobic glycolysis pathway preferentially.

Conclusion: Overall, the results indicate that PAF1/PD2 rewires PC metabolism by interacting with HIF1α to regulate the expression of LDHA.

背景:PAF1/PD2失调导致了胰腺癌(PC)的肿瘤发生、耐药性和癌症干细胞的维持。最近的研究表明,代谢重编程在胰腺癌的进展中起着一定的作用,但对其机制还不甚了解。在此,我们重点研究了 PAF1/PD2 在 PC 代谢重构中的作用:方法:用 shRNA 转染细胞系以敲除 PAF1/PD2。方法:用 shRNAs 转染细胞株以敲除 PAF1/PD2,通过 qPCR/western 印迹鉴定受 PAF1/PD2 调控的代谢基因,并进行代谢测定。通过免疫沉淀/ChIP鉴定PAF1/PD2蛋白伴侣并确认PAF1/HIF1α亚复合物与LDHA的结合:结果:PAF1和LDHA在人胰腺肿瘤切片中的表达逐渐增加。在 PAF1 缺失的 PC 细胞中,有氧糖酵解基因下调。代谢测定显示,基因敲除细胞的乳酸生成和葡萄糖摄取均有所减少。此外,通过 ECAR 和 OCR 分析,PAF1/PD2 缺失显示糖酵解率降低,氧化磷酸化增加。有趣的是,我们发现 HIF1α 与 PAF1 相互作用并共定位,特别是在 PC 细胞中。我们还观察到,PAF1/PD2-HIF1α复合物与LDHA启动子结合,调控其表达,使新陈代谢重编程,优先利用有氧糖酵解途径:总之,研究结果表明,PAF1/PD2 通过与 HIF1α 相互作用来调节 LDHA 的表达,从而重塑了 PC 的新陈代谢。
{"title":"PAF1/HIF1α axis rewires the glycolytic metabolism to fuel aggressiveness of pancreatic cancer.","authors":"Ayoola O Ogunleye, Neelanjana Gayen, Sanchita Rauth, Saravanakumar Marimuthu, Rama Krishna Nimmakayala, Zahraa W Alsafwani, Jesse L Cox, Surinder K Batra, Moorthy P Ponnusamy","doi":"10.1186/s40170-024-00354-2","DOIUrl":"10.1186/s40170-024-00354-2","url":null,"abstract":"<p><strong>Background: </strong>PAF1/PD2 deregulation contributes to tumorigenesis, drug resistance, and cancer stem cell maintenance in Pancreatic Cancer (PC). Recent studies demonstrate that metabolic reprogramming plays a role in PC progression, but the mechanism is poorly understood. Here, we focused on examining the role of PAF1/PD2 in the metabolic rewiring of PC.</p><p><strong>Methods: </strong>Cell lines were transfected with shRNAs to knockdown PAF1/PD2. Metabolic genes regulated by PAF1/PD2 were identified by qPCR/western blot, and metabolic assays were performed. Immunoprecipitations/ChIP were performed to identify PAF1/PD2 protein partners and confirm PAF1/HIF1α sub-complex binding to LDHA.</p><p><strong>Results: </strong>PAF1 and LDHA showed progressively increased expression in human pancreatic tumor sections. Aerobic glycolysis genes were downregulated in PAF1-depleted PC cells. Metabolic assays indicated a decreased lactate production and glucose uptake in knockdown cells. Furthermore, PAF1/PD2 depletion showed a reduced glycolytic rate and increased oxidative phosphorylation by ECAR and OCR analysis. Interestingly, we identified that HIF1α interacts and co-localizes with PAF1, specifically in PC cells. We also observed that the PAF1/PD2-HIF1α complex binds to the LDHA promoter to regulate its expression, reprogramming the metabolism to utilize the aerobic glycolysis pathway preferentially.</p><p><strong>Conclusion: </strong>Overall, the results indicate that PAF1/PD2 rewires PC metabolism by interacting with HIF1α to regulate the expression of LDHA.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"26"},"PeriodicalIF":5.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time assessment of relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE). 实时评估线粒体 ATP 合成对抑制底物和刺激底物的相对反应(MitoRAISE)。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-08-29 DOI: 10.1186/s40170-024-00353-3
Eun Sol Chang, Kyoung Song, Ji-Young Song, Minjung Sung, Mi-Sook Lee, Jung Han Oh, Ji-Yeon Kim, Yeon Hee Park, Kyungsoo Jung, Yoon-La Choi

Background: Mitochondria are known to synthesize adenosine triphosphate (ATP) through oxidative phosphorylation. Understanding and accurately measuring mitochondrial ATP synthesis rate can provide insights into the functional status of mitochondria and how it contributes to overall cellular energy homeostasis. Traditional methods only estimate mitochondrial function by measuring ATP levels at a single point in time or through oxygen consumption rates. This study introduced the relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE), designed to detect real-time changes in ATP levels as the cells respond to substrates.

Methods: The sensitivity and specificity of the MitoRAISE assay were verified under various conditions, including the isolation of mitochondria, variations in cell numbers, cells exhibiting mitochondrial damage, and heterogeneous mixtures. Using peripheral blood mononuclear cells (PBMCs), we analyzed MitoRAISE data from 19 patients with breast cancer and 23 healthy women.

Results: The parameters observed in the MitoRAISE data increased depending on the quantity of isolated mitochondria and cell count, whereas it remained unmeasured in mitochondrial-damaged cell lines. Basal ATP, rotenone response, malonate response, and mitochondrial DNA copy numbers were lower in PBMCs from patients with breast cancer than in those from healthy women.

Conclusions: The MitoRAISE assay has demonstrated its sensitivity and specificity by measuring relative ATP synthesis rates under various conditions. We propose MitoRAISE assay as a potential tool for monitoring changes in the mitochondrial metabolic status associated with various diseases.

背景:线粒体可通过氧化磷酸化合成三磷酸腺苷(ATP)。了解并精确测量线粒体的 ATP 合成率可以帮助人们深入了解线粒体的功能状态,以及线粒体对整个细胞能量平衡的贡献。传统方法只能通过测量单个时间点的 ATP 水平或耗氧量来估计线粒体功能。本研究引入了线粒体 ATP 合成对抑制性和刺激性底物的相对反应(MitoRAISE),旨在检测细胞对底物反应时 ATP 水平的实时变化:方法:在各种条件下验证了 MitoRAISE 分析法的灵敏度和特异性,包括线粒体的分离、细胞数量的变化、线粒体受损的细胞和异质混合物。我们利用外周血单核细胞(PBMCs)分析了 19 名乳腺癌患者和 23 名健康女性的线粒体分析数据:结果:MitoRAISE 数据中观察到的参数随分离线粒体数量和细胞数量的增加而增加,而在线粒体受损的细胞系中仍无法测量。在乳腺癌患者的 PBMCs 中,基础 ATP、鱼藤酮反应、丙二酸盐反应和线粒体 DNA 拷贝数均低于健康妇女的 PBMCs:MitoRAISE 检测法通过测量各种条件下的相对 ATP 合成率,证明了其灵敏性和特异性。我们建议将 MitoRAISE 检测法作为一种潜在的工具,用于监测与各种疾病相关的线粒体代谢状态的变化。
{"title":"Real-time assessment of relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE).","authors":"Eun Sol Chang, Kyoung Song, Ji-Young Song, Minjung Sung, Mi-Sook Lee, Jung Han Oh, Ji-Yeon Kim, Yeon Hee Park, Kyungsoo Jung, Yoon-La Choi","doi":"10.1186/s40170-024-00353-3","DOIUrl":"10.1186/s40170-024-00353-3","url":null,"abstract":"<p><strong>Background: </strong>Mitochondria are known to synthesize adenosine triphosphate (ATP) through oxidative phosphorylation. Understanding and accurately measuring mitochondrial ATP synthesis rate can provide insights into the functional status of mitochondria and how it contributes to overall cellular energy homeostasis. Traditional methods only estimate mitochondrial function by measuring ATP levels at a single point in time or through oxygen consumption rates. This study introduced the relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE), designed to detect real-time changes in ATP levels as the cells respond to substrates.</p><p><strong>Methods: </strong>The sensitivity and specificity of the MitoRAISE assay were verified under various conditions, including the isolation of mitochondria, variations in cell numbers, cells exhibiting mitochondrial damage, and heterogeneous mixtures. Using peripheral blood mononuclear cells (PBMCs), we analyzed MitoRAISE data from 19 patients with breast cancer and 23 healthy women.</p><p><strong>Results: </strong>The parameters observed in the MitoRAISE data increased depending on the quantity of isolated mitochondria and cell count, whereas it remained unmeasured in mitochondrial-damaged cell lines. Basal ATP, rotenone response, malonate response, and mitochondrial DNA copy numbers were lower in PBMCs from patients with breast cancer than in those from healthy women.</p><p><strong>Conclusions: </strong>The MitoRAISE assay has demonstrated its sensitivity and specificity by measuring relative ATP synthesis rates under various conditions. We propose MitoRAISE assay as a potential tool for monitoring changes in the mitochondrial metabolic status associated with various diseases.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"25"},"PeriodicalIF":6.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells. 多不饱和脂肪酸二十二碳六烯酸会影响前列腺癌细胞的线粒体功能。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-08-07 DOI: 10.1186/s40170-024-00348-0
Guilherme Henrique Tamarindo, Caroline Fidalgo Ribeiro, Alana Della Torre Silva, Alex Castro, Ícaro Putinhon Caruso, Fátima Pereira Souza, Sebastião Roberto Taboga, Massimo Loda, Rejane Maira Góes

Background: Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines.

Methods: Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation.

Results: In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1.

Conclusion: In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.

背景:前列腺癌(PCa)的新陈代谢线被重新连接,其特点是脂肪酸摄取量和通过新脂肪生成的合成量增加,这两者都与线粒体的生理机能密切相关。二十二碳六烯酸(DHA)是一种欧米伽-3 多不饱和脂肪酸(PUFA),可通过不同机制发挥抗肿瘤作用,但其对 PCa 线粒体的具体作用尚不清楚。因此,我们研究了 DHA 是否能调节 PCa 细胞系的线粒体功能。方法:在此,我们评估了非恶性 PNT1A 和对阉割有抵抗力(CRPC)的前列腺 22Rv1 和 PC3 细胞系的线粒体功能对 DHA 培养的反应。为此,我们使用海马细胞外通量测定法评估线粒体功能,使用[14C]-葡萄糖评估其氧化作用及其对脂肪酸合成的贡献,使用 1H-NMR 测定代谢物概况,使用 MitoSOX 测定超氧阴离子的产生,使用 JC-1 测定线粒体膜极化、质谱法测定磷脂酰甘油的水平和组成,MitoTracker 染色法在超分辨率下评估线粒体形态,此外还有透射电子显微镜,细胞内 ELISA 检测 COX-I 和 SDH-A 蛋白表达,流式细胞术(Annexin V 和 7-AAD)评估细胞死亡。结果在所有细胞系中,DHA 都会降低线粒体的基础呼吸活性、ATP 产量和备用容量。此外,欧米伽-3 还诱导线粒体超极化、ROS 过度产生和膜磷脂酰甘油成分的变化。在 PNT1A 中,DHA 会导致线粒体破碎,并增加糖酵解,而在癌细胞中,DHA 会刺激葡萄糖氧化,但会减少 22Rv1 中的新生脂肪生成,这表明新陈代谢发生了转变。在所有细胞系中,DHA 都能调节与能量代谢有关的几种代谢物,并与磷脂酰甘油(心磷脂的前体)结合,增加线粒体膜的不饱和指数。因此,DHA 主要在 PNT1A 和 22Rv1 中引发细胞死亡:总之,线粒体代谢受到 PUFA 补充剂的显著影响,以至于细胞无法在富含 DHA 的条件下增殖或存活。此外,补充 DHA 与抑制新陈代谢相关途径(如新脂肪生成)相结合,可能会对阉割耐药前列腺癌产生协同作用。
{"title":"The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells.","authors":"Guilherme Henrique Tamarindo, Caroline Fidalgo Ribeiro, Alana Della Torre Silva, Alex Castro, Ícaro Putinhon Caruso, Fátima Pereira Souza, Sebastião Roberto Taboga, Massimo Loda, Rejane Maira Góes","doi":"10.1186/s40170-024-00348-0","DOIUrl":"10.1186/s40170-024-00348-0","url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines.</p><p><strong>Methods: </strong>Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [<sup>14</sup>C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, <sup>1</sup>H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation.</p><p><strong>Results: </strong>In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1.</p><p><strong>Conclusion: </strong>In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"24"},"PeriodicalIF":6.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer & Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1