Pub Date : 2018-06-01Epub Date: 2018-03-27DOI: 10.1007/s12307-018-0208-2
Alireza Mardomi, Saeid Abediankenari
{"title":"Matrix Metalloproteinase 8: Could it Benefit the CAR-T Cell Therapy of Solid Tumors?- a- Commentary on Therapeutic Potential.","authors":"Alireza Mardomi, Saeid Abediankenari","doi":"10.1007/s12307-018-0208-2","DOIUrl":"https://doi.org/10.1007/s12307-018-0208-2","url":null,"abstract":"","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"93-96"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0208-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35954702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01Epub Date: 2017-04-13DOI: 10.1007/s12307-017-0192-y
Huifeng Jin, Jared J Barrott, Matthew G Cable, Michael J Monument, Daniel M Lerman, Kyllie Smith-Fry, Dakota Nollner, Kevin B Jones
Synovial sarcoma (SS) is initiated by a t(X;18) chromosomal translocation and resultant SS18-SSX fusion oncogene. Only a few SS cell lines exist. None has been compared to its source tumor. In order to compare matched tumor and cell line pairs, we performed RNAseq on 3 tumor/cell line pairs from a genetically engineered mouse model of SS, as well as 2 pairs from human SS tumors. Transcriptomes of mouse tumors and derivative cell lines deviated significantly. Differentially expressed genes highlighted inflammatory infiltrates and metabolism. The same was found for the human tumor and cell line pairs. More was shared between different tumors than between any tumor and its cell line. Direct xenografting generated transcriptomes that more closely resembled the primary tumor than did its derivative cell line. SS tumor transcriptomes are powerfully impacted by the environment wherein they reside, especially with regard to immune interaction and metabolism.
{"title":"The Impact of Microenvironment on the Synovial Sarcoma Transcriptome.","authors":"Huifeng Jin, Jared J Barrott, Matthew G Cable, Michael J Monument, Daniel M Lerman, Kyllie Smith-Fry, Dakota Nollner, Kevin B Jones","doi":"10.1007/s12307-017-0192-y","DOIUrl":"https://doi.org/10.1007/s12307-017-0192-y","url":null,"abstract":"<p><p>Synovial sarcoma (SS) is initiated by a t(X;18) chromosomal translocation and resultant SS18-SSX fusion oncogene. Only a few SS cell lines exist. None has been compared to its source tumor. In order to compare matched tumor and cell line pairs, we performed RNAseq on 3 tumor/cell line pairs from a genetically engineered mouse model of SS, as well as 2 pairs from human SS tumors. Transcriptomes of mouse tumors and derivative cell lines deviated significantly. Differentially expressed genes highlighted inflammatory infiltrates and metabolism. The same was found for the human tumor and cell line pairs. More was shared between different tumors than between any tumor and its cell line. Direct xenografting generated transcriptomes that more closely resembled the primary tumor than did its derivative cell line. SS tumor transcriptomes are powerfully impacted by the environment wherein they reside, especially with regard to immune interaction and metabolism.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0192-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34913571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01Epub Date: 2017-08-02DOI: 10.1007/s12307-017-0196-7
Andrew Uhlman, Kelly Folkers, Jared Liston, Harshida Pancholi, Ayana Hinton
Studies indicate secreted cathepsins are involved in metastasis. V-ATPases, which are necessary for activating intracellular cathepsins, also play a role in metastasis and are targeted to the plasma membrane of metastatic breast cancer cells. We are interested in a connection between cell surface V-ATPases, activation of secreted cathepsins and the metastatic phenotype of MDA-MB231 cells. We investigated whether V-ATPase inhibition would reduce the activity of secreted cathepsin B and cathepsin L. Using cell lysates and conditioned media, we measured cathepsin B and L activity within and outside of the cells. We found different forms of cathepsin B and L were secreted representing the pre-pro, pro and active forms of the proteases. Cathepsin B activity was higher than cathepsin L in conditioned media and in cell lysates. V-ATPase inhibition by concanamycin A decreased cathepsin B activity in conditioned media and significantly decreased cathepsin B activity in cell lysates. Cathepsin L activity showed a slight decrease in cell lysates. Changes in the activity of secreted and intracellular cathepsins following V-ATPase inhibition were supported by changes in the amounts of pro and active forms of cathepsin B in conditioned media and cathepsins B and L in cell lysates. Overall, our data shows that inactive forms of cathepsins B and L are secreted from the MB231 cells and V-ATPase activity is important for the activation of secreted cathepsin B. This indicates a connection between cell surface V-ATPases in metastatic breast cancer cells and the function of secreted cathepsin B.
{"title":"Effects of Vacuolar H<sup>+</sup>-ATPase Inhibition on Activation of Cathepsin B and Cathepsin L Secreted from MDA-MB231 Breast Cancer Cells.","authors":"Andrew Uhlman, Kelly Folkers, Jared Liston, Harshida Pancholi, Ayana Hinton","doi":"10.1007/s12307-017-0196-7","DOIUrl":"https://doi.org/10.1007/s12307-017-0196-7","url":null,"abstract":"<p><p>Studies indicate secreted cathepsins are involved in metastasis. V-ATPases, which are necessary for activating intracellular cathepsins, also play a role in metastasis and are targeted to the plasma membrane of metastatic breast cancer cells. We are interested in a connection between cell surface V-ATPases, activation of secreted cathepsins and the metastatic phenotype of MDA-MB231 cells. We investigated whether V-ATPase inhibition would reduce the activity of secreted cathepsin B and cathepsin L. Using cell lysates and conditioned media, we measured cathepsin B and L activity within and outside of the cells. We found different forms of cathepsin B and L were secreted representing the pre-pro, pro and active forms of the proteases. Cathepsin B activity was higher than cathepsin L in conditioned media and in cell lysates. V-ATPase inhibition by concanamycin A decreased cathepsin B activity in conditioned media and significantly decreased cathepsin B activity in cell lysates. Cathepsin L activity showed a slight decrease in cell lysates. Changes in the activity of secreted and intracellular cathepsins following V-ATPase inhibition were supported by changes in the amounts of pro and active forms of cathepsin B in conditioned media and cathepsins B and L in cell lysates. Overall, our data shows that inactive forms of cathepsins B and L are secreted from the MB231 cells and V-ATPase activity is important for the activation of secreted cathepsin B. This indicates a connection between cell surface V-ATPases in metastatic breast cancer cells and the function of secreted cathepsin B.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"49-56"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0196-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35282551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01Epub Date: 2017-05-19DOI: 10.1007/s12307-017-0194-9
Ritu Lakhtakia, Adil Aljarrah, Muhammad Furrukh, Shyam S Ganguly
Breast cancer (BC) in Oman affects younger women and has a more aggressive course. Clinical and biological variables like age, pregnancy, tumor size, type, grade, receptor expression and proliferation predict disease aggression but there is no direct predictor of metastasis except lymphovascular invasion. Epithelial-mesenchymal transition (EMT) is characterized by epithelial cells losing epithelial and acquiring mesenchymal morpho-immunophenotypic characteristics. In tumors, EMT-like transitions may signify a metastatic phenotype and have features in common with cancer stem cells (CSC) which show resistance to chemotherapy. This study aimed to identify EMT and CSC phenotypes in metastatic and non-metastatic breast cancer in Omani women and their association with conventional clinico-pathological predictors of BC. In a retrospective study of ninety-six Omani women with breast cancer, the association of age, pregnancy/lactation, tumor size, type, grade, ductal carcinoma insitu (DCIS), lymphovascular invasion, hormone/ HER2 receptor expression and Ki67 proliferation index (Ki67 PI) was tested with EMT/ CSC phenotype and metastasis. Young age ≤ 40 years, lymphovascular invasion and EMT had a strong association with metastasis; CSC approached significance. Vimentin expression in tumor cells, fibronectin and MMP-11 in stroma were reliable markers of EMT; dual EMT and CSC phenotype (Vim+/ CD44+/ CD 24-/low) had a strong association with apocrine variant, basal-like tumors and triple negative cancers. EMT had a strong association with Ki67 proliferation index (PI) and CSC with HER2-like tumors and distant metastasis. These select markers may be useful in metastasis-prediction in pre-treatment biopsies.
{"title":"Epithelial Mesenchymal Transition (EMT) in Metastatic Breast Cancer in Omani Women.","authors":"Ritu Lakhtakia, Adil Aljarrah, Muhammad Furrukh, Shyam S Ganguly","doi":"10.1007/s12307-017-0194-9","DOIUrl":"10.1007/s12307-017-0194-9","url":null,"abstract":"<p><p>Breast cancer (BC) in Oman affects younger women and has a more aggressive course. Clinical and biological variables like age, pregnancy, tumor size, type, grade, receptor expression and proliferation predict disease aggression but there is no direct predictor of metastasis except lymphovascular invasion. Epithelial-mesenchymal transition (EMT) is characterized by epithelial cells losing epithelial and acquiring mesenchymal morpho-immunophenotypic characteristics. In tumors, EMT-like transitions may signify a metastatic phenotype and have features in common with cancer stem cells (CSC) which show resistance to chemotherapy. This study aimed to identify EMT and CSC phenotypes in metastatic and non-metastatic breast cancer in Omani women and their association with conventional clinico-pathological predictors of BC. In a retrospective study of ninety-six Omani women with breast cancer, the association of age, pregnancy/lactation, tumor size, type, grade, ductal carcinoma insitu (DCIS), lymphovascular invasion, hormone/ HER2 receptor expression and Ki67 proliferation index (Ki67 PI) was tested with EMT/ CSC phenotype and metastasis. Young age ≤ 40 years, lymphovascular invasion and EMT had a strong association with metastasis; CSC approached significance. Vimentin expression in tumor cells, fibronectin and MMP-11 in stroma were reliable markers of EMT; dual EMT and CSC phenotype (Vim+/ CD44+/ CD 24-/low) had a strong association with apocrine variant, basal-like tumors and triple negative cancers. EMT had a strong association with Ki67 proliferation index (PI) and CSC with HER2-like tumors and distant metastasis. These select markers may be useful in metastasis-prediction in pre-treatment biopsies.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"25-37"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5750198/pdf/12307_2017_Article_194.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35012956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01Epub Date: 2017-06-26DOI: 10.1007/s12307-017-0195-8
Pia Boström, Annele Sainio, Natalja Eigėlienė, Anne Jokilammi, Klaus Elenius, Ilkka Koskivuo, Hannu Järveläinen
Metaplastic breast carcinoma (MBC) is a rare subtype of invasive breast cancer and has poor prognosis. In general, cancers are heterogeneous cellular masses comprised of different cell types and their extracellular matrix (ECM). However, little is known about the composition of the ECM and its constituents in MBC. Decorin is a ubiquitous ECM macromolecule known of its oncosuppressive activity. As such, it provides an intriguing molecule in the development of novel therapeutics for different malignancies such as MBC. In this study, decorin immunoreactivity and the effect of adenoviral decorin cDNA (Ad-DCN) transduction were examined in MBC. Multiple immunohistochemical stainings were used to characterize a massive breast tumour derived from an old woman. Furthermore, three-dimensional (3D) explant cultures derived from the tumour were transduced with Ad-DCN to study the effect of the transduction on the explants. The MBC tumour was shown to be completely negative for decorin immunoreactivity demonstrating that the malignant cells were not able to synthesize decorin. Ad-DCN transduction resulted in a markedly altered cytological phenotype of MBC explants by decreasing the amount of atypical cells and by inhibiting cell proliferation. The results of this study support approaches to develop new, decorin-based adjuvant therapies for MBC.
{"title":"Human Metaplastic Breast Carcinoma and Decorin.","authors":"Pia Boström, Annele Sainio, Natalja Eigėlienė, Anne Jokilammi, Klaus Elenius, Ilkka Koskivuo, Hannu Järveläinen","doi":"10.1007/s12307-017-0195-8","DOIUrl":"https://doi.org/10.1007/s12307-017-0195-8","url":null,"abstract":"<p><p>Metaplastic breast carcinoma (MBC) is a rare subtype of invasive breast cancer and has poor prognosis. In general, cancers are heterogeneous cellular masses comprised of different cell types and their extracellular matrix (ECM). However, little is known about the composition of the ECM and its constituents in MBC. Decorin is a ubiquitous ECM macromolecule known of its oncosuppressive activity. As such, it provides an intriguing molecule in the development of novel therapeutics for different malignancies such as MBC. In this study, decorin immunoreactivity and the effect of adenoviral decorin cDNA (Ad-DCN) transduction were examined in MBC. Multiple immunohistochemical stainings were used to characterize a massive breast tumour derived from an old woman. Furthermore, three-dimensional (3D) explant cultures derived from the tumour were transduced with Ad-DCN to study the effect of the transduction on the explants. The MBC tumour was shown to be completely negative for decorin immunoreactivity demonstrating that the malignant cells were not able to synthesize decorin. Ad-DCN transduction resulted in a markedly altered cytological phenotype of MBC explants by decreasing the amount of atypical cells and by inhibiting cell proliferation. The results of this study support approaches to develop new, decorin-based adjuvant therapies for MBC.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"39-48"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0195-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35121875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01Epub Date: 2017-09-03DOI: 10.1007/s12307-017-0198-5
L D Miteva, N S Stanilov, G М Cirovski, Spaska Angelova Stanilova
T helper 17 (Th17) and T regulatory (Treg) cytokines appear to be contributing greatly to colorectal cancer (CRC) development and progression. The aim of the current study was to investigate the expression of Foxp3; IL10; TGFB1; IL17A; IL6 and NOS2 genes in tumor tissue, regional positive lymph nodes and distant metastasis obtained from 26 patients with advanced CRC. Quantitative real-time polymerase chain reaction (qPCR) was performed for mRNA detection by TaqMan gene expression assay. In distant metastasis, IL6 was strongly expressed, over 7.5 fold, followed by Treg-related genes Foxp3; IL10 and TGFB1 in contrast to IL17A and NOS2. The similar pattern of expression was observed in positive regional lymph node in addition to significant down-regulation of NOS2 (RQ = 0.287; p = 0.011) and a trend for the elevation of IL17A. In tumor tissue, Fopx3 was significantly upregulated and Foxp3 mRNA positively correlated with TGFB1 in all investigated tissue types. In tumor tissue, expression of IL17A was correlated with NOS2 (r = 0.68; p = 0.005), while in distant metastasis IL10 was in strong relation with TGFB1 and IL6. In addition, a reverse correlation between IL6 and NOS2 (r = -0.66; p = 0.009), was observed in distant metastasis. The simultaneous expression of given Treg and Th17-related genes found both in the primary tumor and in the regional lymph nodes appears to provide suitable microenvironment sufficient for promoting metastatic growth. The upregulation of Foxp3; IL10, TGFB1 and IL6 might be a transcriptional profile hallmark for colorectal metastases.
{"title":"Upregulation of Treg-Related Genes in Addition with IL6 Showed the Significant Role for the Distant Metastasis in Colorectal Cancer.","authors":"L D Miteva, N S Stanilov, G М Cirovski, Spaska Angelova Stanilova","doi":"10.1007/s12307-017-0198-5","DOIUrl":"https://doi.org/10.1007/s12307-017-0198-5","url":null,"abstract":"<p><p>T helper 17 (Th17) and T regulatory (Treg) cytokines appear to be contributing greatly to colorectal cancer (CRC) development and progression. The aim of the current study was to investigate the expression of Foxp3; IL10; TGFB1; IL17A; IL6 and NOS2 genes in tumor tissue, regional positive lymph nodes and distant metastasis obtained from 26 patients with advanced CRC. Quantitative real-time polymerase chain reaction (qPCR) was performed for mRNA detection by TaqMan gene expression assay. In distant metastasis, IL6 was strongly expressed, over 7.5 fold, followed by Treg-related genes Foxp3; IL10 and TGFB1 in contrast to IL17A and NOS2. The similar pattern of expression was observed in positive regional lymph node in addition to significant down-regulation of NOS2 (RQ = 0.287; p = 0.011) and a trend for the elevation of IL17A. In tumor tissue, Fopx3 was significantly upregulated and Foxp3 mRNA positively correlated with TGFB1 in all investigated tissue types. In tumor tissue, expression of IL17A was correlated with NOS2 (r = 0.68; p = 0.005), while in distant metastasis IL10 was in strong relation with TGFB1 and IL6. In addition, a reverse correlation between IL6 and NOS2 (r = -0.66; p = 0.009), was observed in distant metastasis. The simultaneous expression of given Treg and Th17-related genes found both in the primary tumor and in the regional lymph nodes appears to provide suitable microenvironment sufficient for promoting metastatic growth. The upregulation of Foxp3; IL10, TGFB1 and IL6 might be a transcriptional profile hallmark for colorectal metastases.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"69-76"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0198-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35374037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HPV infected cervical cells secrete mediators that are gradually changed and have influence on infiltrating M2 phenotypic monocytes in cervical lesions. However, profiles of circulating immune cells in women with cervical lesions and M2 phenotypic monocyte activity in HPV infected cervical lesions are limited. This study aimed to investigate circulating monocyte populations correlated with M2 phenotype density and its activity in HPV infected cervical lesions. HPV DNA was investigated in cervical tissues using PCR. High risk HPV E6/E7 mRNA was detected using in situ hybridization. CD163 immunohistochemical staining was performed for M2 macrophage. CD163 and Arg1 mRNA expression were detected using real-time PCR. Circulating monocyte subpopulations were analyzed using flow cytometry. CD163 and Arg1 mRNA expression were increased according to cervical lesion severity and corresponding with density of M2 macrophage in HSIL and SCC in stroma and peri-tumoral areas. Additionally, the relationship between M2 macrophage infiltration and high risk HPV E6/E7 mRNA expression was found and corresponded with cervical lesion severity. Circulating CD14+CD16+ and CD14+CD163+ monocytes were elevated in No-SIL and cervical lesions. Interestingly, CD14+CD64+ monocyte was greatly elevated in HSIL and SCC, whereas intracellular IL-10+ monocytes were not significantly different between cervical lesions. The correlation between increasing ratio of circulating CD64+/CD163+ monocyte and density of infiltrating CD163+ monocytes was associated with severity of HPV infected cervical lesions. The elevated circulating CD64+/CD163+ monocyte ratio correlates to severity of HPV infected cervical lesions and might be a prognostic marker in cervical cancer progression.
{"title":"Correlation of Circulating CD64<sup>+</sup>/CD163<sup>+</sup> Monocyte Ratio and stroma/peri-tumoral CD163<sup>+</sup> Monocyte Density with Human Papillomavirus Infected Cervical Lesion Severity.","authors":"Piyawut Swangphon, Chamsai Pientong, Nuchsupha Sunthamala, Sureewan Bumrungthai, Miyuki Azuma, Pilaiwan Kleebkaow, Thumwadee Tangsiriwatthana, Ussanee Sangkomkamhang, Bunkerd Kongyingyoes, Tipaya Ekalaksananan","doi":"10.1007/s12307-017-0200-2","DOIUrl":"https://doi.org/10.1007/s12307-017-0200-2","url":null,"abstract":"<p><p>HPV infected cervical cells secrete mediators that are gradually changed and have influence on infiltrating M2 phenotypic monocytes in cervical lesions. However, profiles of circulating immune cells in women with cervical lesions and M2 phenotypic monocyte activity in HPV infected cervical lesions are limited. This study aimed to investigate circulating monocyte populations correlated with M2 phenotype density and its activity in HPV infected cervical lesions. HPV DNA was investigated in cervical tissues using PCR. High risk HPV E6/E7 mRNA was detected using in situ hybridization. CD163 immunohistochemical staining was performed for M2 macrophage. CD163 and Arg1 mRNA expression were detected using real-time PCR. Circulating monocyte subpopulations were analyzed using flow cytometry. CD163 and Arg1 mRNA expression were increased according to cervical lesion severity and corresponding with density of M2 macrophage in HSIL and SCC in stroma and peri-tumoral areas. Additionally, the relationship between M2 macrophage infiltration and high risk HPV E6/E7 mRNA expression was found and corresponded with cervical lesion severity. Circulating CD14<sup>+</sup>CD16<sup>+</sup> and CD14<sup>+</sup>CD163<sup>+</sup> monocytes were elevated in No-SIL and cervical lesions. Interestingly, CD14<sup>+</sup>CD64<sup>+</sup> monocyte was greatly elevated in HSIL and SCC, whereas intracellular IL-10<sup>+</sup> monocytes were not significantly different between cervical lesions. The correlation between increasing ratio of circulating CD64<sup>+</sup>/CD163<sup>+</sup> monocyte and density of infiltrating CD163<sup>+</sup> monocytes was associated with severity of HPV infected cervical lesions. The elevated circulating CD64<sup>+</sup>/CD163<sup>+</sup> monocyte ratio correlates to severity of HPV infected cervical lesions and might be a prognostic marker in cervical cancer progression.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"77-85"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0200-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35635445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epithelial-mesenchymal transition (EMT) is a significant process in the invasion and metastasis of cancers including oral squamous cell carcinoma (OSCC), and the cadherin switch has been identified as one of the hallmarks of EMT. The aim of the present study was to evaluate the significance of the cadherin switch in the prognosis of OSCC and generate a model for prognostic predictions. Seventy-six biopsy and/or initial surgical specimens from OSCC patients were immunohistochemically analyzed for the expression of E-cadherin and N-cadherin in either overall OSCC cells in tumor nests or in OSCC cells at the invasive front. Among 76 OSCC cases, overall OSCC cells in tumor nests were negative for the expression of E-cadherin in 10 cases and positive for that of N-cadherin in 53 cases. Among 10 cases negative for the expression of E-cadherin, 4 cases were positive for that of N-cadherin. In OSCC cells at the invasive front, the expression of E-cadherin was negative in 62 cases, while that of N-cadherin was positive in 39 cases. Among 62 cases negative for the expression of E-cadherin, 33 cases were positive for that of N-cadherin. A logistic regression analysis showed that a model using the evaluation of N-cadherin expression in overall OSCC cells in tumor nests with a cut-off point of 70 years old was the best fit model. These results suggest that N-cadherin has significant value in prognostic predictions for OSCC patients.
{"title":"Prognostic Prediction of Oral Squamous Cell Carcinoma by E-Cadherin and N-Cadherin Expression in Overall Cells in Tumor Nests or Tumor Cells at the Invasive Front.","authors":"Yuu Ozaki-Honda, Sachiko Seki, Mutsunori Fujiwara, Masaaki Matsuura, Shuichi Fujita, Hisazumi Ikeda, Masahiro Umeda, Takao Ayuse, Tohru Ikeda","doi":"10.1007/s12307-017-0201-1","DOIUrl":"https://doi.org/10.1007/s12307-017-0201-1","url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) is a significant process in the invasion and metastasis of cancers including oral squamous cell carcinoma (OSCC), and the cadherin switch has been identified as one of the hallmarks of EMT. The aim of the present study was to evaluate the significance of the cadherin switch in the prognosis of OSCC and generate a model for prognostic predictions. Seventy-six biopsy and/or initial surgical specimens from OSCC patients were immunohistochemically analyzed for the expression of E-cadherin and N-cadherin in either overall OSCC cells in tumor nests or in OSCC cells at the invasive front. Among 76 OSCC cases, overall OSCC cells in tumor nests were negative for the expression of E-cadherin in 10 cases and positive for that of N-cadherin in 53 cases. Among 10 cases negative for the expression of E-cadherin, 4 cases were positive for that of N-cadherin. In OSCC cells at the invasive front, the expression of E-cadherin was negative in 62 cases, while that of N-cadherin was positive in 39 cases. Among 62 cases negative for the expression of E-cadherin, 33 cases were positive for that of N-cadherin. A logistic regression analysis showed that a model using the evaluation of N-cadherin expression in overall OSCC cells in tumor nests with a cut-off point of 70 years old was the best fit model. These results suggest that N-cadherin has significant value in prognostic predictions for OSCC patients.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"87-94"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0201-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35220180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01Epub Date: 2017-11-24DOI: 10.1007/s12307-017-0202-0
Dhruva Kumar Mishra, Min P Kim
Activator protein (AP) -1 is a transcription factor, plays important role in cell differentiation, proliferation and apoptosis. Analysis of tumor cells grown on ex vivo 4D lung cancer model shows increase in components of AP-1, c-Fos and c-Jun in circulating tumor cells (CTC) compared to primary tumor. Our aim was to determine whether the AP-1 inhibitor SR11302 reduces metastatic lesion formation in the 4D model. Human lung cancer cell lines A549, H1299, and H460 were grown in the 4D model and treated with SR11302 (1 μM). We compared the number of cells in the metastatic site upon SR11302 treatment and number of viable CTCs isolated from the 4D model with parental cells treated/untreated with SR11302 on a petri dish. There were significantly fewer tumor cells per high-power field on metastatic site in 4D model seeded with H460 (p = 0.009), A549 (p = 0.01), or H1299 (p = 0.02) cells treated with SR11302. Furthermore, the CTCs from SR11302 treated 4D models, seeded with H460 (p = 0.04), A549 (p = 0.008), or H1299 (p = 0.01) cells had significantly fewer viable tumor cells after 4 days in culture than the respective untreated control. However, the SR11302 had no impact on the viability of parental H460 (p = 0.87), A549 (p = 0.93), or H1299 (p = 0.25) cells grown on a petri dish (2D). SR11302 reduces metastatic lesion formation in the ex vivo 4D lung cancer model due to the presence of an independent yet common pathway among three cell lines. The ex vivo 4D model may provide a tool to better understand the complex process of metastasis.
{"title":"SR 11302, an AP-1 Inhibitor, Reduces Metastatic Lesion Formation in Ex Vivo 4D Lung Cancer Model.","authors":"Dhruva Kumar Mishra, Min P Kim","doi":"10.1007/s12307-017-0202-0","DOIUrl":"https://doi.org/10.1007/s12307-017-0202-0","url":null,"abstract":"<p><p>Activator protein (AP) -1 is a transcription factor, plays important role in cell differentiation, proliferation and apoptosis. Analysis of tumor cells grown on ex vivo 4D lung cancer model shows increase in components of AP-1, c-Fos and c-Jun in circulating tumor cells (CTC) compared to primary tumor. Our aim was to determine whether the AP-1 inhibitor SR11302 reduces metastatic lesion formation in the 4D model. Human lung cancer cell lines A549, H1299, and H460 were grown in the 4D model and treated with SR11302 (1 μM). We compared the number of cells in the metastatic site upon SR11302 treatment and number of viable CTCs isolated from the 4D model with parental cells treated/untreated with SR11302 on a petri dish. There were significantly fewer tumor cells per high-power field on metastatic site in 4D model seeded with H460 (p = 0.009), A549 (p = 0.01), or H1299 (p = 0.02) cells treated with SR11302. Furthermore, the CTCs from SR11302 treated 4D models, seeded with H460 (p = 0.04), A549 (p = 0.008), or H1299 (p = 0.01) cells had significantly fewer viable tumor cells after 4 days in culture than the respective untreated control. However, the SR11302 had no impact on the viability of parental H460 (p = 0.87), A549 (p = 0.93), or H1299 (p = 0.25) cells grown on a petri dish (2D). SR11302 reduces metastatic lesion formation in the ex vivo 4D lung cancer model due to the presence of an independent yet common pathway among three cell lines. The ex vivo 4D model may provide a tool to better understand the complex process of metastasis.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"95-103"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0202-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35588072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01Epub Date: 2017-08-18DOI: 10.1007/s12307-017-0197-6
Bradley N Mills, George P Albert, Marc W Halterman
The dual specificity phosphatases (DUSPs) constitute a family of stress-induced enzymes that provide feedback inhibition on mitogen-activated protein kinases (MAPKs) critical in key aspects of oncogenic signaling. While described in other tumor types, the landscape of DUSP mRNA expression in glioblastoma (GB) remains largely unexplored. Interrogation of the REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT) revealed induction (DUSP4, DUSP6), repression (DUSP2, DUSP7-9), or mixed (DUSP1, DUSP5, DUSP10, DUSP15) DUSP transcription of select DUSPs in bulk tumor specimens. To resolve features specific to the tumor microenvironment, we searched the Ivy Glioblastoma Atlas Project (Ivy GAP) repository, which highlight DUSP1, DUSP5, and DUSP6 as the predominant family members induced within pseudopalisading and perinecrotic regions. The inducibility of DUSP1 in response to hypoxia, dexamethasone, or the chemotherapeutic agent camptothecin was confirmed in GB cell lines and tumor-derived stem cells (TSCs). Moreover, we show that loss of DUSP1 expression is a characteristic of TSCs and correlates with expression of tumor stem cell markers in situ (ABCG2, PROM1, L1CAM, NANOG, SOX2). This work reveals a dynamic pattern of DUSP expression within the tumor microenvironment that reflects the cumulative effects of factors including regional ischemia, chemotherapeutic exposure among others. Moreover, our observation regarding DUSP1 dysregulation within the stem cell niche argue for its importance in the survival and proliferation of this therapeutically resistant population.
{"title":"Expression Profiling of the MAP Kinase Phosphatase Family Reveals a Role for DUSP1 in the Glioblastoma Stem Cell Niche.","authors":"Bradley N Mills, George P Albert, Marc W Halterman","doi":"10.1007/s12307-017-0197-6","DOIUrl":"https://doi.org/10.1007/s12307-017-0197-6","url":null,"abstract":"<p><p>The dual specificity phosphatases (DUSPs) constitute a family of stress-induced enzymes that provide feedback inhibition on mitogen-activated protein kinases (MAPKs) critical in key aspects of oncogenic signaling. While described in other tumor types, the landscape of DUSP mRNA expression in glioblastoma (GB) remains largely unexplored. Interrogation of the REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT) revealed induction (DUSP4, DUSP6), repression (DUSP2, DUSP7-9), or mixed (DUSP1, DUSP5, DUSP10, DUSP15) DUSP transcription of select DUSPs in bulk tumor specimens. To resolve features specific to the tumor microenvironment, we searched the Ivy Glioblastoma Atlas Project (Ivy GAP) repository, which highlight DUSP1, DUSP5, and DUSP6 as the predominant family members induced within pseudopalisading and perinecrotic regions. The inducibility of DUSP1 in response to hypoxia, dexamethasone, or the chemotherapeutic agent camptothecin was confirmed in GB cell lines and tumor-derived stem cells (TSCs). Moreover, we show that loss of DUSP1 expression is a characteristic of TSCs and correlates with expression of tumor stem cell markers in situ (ABCG2, PROM1, L1CAM, NANOG, SOX2). This work reveals a dynamic pattern of DUSP expression within the tumor microenvironment that reflects the cumulative effects of factors including regional ischemia, chemotherapeutic exposure among others. Moreover, our observation regarding DUSP1 dysregulation within the stem cell niche argue for its importance in the survival and proliferation of this therapeutically resistant population.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"10 1-3","pages":"57-68"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0197-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35282414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}