Pub Date : 2024-10-12DOI: 10.1016/j.saa.2024.125272
Juan Yin, Zejie Wu, Heng Li, Bianli Cao, Wanzhi Wang
The development of practical fluorescent probe for detecting toxic mercury ions (Hg2+) is desirable for environmental assurance and public health. In this study, a new red emissive fluorescent probe (KJL) was designed and synthesized for monitoring trace Hg2+ both in vitro and in vivo with distinct features including ideal response rate (within 4 min), red emission (596 nm), large Stokes shift (162 nm), highly sensitivity (LOD = 4.79 nM) and excellent specificity. KJL also validated the good capability for accurately monitoring trace Hg2+ levels in actual samples (faucet water, drinking water, river water, lake water, urine and serum) and possessed the eye-catching ability in visualization of Hg2+ under environmental/biological conditions, which revealed the great potential of this red-emitting fluorescent probe for practical applications in complex environmental and biological systems.
{"title":"Monitoring of mercury ion in environmental media and biological systems using a red emissive fluorescent probe with a large Stokes shift.","authors":"Juan Yin, Zejie Wu, Heng Li, Bianli Cao, Wanzhi Wang","doi":"10.1016/j.saa.2024.125272","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125272","url":null,"abstract":"<p><p>The development of practical fluorescent probe for detecting toxic mercury ions (Hg<sup>2+</sup>) is desirable for environmental assurance and public health. In this study, a new red emissive fluorescent probe (KJL) was designed and synthesized for monitoring trace Hg<sup>2+</sup> both in vitro and in vivo with distinct features including ideal response rate (within 4 min), red emission (596 nm), large Stokes shift (162 nm), highly sensitivity (LOD = 4.79 nM) and excellent specificity. KJL also validated the good capability for accurately monitoring trace Hg<sup>2+</sup> levels in actual samples (faucet water, drinking water, river water, lake water, urine and serum) and possessed the eye-catching ability in visualization of Hg<sup>2+</sup> under environmental/biological conditions, which revealed the great potential of this red-emitting fluorescent probe for practical applications in complex environmental and biological systems.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sulfur ion (S2-) plays a significant and considerable role in many living organisms and ecosystems, while its abnormal content can pose a serious hazard to human health and ecological environment. Hence, it is extremely meaningful to construct a highly sensitive and selective analytical platform for S2- detection in complex microenvironment, particularly in biological systems. In this study, phosphomolybdic acid and L-Arg were utilized to prepare a new molybdenum doped carbon-dots nanozyme (Mo-CDs) with great peroxidase-like activity by one-step hydrothermal approach. In the presence of H2O2, Mo-CDs converted 3,3',5,5'-tetramethyl benzidine (TMB) into blue oxTMB, but S2- strongly reduced the blue solution to colorless and then brown, which established significant selectivity toward S2-. Mo-CDs illustrated a wide linear range (2.5 μM-900 μM) and low detection limit (LOD = 76 nM) by ultraviolet and smartphone-assisted visualized colorimetric analysis. Especially, the smartphone-assisted analysis platform successfully realized quick, portable, sensitive and visible identification of S2- with high recovery (95.7-106.7 %) and excellent specificity in water samples. More importantly, Mo-CDs was developed to antibacterial applications based on good peroxidase-like activity. This research not only constructed a new and efficient carbon-dots nanozyme and a low-cost, portable, visual analysis platform for real-time detection of S2-, but also proposed a novel design strategy and methodology for exploiting multifunctional nanozyme detection tool with great practical application.
{"title":"Mo-doped carbon-dots nanozyme with peroxide-like activity for sensitive and selective smartphone-assisted colorimetric S<sup>2-</sup> ion detection and antibacterial application.","authors":"Dai Li, Huajie Chen, Yutao Zheng, Sheng Zhou, Fengyuan Yong, Xiangbo Zhang, Kui Wang, Huiyun Wen, Jiyong Wu, Weiming Xue, Saipeng Huang","doi":"10.1016/j.saa.2024.125274","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125274","url":null,"abstract":"<p><p>Sulfur ion (S<sup>2-</sup>) plays a significant and considerable role in many living organisms and ecosystems, while its abnormal content can pose a serious hazard to human health and ecological environment. Hence, it is extremely meaningful to construct a highly sensitive and selective analytical platform for S<sup>2-</sup> detection in complex microenvironment, particularly in biological systems. In this study, phosphomolybdic acid and L-Arg were utilized to prepare a new molybdenum doped carbon-dots nanozyme (Mo-CDs) with great peroxidase-like activity by one-step hydrothermal approach. In the presence of H<sub>2</sub>O<sub>2</sub>, Mo-CDs converted 3,3',5,5'-tetramethyl benzidine (TMB) into blue oxTMB, but S<sup>2-</sup> strongly reduced the blue solution to colorless and then brown, which established significant selectivity toward S<sup>2-</sup>. Mo-CDs illustrated a wide linear range (2.5 μM-900 μM) and low detection limit (LOD = 76 nM) by ultraviolet and smartphone-assisted visualized colorimetric analysis. Especially, the smartphone-assisted analysis platform successfully realized quick, portable, sensitive and visible identification of S<sup>2-</sup> with high recovery (95.7-106.7 %) and excellent specificity in water samples. More importantly, Mo-CDs was developed to antibacterial applications based on good peroxidase-like activity. This research not only constructed a new and efficient carbon-dots nanozyme and a low-cost, portable, visual analysis platform for real-time detection of S<sup>2-</sup>, but also proposed a novel design strategy and methodology for exploiting multifunctional nanozyme detection tool with great practical application.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.saa.2024.125270
Moorthy Mathivanan, Jan Grzegorz Malecki, Balasubramanian Murugesapandian
We report a newly synthesized 7-diethylamino-4-hydroxycoumarin tagged symmetrical azine derivative (SHC), with an interesting color transformation from yellowish green to orange via aggregation induced red shifted emissive (117 nm) feature in THF-H2O mixture. Interestingly, the single crystal X-ray analysis of this molecule demonstrates that two hydroxycoumarin moieties were present in azine unit, among them one of the coumarin units was exist as enol form and another one transferred to keto form via ground state proton transfer reaction. The optical responses of the compound in different solvents exposed the observation of dual emissive bands which corresponds to the presence of ESIPT phenomenon in SHC molecule. Further, this characteristic was confirmed by absorption, emission, solid state structure and time resolved fluorescence decay measurements. Furthermore, the fluorophore, SHC was exploited as a colorimetric and turn on-off-on fluorescent probe for detection of Cu2+ ions and Cysteine (Cys). The 1:1 binding ratio of the probe with Cu2+ and Cys with SHC-Cu2+, was established via Job plot analysis, mass spectral technique and the DFT calculations. The probe, SHC was employed for the detection of copper ions in the environmental real water samples. Finally, the reversible fluorescent turn on-off-on character of the probe, SHC was established to construct the IMPLICATION logic gate application.
{"title":"An interesting aggregation induced red shifted emissive and ESIPT active hydroxycoumarin tagged symmetrical azine: Colorimetric and fluorescent turn on-off-on response towards Cu<sup>2+</sup> and Cysteine, real sample analysis and logic gate application.","authors":"Moorthy Mathivanan, Jan Grzegorz Malecki, Balasubramanian Murugesapandian","doi":"10.1016/j.saa.2024.125270","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125270","url":null,"abstract":"<p><p>We report a newly synthesized 7-diethylamino-4-hydroxycoumarin tagged symmetrical azine derivative (SHC), with an interesting color transformation from yellowish green to orange via aggregation induced red shifted emissive (117 nm) feature in THF-H<sub>2</sub>O mixture. Interestingly, the single crystal X-ray analysis of this molecule demonstrates that two hydroxycoumarin moieties were present in azine unit, among them one of the coumarin units was exist as enol form and another one transferred to keto form via ground state proton transfer reaction. The optical responses of the compound in different solvents exposed the observation of dual emissive bands which corresponds to the presence of ESIPT phenomenon in SHC molecule. Further, this characteristic was confirmed by absorption, emission, solid state structure and time resolved fluorescence decay measurements. Furthermore, the fluorophore, SHC was exploited as a colorimetric and turn on-off-on fluorescent probe for detection of Cu<sup>2+</sup> ions and Cysteine (Cys). The 1:1 binding ratio of the probe with Cu<sup>2+</sup> and Cys with SHC-Cu<sup>2+</sup>, was established via Job plot analysis, mass spectral technique and the DFT calculations. The probe, SHC was employed for the detection of copper ions in the environmental real water samples. Finally, the reversible fluorescent turn on-off-on character of the probe, SHC was established to construct the IMPLICATION logic gate application.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.saa.2024.125273
M M Akhil Kumar, Annasaheb Dhawale, Darshak R Trivedi
A simple and highly sensitive isatin-based colorimetric sensor ISAT 3(a-d) was synthesized through a single-step reaction. The as-prepared receptor ISAT 3b with carbonate ions (CO32- ions) shows a significant red shift in the UV-visible absorption spectra and a visible color change from pale yellow to pink. Also, the receptor ISAT 3b shows unique solvatochromic behavior with CO32- ions in different aprotic solvents and solvent compositions. Moreover, the receptor's pink coloration (absorption maxima at 544 nm) with CO32- ions could be reversible by adding HSO4- ions (attain initial pale-yellow color, absorption maxima at 425 nm), which can be repeatable. The observed color changes with spectral shift and reversibility of the receptor with CO32- ions and HSO4- ions provide "ON-OFF" switching for applying molecular logic gates. Receptors exhibited properties, such as reversibility and repeatability, benefit the design of a molecular-scale sequential memory unit with a display of "Writing-Reading-Erasing-Reading". The real sample analysis was also carried out to prove the practical applicability of receptor (ISAT 3b) for detecting CO32- ions.
{"title":"Rational design of an isatin-based colorimetric and solvatochromic receptor for carbonate ions and its application in molecular-scale logic gates & memory units.","authors":"M M Akhil Kumar, Annasaheb Dhawale, Darshak R Trivedi","doi":"10.1016/j.saa.2024.125273","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125273","url":null,"abstract":"<p><p>A simple and highly sensitive isatin-based colorimetric sensor ISAT 3(a-d) was synthesized through a single-step reaction. The as-prepared receptor ISAT 3b with carbonate ions (CO<sub>3</sub><sup>2-</sup> ions) shows a significant red shift in the UV-visible absorption spectra and a visible color change from pale yellow to pink. Also, the receptor ISAT 3b shows unique solvatochromic behavior with CO<sub>3</sub><sup>2-</sup> ions in different aprotic solvents and solvent compositions. Moreover, the receptor's pink coloration (absorption maxima at 544 nm) with CO<sub>3</sub><sup>2-</sup> ions could be reversible by adding HSO<sub>4</sub><sup>-</sup> ions (attain initial pale-yellow color, absorption maxima at 425 nm), which can be repeatable. The observed color changes with spectral shift and reversibility of the receptor with CO<sub>3</sub><sup>2-</sup> ions and HSO<sub>4</sub><sup>-</sup> ions provide \"ON-OFF\" switching for applying molecular logic gates. Receptors exhibited properties, such as reversibility and repeatability, benefit the design of a molecular-scale sequential memory unit with a display of \"Writing-Reading-Erasing-Reading\". The real sample analysis was also carried out to prove the practical applicability of receptor (ISAT 3b) for detecting CO<sub>3</sub><sup>2-</sup> ions.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.saa.2024.125278
Subitha Adaikalapandi, T Daniel Thangadurai, S Sivakumar, D Nataraj, Alex Schechter, Nandakumar Kalarikkal, Sabu Thomas
Carbon dot-based fluorescence sensors have attracted research interest for the selective determination of anti-inflammatory drugs in biological fluids and environments. The overdose and accumulation of anti-inflammatory drugs in tissues can cause chronic side effects including abdominal pain, and renal damage. Herein, we report a new fluorescent probe, bamboo stem waste-derived carbon dots (BS-CDs) for highly sensitive detection of Flufenamic acid (FA), a hazardous anti-inflammatory drug. The UV-vis absorption spectra of BS-CDs show a redshifted absorption peak at 283 nm upon the addition of FA suggesting strong binding interaction between BS-CDs and FA molecule. The BS-CDs showed a fluorescence enhancement (∼2-fold) detection for FA (400 μM) in the linear concentration range (0.40 → 0.65 μM) with a limit of detection (LoD; 17 nM) and binding constant (Ka = 1.33 × 10-3 M-1). The time-resolved fluorescence decay analysis showed that the average lifetime of BS-CDs has slightly changed (4.42 → 4.67 ns) by the interaction with FA through the aggregation-induced emission (AIE) process. The interference, pH, and effect of time results suggest that BS-CDs are highly selective probes for FA detection and do not show any interference involvement during FA detection. The confirmation of the structure and morphology changes of BS-CDs after interaction with FA was carried out by XRD, FESEM, HRTEM, FTIR, and Raman spectroscopy. The practicability of the BS-CDs probe was proved by the detection of FA in human urine samples with recovery of 103-109 %. This suggests that the proposed BS-CDs-based 'turn-on' sensor could be used to determine the FA in biological fluids.
{"title":"Aggregation induced emission \"Turn on\" ultra-low detection of anti-inflammatory drug flufenamic acid in human urine samples by carbon dots derived from bamboo stem waste.","authors":"Subitha Adaikalapandi, T Daniel Thangadurai, S Sivakumar, D Nataraj, Alex Schechter, Nandakumar Kalarikkal, Sabu Thomas","doi":"10.1016/j.saa.2024.125278","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125278","url":null,"abstract":"<p><p>Carbon dot-based fluorescence sensors have attracted research interest for the selective determination of anti-inflammatory drugs in biological fluids and environments. The overdose and accumulation of anti-inflammatory drugs in tissues can cause chronic side effects including abdominal pain, and renal damage. Herein, we report a new fluorescent probe, bamboo stem waste-derived carbon dots (BS-CDs) for highly sensitive detection of Flufenamic acid (FA), a hazardous anti-inflammatory drug. The UV-vis absorption spectra of BS-CDs show a redshifted absorption peak at 283 nm upon the addition of FA suggesting strong binding interaction between BS-CDs and FA molecule. The BS-CDs showed a fluorescence enhancement (∼2-fold) detection for FA (400 μM) in the linear concentration range (0.40 → 0.65 μM) with a limit of detection (LoD; 17 nM) and binding constant (K<sub>a</sub> = 1.33 × 10<sup>-3</sup> M<sup>-1</sup>). The time-resolved fluorescence decay analysis showed that the average lifetime of BS-CDs has slightly changed (4.42 → 4.67 ns) by the interaction with FA through the aggregation-induced emission (AIE) process. The interference, pH, and effect of time results suggest that BS-CDs are highly selective probes for FA detection and do not show any interference involvement during FA detection. The confirmation of the structure and morphology changes of BS-CDs after interaction with FA was carried out by XRD, FESEM, HRTEM, FTIR, and Raman spectroscopy. The practicability of the BS-CDs probe was proved by the detection of FA in human urine samples with recovery of 103-109 %. This suggests that the proposed BS-CDs-based 'turn-on' sensor could be used to determine the FA in biological fluids.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the development of global industry, carbon dioxide emissions surged. The conversion of carbon dioxide from the air results in some CO32-, which can exacerbate environmental disasters like ocean acidification. Therefore, the content of CO32- in seawater is an important indicator of the degree of ocean acidification. In this study, natural fluorescent protein phycocyanin (PC) was used as a fluorescent probe, and a fluorescence detection method was established for quantitative monitoring of CO32- with quick response time (within 50 s), high sensitivity, and selectivity. The fluorescence quenching phenomenon between PC and CO32- was mainly attributed to static quenching. The limit of detection (LOD) was 0.42 μM and the method was successfully applied to monitor CO32- in tap water and seawater, acquiring satisfactory recovery between 99.28 % and 106.40 %. More importantly, paper-based test strips were easily fabricated using PC, enabling the rapid, visual, and on-site detection of CO32- with the aid of a smartphone. The visual detection integrated with the smartphone was converted to data information (RGB value) through a Color Picker APP and successfully used for quantitative identification of CO32-. By capturing fluorescent images and analyzing the corresponding RGB value via a smartphone, the linear calibration ranged from 0.5 μM to 500.0 μM with LOD of 0.11 μM was obtained. Satisfactory recoveries were acquired in tap water (98.00 %-107.50 %) and seawater (97.30 %-101.74 %), respectively. Therefore, integrating the PC fluorescent paper with a smartphone realizes the rapid, visual, and on-site detection of CO32- in the water environment, which is expected to broaden application prospects of monitoring ocean acidification degree.
{"title":"A portable optical sensor combining smartphone with phycocyanin-based fluorescent test paper for rapid, visual and on-site detection of CO<sub>3</sub><sup>2</sup>.","authors":"Yifeng Xu, Rui Sun, Shubo Wang, Fei Fei, Zhangyu Gan, Pin Zhou","doi":"10.1016/j.saa.2024.125276","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125276","url":null,"abstract":"<p><p>With the development of global industry, carbon dioxide emissions surged. The conversion of carbon dioxide from the air results in some CO<sub>3</sub><sup>2-</sup>, which can exacerbate environmental disasters like ocean acidification. Therefore, the content of CO<sub>3</sub><sup>2-</sup> in seawater is an important indicator of the degree of ocean acidification. In this study, natural fluorescent protein phycocyanin (PC) was used as a fluorescent probe, and a fluorescence detection method was established for quantitative monitoring of CO<sub>3</sub><sup>2-</sup> with quick response time (within 50 s), high sensitivity, and selectivity. The fluorescence quenching phenomenon between PC and CO<sub>3</sub><sup>2-</sup> was mainly attributed to static quenching. The limit of detection (LOD) was 0.42 μM and the method was successfully applied to monitor CO<sub>3</sub><sup>2-</sup> in tap water and seawater, acquiring satisfactory recovery between 99.28 % and 106.40 %. More importantly, paper-based test strips were easily fabricated using PC, enabling the rapid, visual, and on-site detection of CO<sub>3</sub><sup>2-</sup> with the aid of a smartphone. The visual detection integrated with the smartphone was converted to data information (RGB value) through a Color Picker APP and successfully used for quantitative identification of CO<sub>3</sub><sup>2-</sup>. By capturing fluorescent images and analyzing the corresponding RGB value via a smartphone, the linear calibration ranged from 0.5 μM to 500.0 μM with LOD of 0.11 μM was obtained. Satisfactory recoveries were acquired in tap water (98.00 %-107.50 %) and seawater (97.30 %-101.74 %), respectively. Therefore, integrating the PC fluorescent paper with a smartphone realizes the rapid, visual, and on-site detection of CO<sub>3</sub><sup>2-</sup> in the water environment, which is expected to broaden application prospects of monitoring ocean acidification degree.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.saa.2024.125282
Yuying Du, Yujin Zhang, Yulong Xu, Meina Zhang, Jiancai Leng, Wei Hu
As a cutting-edge technique, fluorescence imaging in the second near-infrared window (NIR-II) is vital for both biomedical research and clinical applications. However, its intravital imaging capacity has been restricted by the extremely limited brightness of NIR-II fluorophores. To address this challenge, we elucidated the inner mechanism of constructing high-performance NIR-II chromophores based on molecular isomer engineering from detailed computational investigations. Herein, three pairs of cis-trans isomers (cis-1, 2, 3 and trans-1, 2, 3) are designed by attaching amino, methoxyl and nitro moieties to different positions on the donor-acceptor-donor molecular skeleton with benzobisthiadiazole as the acceptor and triphenylamine as the donor. All the compounds feature efficient NIR-II emission ranging in 1000-1164 nm, and the photophysical characterizations are regulated by molecular isomer manipulation. Interestingly, fluorescence quantum yields of cis-isomers are higher than those of their trans-counterparts. These enhancements can be attributed to the significant reduction in non-radiative transition, as evidenced by the non-adiabatic excitation energy, non-adiabatic electron coupling and electron-vibration coupling. Meanwhile, fluorophores with nitro terminal group exhibit superior performance facilitated by the prominently intramolecular charge transfer. As a result, cis-3 achieves an optimal brightness maxima of 196.36 M-1 cm-1 at 632 nm. Notably, the energy gap and the hole-electron related H index are respectively identified as strongly relevant to the emission wavelength and brightness, making them capable of evaluating the feasibility of fluorophores as effective NIR-II candidates. These findings highlight the correlations between molecular geometry and luminescent properties, which will inspire more insights into the development of highly efficient NIR-II fluorophores through rational isomer engineering for biomedical applications.
{"title":"Isomerization enhanced fluorescence brightness of benzobisthiadiazole-based NIR-II fluorophores for highly efficient fluorescence imaging: A theoretical perspective.","authors":"Yuying Du, Yujin Zhang, Yulong Xu, Meina Zhang, Jiancai Leng, Wei Hu","doi":"10.1016/j.saa.2024.125282","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125282","url":null,"abstract":"<p><p>As a cutting-edge technique, fluorescence imaging in the second near-infrared window (NIR-II) is vital for both biomedical research and clinical applications. However, its intravital imaging capacity has been restricted by the extremely limited brightness of NIR-II fluorophores. To address this challenge, we elucidated the inner mechanism of constructing high-performance NIR-II chromophores based on molecular isomer engineering from detailed computational investigations. Herein, three pairs of cis-trans isomers (cis-1, 2, 3 and trans-1, 2, 3) are designed by attaching amino, methoxyl and nitro moieties to different positions on the donor-acceptor-donor molecular skeleton with benzobisthiadiazole as the acceptor and triphenylamine as the donor. All the compounds feature efficient NIR-II emission ranging in 1000-1164 nm, and the photophysical characterizations are regulated by molecular isomer manipulation. Interestingly, fluorescence quantum yields of cis-isomers are higher than those of their trans-counterparts. These enhancements can be attributed to the significant reduction in non-radiative transition, as evidenced by the non-adiabatic excitation energy, non-adiabatic electron coupling and electron-vibration coupling. Meanwhile, fluorophores with nitro terminal group exhibit superior performance facilitated by the prominently intramolecular charge transfer. As a result, cis-3 achieves an optimal brightness maxima of 196.36 M<sup>-1</sup> cm<sup>-1</sup> at 632 nm. Notably, the energy gap and the hole-electron related H index are respectively identified as strongly relevant to the emission wavelength and brightness, making them capable of evaluating the feasibility of fluorophores as effective NIR-II candidates. These findings highlight the correlations between molecular geometry and luminescent properties, which will inspire more insights into the development of highly efficient NIR-II fluorophores through rational isomer engineering for biomedical applications.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development and design of a novel, uniform and highly active local electromagnetic field enhanced structure is crucial for expanding Surface-enhanced Raman Scattering (SERS) applications. In this study, we developed Ag ring-coupled nanoarrays (Ag RCNAs) with controllable nanogaps using a substrate rotary evaporation coating technique with self-assembled polystyrene (PS) microspheres as templates. This straightforward and cost-effective method efficiently prepares plasma-coupled nanoarrays. Ag RCNAs demonstrated high sensitivity in detecting organic dyes, our prepared Ag RCNAs showed high sensitivity (with the limit of detection of 10-8 M), high signal reproducibility (with the relative standard deviation of 6.73 %). Furthermore, Ag RCNAs showed remarkable sensitivity to a broad spectrum of dyes in river water, indicating the large-area uniform and highly active circular-ring-shaped nanogaps can realize highly sensitive detection of various pollutants. This approach offers advantages in electromagnetic field enhancement, tunable nanogaps, uniformity, reproducibility, and recyclability, making it promising for applications in environmental monitoring, bioassays, food safety, and medical diagnostics.
{"title":"A novel controllable nanocyclic plasma coupled array in SERS trace detection of multi-component pollutants.","authors":"Xuanyang Ding, Zhuangzhuang Ling, Jinghuai Fang, Mingfei Cheng, Jing Wu","doi":"10.1016/j.saa.2024.125271","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125271","url":null,"abstract":"<p><p>The development and design of a novel, uniform and highly active local electromagnetic field enhanced structure is crucial for expanding Surface-enhanced Raman Scattering (SERS) applications. In this study, we developed Ag ring-coupled nanoarrays (Ag RCNAs) with controllable nanogaps using a substrate rotary evaporation coating technique with self-assembled polystyrene (PS) microspheres as templates. This straightforward and cost-effective method efficiently prepares plasma-coupled nanoarrays. Ag RCNAs demonstrated high sensitivity in detecting organic dyes, our prepared Ag RCNAs showed high sensitivity (with the limit of detection of 10<sup>-8</sup> M), high signal reproducibility (with the relative standard deviation of 6.73 %). Furthermore, Ag RCNAs showed remarkable sensitivity to a broad spectrum of dyes in river water, indicating the large-area uniform and highly active circular-ring-shaped nanogaps can realize highly sensitive detection of various pollutants. This approach offers advantages in electromagnetic field enhancement, tunable nanogaps, uniformity, reproducibility, and recyclability, making it promising for applications in environmental monitoring, bioassays, food safety, and medical diagnostics.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.saa.2024.125269
Sanghoon Cho, Sangjae Kim, Yunjung Kim, Hoeil Chung
Nickel foam (NF) was evaluated as a medium for the capture of polyethylene (PE) particles in water. NF is a hydrophobic and porous material with a large surface area, making it a promising candidate for attracting PE particles. However, the particle-capturing efficiency using bare NF was only 69.5%. To increase capturing efficiency, a circular polydimethylsiloxane (PDMS)-coated NF (PDMS@NF, diameter: 6 mm) was employed to enhance the hydrophobicity. The capturing efficiency using the PDMS@NF was substantially increased to 97.6 % owing to the increase in hydrophobicity. To quantify the captured PE particles on/in the PDMS@NF using Raman spectroscopy, a wide area illumination (WAI) scheme providing 6 mm-diameter laser illumination was adopted to fully cover the PDMS@NF for representative spectroscopic sampling and accurate quantification. The intensity ratios of PE to PDMS peaks in the collected spectra clearly increased with the quantity of dispersed PE particles (0.1 ∼ 4.0 mg range, R2: 0.992) in the water samples, and the limit of detection was 0.08 mg. Moreover, the capturing efficiencies for polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) particles (1 mg of each) using the PDMS@NF were also superior, ranging from 96.4 to 98.2 %. Therefore, the proposed scheme incorporating the PDMS@NF as a particle-capturing and Raman measurement platform has potential as a method for on-line detection of microplastics in water.
{"title":"Raman spectroscopic quantification of polyethylene particles in water using polydimethylsiloxane-coated nickel foam as a particle-capturing platform.","authors":"Sanghoon Cho, Sangjae Kim, Yunjung Kim, Hoeil Chung","doi":"10.1016/j.saa.2024.125269","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125269","url":null,"abstract":"<p><p>Nickel foam (NF) was evaluated as a medium for the capture of polyethylene (PE) particles in water. NF is a hydrophobic and porous material with a large surface area, making it a promising candidate for attracting PE particles. However, the particle-capturing efficiency using bare NF was only 69.5%. To increase capturing efficiency, a circular polydimethylsiloxane (PDMS)-coated NF (PDMS@NF, diameter: 6 mm) was employed to enhance the hydrophobicity. The capturing efficiency using the PDMS@NF was substantially increased to 97.6 % owing to the increase in hydrophobicity. To quantify the captured PE particles on/in the PDMS@NF using Raman spectroscopy, a wide area illumination (WAI) scheme providing 6 mm-diameter laser illumination was adopted to fully cover the PDMS@NF for representative spectroscopic sampling and accurate quantification. The intensity ratios of PE to PDMS peaks in the collected spectra clearly increased with the quantity of dispersed PE particles (0.1 ∼ 4.0 mg range, R<sup>2</sup>: 0.992) in the water samples, and the limit of detection was 0.08 mg. Moreover, the capturing efficiencies for polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) particles (1 mg of each) using the PDMS@NF were also superior, ranging from 96.4 to 98.2 %. Therefore, the proposed scheme incorporating the PDMS@NF as a particle-capturing and Raman measurement platform has potential as a method for on-line detection of microplastics in water.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.saa.2024.125275
Yuexing Gao, Yan Peng, Lei Shi, Siyun Zhang, Ruiyang Bai, Yunhe Lang, Yonggui He, Buyue Zhang, Ziyi Zhang, Xiufeng Zhang
In view of the significant role of reactive sulfur species (RSS) and reactive oxygen species (ROS) in maintaining the redox homeostasis of organisms, we proposed a colorimetric fluorescent probe (HTN) for reversible detection of HSO3-/H2O2 and effective discrimination of HSO3-/ClO-. C = C is the active site for the Michael addition of HSO3- and the oxidation of ClO-. When HTN interacts with HSO3- and ClO-, it exhibits fluorescence quenching. The addition of oxidizing H2O2 to the system can restore the conjugate structure of the addition product of HSO3- (HTN-HSO3-) and the fluorescence recovery, but it cannot restore the structure of the oxidation product of ClO- (HTN-ClO-). By studying the change of the reversibility/non-reversibility of the probe structure with the addition of H2O2, the purpose of reversible detection of HSO3-/H2O2 and distinguishing HSO3-/ClO- is achieved. In addition, HTN can not only be used as a fluorescent ink to detect HSO3- on the test paper, but also has excellent detection effect on HSO3- and ClO- in real food samples and water samples. Meantime, HTN has good biocompatibility and can target mitochondria to achieve reversible detection of HSO3-/H2O2 and effective discrimination of HSO3-/ClO- in living cells. Therefore, HTN has great potential as a molecular tool for studying redox homeostasis in the interaction network of complex living systems.
{"title":"A colorimetric fluorescent probe for reversible detection of HSO<sub>3</sub><sup>-</sup>/H<sub>2</sub>O<sub>2</sub> and effective discrimination of HSO<sub>3</sub><sup>-</sup>/ClO<sup>-</sup> and its application in food and bioimaging.","authors":"Yuexing Gao, Yan Peng, Lei Shi, Siyun Zhang, Ruiyang Bai, Yunhe Lang, Yonggui He, Buyue Zhang, Ziyi Zhang, Xiufeng Zhang","doi":"10.1016/j.saa.2024.125275","DOIUrl":"https://doi.org/10.1016/j.saa.2024.125275","url":null,"abstract":"<p><p>In view of the significant role of reactive sulfur species (RSS) and reactive oxygen species (ROS) in maintaining the redox homeostasis of organisms, we proposed a colorimetric fluorescent probe (HTN) for reversible detection of HSO<sub>3</sub><sup>-</sup>/H<sub>2</sub>O<sub>2</sub> and effective discrimination of HSO<sub>3</sub><sup>-</sup>/ClO<sup>-</sup>. C = C is the active site for the Michael addition of HSO<sub>3</sub><sup>-</sup> and the oxidation of ClO<sup>-</sup>. When HTN interacts with HSO<sub>3</sub><sup>-</sup> and ClO<sup>-</sup>, it exhibits fluorescence quenching. The addition of oxidizing H<sub>2</sub>O<sub>2</sub> to the system can restore the conjugate structure of the addition product of HSO<sub>3</sub><sup>-</sup> (HTN-HSO<sub>3</sub><sup>-</sup>) and the fluorescence recovery, but it cannot restore the structure of the oxidation product of ClO<sup>-</sup> (HTN-ClO<sup>-</sup>). By studying the change of the reversibility/non-reversibility of the probe structure with the addition of H<sub>2</sub>O<sub>2</sub>, the purpose of reversible detection of HSO<sub>3</sub><sup>-</sup>/H<sub>2</sub>O<sub>2</sub> and distinguishing HSO<sub>3</sub><sup>-</sup>/ClO<sup>-</sup> is achieved. In addition, HTN can not only be used as a fluorescent ink to detect HSO<sub>3</sub><sup>-</sup> on the test paper, but also has excellent detection effect on HSO<sub>3</sub><sup>-</sup> and ClO<sup>-</sup> in real food samples and water samples. Meantime, HTN has good biocompatibility and can target mitochondria to achieve reversible detection of HSO<sub>3</sub><sup>-</sup>/H<sub>2</sub>O<sub>2</sub> and effective discrimination of HSO<sub>3</sub><sup>-</sup>/ClO<sup>-</sup> in living cells. Therefore, HTN has great potential as a molecular tool for studying redox homeostasis in the interaction network of complex living systems.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}