Pub Date : 2018-12-01Epub Date: 2018-09-11DOI: 10.1007/s12307-018-0217-1
Patrick Schnotalle, Karoline Koch, Rex K H Au-Yeung, Sarah Reinke, Karsten Winter, Markus Loeffler, Ulf-Dietrich Braumann, Wolfram Klapper
The nonneoplastic microenvironment is abundant in follicular lymphoma. Its composition has been reported to be associated with the course of the disease. Lack of animal models hampers studies of interaction between lymphoma and bystander cells. We aimed to identify indicators of cellular interaction exemplified by nonrandom distribution of cell types within neoplastic follicles. Physiological germinal centers and follicles in follicular lymphoma were stained to identify macrophages, all T, follicular T-helper, dendritic and B cells. Density of cell types and cell distribution (spatial point pattern) were analyzed by digital image analysis. The density of all T, follicular T-helper and dendritic cells was higher in the dark zone than in the light zone of physiological germinal centers. Densities of cell types in follicular lymphoma were intermediate between the light and the dark zone. All cell types analyzed showed a completely random spatial distribution pattern within the dark and the light zone, respectively. In follicular lymphoma B cells and macrophages displayed complete spatial randomness. In contrast, all T cells, follicular T-helper cells and dendritic cells showed clustering of each individual cell type within a radius of 6-10 μm in the lymphoma. We conclude that the distribution of nonneoplastic cells within follicles of follicular lymphoma is not random. T cells and dendritic cells form clusters within the follicles, suggestive of sites of interaction between microenvironment and lymphoma cells. These clusters might help to understand the interaction of lymphoma cells with the microenvironment and might provide a structure for therapeutic intervention.
{"title":"T-Cell Clustering in Neoplastic Follicles of Follicular Lymphoma.","authors":"Patrick Schnotalle, Karoline Koch, Rex K H Au-Yeung, Sarah Reinke, Karsten Winter, Markus Loeffler, Ulf-Dietrich Braumann, Wolfram Klapper","doi":"10.1007/s12307-018-0217-1","DOIUrl":"https://doi.org/10.1007/s12307-018-0217-1","url":null,"abstract":"<p><p>The nonneoplastic microenvironment is abundant in follicular lymphoma. Its composition has been reported to be associated with the course of the disease. Lack of animal models hampers studies of interaction between lymphoma and bystander cells. We aimed to identify indicators of cellular interaction exemplified by nonrandom distribution of cell types within neoplastic follicles. Physiological germinal centers and follicles in follicular lymphoma were stained to identify macrophages, all T, follicular T-helper, dendritic and B cells. Density of cell types and cell distribution (spatial point pattern) were analyzed by digital image analysis. The density of all T, follicular T-helper and dendritic cells was higher in the dark zone than in the light zone of physiological germinal centers. Densities of cell types in follicular lymphoma were intermediate between the light and the dark zone. All cell types analyzed showed a completely random spatial distribution pattern within the dark and the light zone, respectively. In follicular lymphoma B cells and macrophages displayed complete spatial randomness. In contrast, all T cells, follicular T-helper cells and dendritic cells showed clustering of each individual cell type within a radius of 6-10 μm in the lymphoma. We conclude that the distribution of nonneoplastic cells within follicles of follicular lymphoma is not random. T cells and dendritic cells form clusters within the follicles, suggestive of sites of interaction between microenvironment and lymphoma cells. These clusters might help to understand the interaction of lymphoma cells with the microenvironment and might provide a structure for therapeutic intervention.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 2-3","pages":"135-140"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0217-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36478914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-01DOI: 10.1007/s12307-018-0212-6
Pedro Baleia
{"title":"8th International conference on Tumor Microenvironment, Lisbon, Portugal June 10-14, 2018.","authors":"Pedro Baleia","doi":"10.1007/s12307-018-0212-6","DOIUrl":"https://doi.org/10.1007/s12307-018-0212-6","url":null,"abstract":"","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 Suppl 1","pages":"1-91"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0212-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36113809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-01Epub Date: 2018-01-06DOI: 10.1007/s12307-017-0203-z
Aline Brito de Lima, Luciana Maria Silva, Nikole Gontijo Gonçales, Maria Raquel Santos Carvalho, Agnaldo Lopes da Silva Filho, Letícia da Conceição Braga
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, and the lack of chemoresistance biomarkers contributes to the poor prognosis. Cancer stem cells (CSC) have been investigated in EOC to understand its relationship with chemoresistance and recurrence. In this context, in vitro cultivation-models are important tools for CSC studies. MicroRNAs (miRNAs) play key roles in cancer, CSC regulation and apoptosis. Thus, this study aims to evaluate the tumorsphere model as CSC-enrichment method in EOC studies and investigate apoptosis-related miRNAs in tumorspheres-derived EOC cell lines. TOV-21G and SKOV-3 were cultured in monolayer and tumorspheres. Genetic profiles of cell lines were obtained using COSMIC database. CD24/CD44/CD146/CD177 and ALDH1 markers were evaluated in cell lines and tumorspheres-derived by flow cytometry. Eleven miRNAs were selected by in silico analysis for qPCR analysis. According to COSMIC, TOV-21G and SKOV-3 have eight and nine cancer-related mutations, respectively. TOV-21G showed a CD44+/high/CD24-/low/CD117-/low/CD146-/low/ALDH1low profile in both culture models; thus, no significant difference between cultivation models was identified. SKOV-3 showed a CD44+/high/CD24+/high/ CD117-/low/CD146-/low/ALDH1low profile in both culture models, although the tumorsphere model showed a significant increase in CD24+/high subpopulation (ovarian CSC-like). Among eleven miRNAs, we observed differences in miRNA expression between culture models. MiR-26a was overexpressed in TOV-21G tumorspheres, albeit downregulated in SKOV-3 tumorspheres. MiR-125b-5p, miR-17-5p and miR-221 was downregulated in tumorsphere model in both cell lines. Given that tumorsphere-derived SKOV-3 had a higher ratio of CD24+/high cells, we suggest that miR-26a, miR-125b-5p, miR-17-5p and miR-221 downregulation could be related to poor EOC prognosis.
{"title":"Three-Dimensional Cellular Arrangement in Epithelial Ovarian Cancer Cell Lines TOV-21G and SKOV-3 is Associated with Apoptosis-Related miRNA Expression Modulation.","authors":"Aline Brito de Lima, Luciana Maria Silva, Nikole Gontijo Gonçales, Maria Raquel Santos Carvalho, Agnaldo Lopes da Silva Filho, Letícia da Conceição Braga","doi":"10.1007/s12307-017-0203-z","DOIUrl":"https://doi.org/10.1007/s12307-017-0203-z","url":null,"abstract":"<p><p>Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, and the lack of chemoresistance biomarkers contributes to the poor prognosis. Cancer stem cells (CSC) have been investigated in EOC to understand its relationship with chemoresistance and recurrence. In this context, in vitro cultivation-models are important tools for CSC studies. MicroRNAs (miRNAs) play key roles in cancer, CSC regulation and apoptosis. Thus, this study aims to evaluate the tumorsphere model as CSC-enrichment method in EOC studies and investigate apoptosis-related miRNAs in tumorspheres-derived EOC cell lines. TOV-21G and SKOV-3 were cultured in monolayer and tumorspheres. Genetic profiles of cell lines were obtained using COSMIC database. CD24/CD44/CD146/CD177 and ALDH1 markers were evaluated in cell lines and tumorspheres-derived by flow cytometry. Eleven miRNAs were selected by in silico analysis for qPCR analysis. According to COSMIC, TOV-21G and SKOV-3 have eight and nine cancer-related mutations, respectively. TOV-21G showed a CD44<sup>+/high</sup>/CD24<sup>-/low</sup>/CD117<sup>-/low</sup>/CD146<sup>-/low</sup>/ALDH1<sup>low</sup> profile in both culture models; thus, no significant difference between cultivation models was identified. SKOV-3 showed a CD44<sup>+/high</sup>/CD24<sup>+/high</sup>/ CD117<sup>-/low</sup>/CD146<sup>-/low</sup>/ALDH1<sup>low</sup> profile in both culture models, although the tumorsphere model showed a significant increase in CD24<sup>+/high</sup> subpopulation (ovarian CSC-like). Among eleven miRNAs, we observed differences in miRNA expression between culture models. MiR-26a was overexpressed in TOV-21G tumorspheres, albeit downregulated in SKOV-3 tumorspheres. MiR-125b-5p, miR-17-5p and miR-221 was downregulated in tumorsphere model in both cell lines. Given that tumorsphere-derived SKOV-3 had a higher ratio of CD24<sup>+/high</sup> cells, we suggest that miR-26a, miR-125b-5p, miR-17-5p and miR-221 downregulation could be related to poor EOC prognosis.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"85-92"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0203-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35713949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-01Epub Date: 2018-05-03DOI: 10.1007/s12307-018-0211-7
Alberto Carretero-González, Irene Otero, Lucía Carril-Ajuria, Guillermo de Velasco, Luis Manso
Exosomes are microvesicles released by cells in both physiological and pathological situations. They are surrounded by a lipid bilayer with proteins derived from the origin cell, and contain a variety of molecules, such as nucleic acids. They represent an emerging mechanism of intercellular communication, and they play an important role in the pathogenesis of cancer, stimulating proliferation and aggressiveness of cancer cells, inducing a microenvironment favorable to tumor development and controlling immune responses. Because of the growing understanding of the potential implications of extracellular vesicles in the development of malignancies, research on exosomes, and its role as a diagnostic and therapeutic tool, constitutes nowadays a very exciting and promising field.
{"title":"Exosomes: Definition, Role in Tumor Development and Clinical Implications.","authors":"Alberto Carretero-González, Irene Otero, Lucía Carril-Ajuria, Guillermo de Velasco, Luis Manso","doi":"10.1007/s12307-018-0211-7","DOIUrl":"https://doi.org/10.1007/s12307-018-0211-7","url":null,"abstract":"<p><p>Exosomes are microvesicles released by cells in both physiological and pathological situations. They are surrounded by a lipid bilayer with proteins derived from the origin cell, and contain a variety of molecules, such as nucleic acids. They represent an emerging mechanism of intercellular communication, and they play an important role in the pathogenesis of cancer, stimulating proliferation and aggressiveness of cancer cells, inducing a microenvironment favorable to tumor development and controlling immune responses. Because of the growing understanding of the potential implications of extracellular vesicles in the development of malignancies, research on exosomes, and its role as a diagnostic and therapeutic tool, constitutes nowadays a very exciting and promising field.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"13-21"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0211-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36065595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-01Epub Date: 2018-02-17DOI: 10.1007/s12307-018-0206-4
Ana Paula Santin Bertoni, Rafael Paschoal de Campos, Marisa Tsao, Elizandra Braganhol, Tania Weber Furlanetto, Márcia Rosângela Wink
The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.
{"title":"Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells.","authors":"Ana Paula Santin Bertoni, Rafael Paschoal de Campos, Marisa Tsao, Elizandra Braganhol, Tania Weber Furlanetto, Márcia Rosângela Wink","doi":"10.1007/s12307-018-0206-4","DOIUrl":"https://doi.org/10.1007/s12307-018-0206-4","url":null,"abstract":"<p><p>The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"61-70"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0206-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35841351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Tumor angiogenesis, growth of new blood vessels, is one of the major prerequisites for tumor growth as tumor cells rely on adequate oxygen and nutrient supply as well as the removal of waste products. Growth factors including VEGF orchestrate the development of angiogenesis. In addition, nervous system via the release of neurotransmitters contributes to tumor angiogenesis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression via regulating tumor angiogenesis. Various neurotransmitters have been reported to play an important role in tumor angiogenesis.
{"title":"Role of the Nervous System in Tumor Angiogenesis.","authors":"Nyanbol Kuol, Lily Stojanovska, Vasso Apostolopoulos, Kulmira Nurgali","doi":"10.1007/s12307-018-0207-3","DOIUrl":"https://doi.org/10.1007/s12307-018-0207-3","url":null,"abstract":"<p><p>The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Tumor angiogenesis, growth of new blood vessels, is one of the major prerequisites for tumor growth as tumor cells rely on adequate oxygen and nutrient supply as well as the removal of waste products. Growth factors including VEGF orchestrate the development of angiogenesis. In addition, nervous system via the release of neurotransmitters contributes to tumor angiogenesis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression via regulating tumor angiogenesis. Various neurotransmitters have been reported to play an important role in tumor angiogenesis.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0207-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35880267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-01Epub Date: 2018-04-10DOI: 10.1007/s12307-018-0210-8
Malini Visweswaran, Kevin N Keane, Frank Arfuso, Rodney J Dilley, Philip Newsholme, Arun Dharmarajan
Within the tumour stroma, a heterogeneous population of cell types reciprocally regulates cell proliferation, which considerably affects the progression of the disease. In this study, using tumour conditioned medium (TCM) derived from breast tumour cell lines - MCF7 and MDA MB 231, we have demonstrated the differentiation of adipose-derived mesenchymal stem cells (ADSCs) into tumour-associated fibroblasts (TAFs). Since the Wnt signalling pathway is a key signalling pathway driving breast tumour growth, the effect of the Wnt antagonist secreted frizzled-related protein 4 (sFRP4) was also examined. The response of ADSCs to TCM and sFRP4 treatments was determined by using cell viability assay to determine the changes in ADSC viability, immunofluorescence for mesenchymal markers, glucose uptake assay, and glycolysis stress test using the Seahorse Extracellular Flux analyser to determine the glycolytic activity of ADSCs. ADSCs have been shown to acquire a hyper-proliferative state, significantly increasing their number upon short-term and long-term exposure to TCM. Changes have also been observed in the expression of key mesenchymal markers as well as in the metabolic state of ADSCs. SFRP4 significantly inhibited the differentiation of ADSCs into TAFs by reducing cell growth as well as mesenchymal marker expression (cell line-dependent). However, sFRP4 did not induce further significant changes to the altered metabolic phenotype of ADSCs following TCM exposure. Altogether, this study suggests that the breast tumour milieu may transform ADSCs into a tumour-supportive phenotype, which can be altered by Wnt antagonism, but is independent of metabolic changes.
{"title":"The Influence of Breast Tumour-Derived Factors and Wnt Antagonism on the Transformation of Adipose-Derived Mesenchymal Stem Cells into Tumour-Associated Fibroblasts.","authors":"Malini Visweswaran, Kevin N Keane, Frank Arfuso, Rodney J Dilley, Philip Newsholme, Arun Dharmarajan","doi":"10.1007/s12307-018-0210-8","DOIUrl":"https://doi.org/10.1007/s12307-018-0210-8","url":null,"abstract":"<p><p>Within the tumour stroma, a heterogeneous population of cell types reciprocally regulates cell proliferation, which considerably affects the progression of the disease. In this study, using tumour conditioned medium (TCM) derived from breast tumour cell lines - MCF7 and MDA MB 231, we have demonstrated the differentiation of adipose-derived mesenchymal stem cells (ADSCs) into tumour-associated fibroblasts (TAFs). Since the Wnt signalling pathway is a key signalling pathway driving breast tumour growth, the effect of the Wnt antagonist secreted frizzled-related protein 4 (sFRP4) was also examined. The response of ADSCs to TCM and sFRP4 treatments was determined by using cell viability assay to determine the changes in ADSC viability, immunofluorescence for mesenchymal markers, glucose uptake assay, and glycolysis stress test using the Seahorse Extracellular Flux analyser to determine the glycolytic activity of ADSCs. ADSCs have been shown to acquire a hyper-proliferative state, significantly increasing their number upon short-term and long-term exposure to TCM. Changes have also been observed in the expression of key mesenchymal markers as well as in the metabolic state of ADSCs. SFRP4 significantly inhibited the differentiation of ADSCs into TAFs by reducing cell growth as well as mesenchymal marker expression (cell line-dependent). However, sFRP4 did not induce further significant changes to the altered metabolic phenotype of ADSCs following TCM exposure. Altogether, this study suggests that the breast tumour milieu may transform ADSCs into a tumour-supportive phenotype, which can be altered by Wnt antagonism, but is independent of metabolic changes.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"71-84"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0210-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35993707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-01Epub Date: 2018-01-22DOI: 10.1007/s12307-018-0204-6
Yaping N Tu, Wei Lue Tong, John M Yavorski, George Blanck
We developed a scripted algorithm, based on previous, earlier editions of the algorithm, to mine prostate cancer exome files for T-cell receptor (TcR) recombination reads: Reads representing TcR gene recombinations were identified in 497 prostate cancer exome files from the cancer genome atlas (TCGA). As has been reported for melanoma, co-detection of productive TcR-α and TcR-β recombination reads correlated with an RNA expression signature representing T-cell exhaustion, particularly with high RNA levels for PD-1 and PD-L1, in comparison to several different control sets of samples. Co-detection of TcR-α and TcR-β recombination reads also correlated with high level expression of genes representing antigen presenting functions, further supporting the conclusion that co-detection of TcR-α and TcR-β recombination reads represents an immunologically relevant microenvironment. Finally, detection of unproductive TcR-δ recombinations, and unproductive and productive TcR-γ recombinations, strongly correlated with, and may represent a convenient biomarker for a poor clinical outcome. These results underscore the value of the genomics-based assessment of unproductive TcR recombinations and raise questions about the impact of tumor microenvironment lymphocytes in the absence of antigenicity.
{"title":"Immunogenomics: A Negative Prostate Cancer Outcome Associated with TcR-γ/δ Recombinations.","authors":"Yaping N Tu, Wei Lue Tong, John M Yavorski, George Blanck","doi":"10.1007/s12307-018-0204-6","DOIUrl":"https://doi.org/10.1007/s12307-018-0204-6","url":null,"abstract":"<p><p>We developed a scripted algorithm, based on previous, earlier editions of the algorithm, to mine prostate cancer exome files for T-cell receptor (TcR) recombination reads: Reads representing TcR gene recombinations were identified in 497 prostate cancer exome files from the cancer genome atlas (TCGA). As has been reported for melanoma, co-detection of productive TcR-α and TcR-β recombination reads correlated with an RNA expression signature representing T-cell exhaustion, particularly with high RNA levels for PD-1 and PD-L1, in comparison to several different control sets of samples. Co-detection of TcR-α and TcR-β recombination reads also correlated with high level expression of genes representing antigen presenting functions, further supporting the conclusion that co-detection of TcR-α and TcR-β recombination reads represents an immunologically relevant microenvironment. Finally, detection of unproductive TcR-δ recombinations, and unproductive and productive TcR-γ recombinations, strongly correlated with, and may represent a convenient biomarker for a poor clinical outcome. These results underscore the value of the genomics-based assessment of unproductive TcR recombinations and raise questions about the impact of tumor microenvironment lymphocytes in the absence of antigenicity.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"41-49"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0204-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35756400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-01Epub Date: 2018-01-18DOI: 10.1007/s12307-017-0199-4
R Singh, A Mandhani, V Agrawal, Minal Garg
Involvement of matrix metalloproteinases (MMPs) in the pathogenesis of urothelial carcinoma elects them to be sensitive marker for clinical and prognostic implications. MMPs regulate tumor growth and invasion by inducing epithelial-to-mesenchymal transition (EMT) which is characterized by the complex reprogramming of epithelial cells and ultimately bring about major changes in the structural organization of bladder urothelium. The present study has been undertaken to evaluate the clinical relevance of MMPs in two distinct types of bladder cancer disease. Expression analysis of MMPs namely MMP-2, MMP-7, MMP-9 and EMT markers including epithelial marker, E-cadherin; mesenchymal markers, N-cadherin and Vimentin; and EMT-activating transcriptional factors (EMT-ATFs), Snail, Slug, Twist and Zeb was done in 64 cases of bladder tumor tissues [{Non-muscle invasive bladder cancer (NMIBC): 35 cases} and {Muscle invasive bladder cancer (MIBC): 29 cases}] by real-time quantitative polymerase chain reaction (RT-qPCR). Immunohistochemistry (IHC) staining was done in matched bladder tumor tissues to evaluate the protein expression and localization of E-cadherin, N-cadherin, Vimentin, Snail, and Slug. Our data showed overexpression of MMP-2, MMP-7 and MMP-9 at transcriptome level in 32.8%, 25% and 37.5% bladder tumor cases respectively. These tumor tissues were examined for higher expression of mesenchymal markers (N-cadherin and Vimentin) at mRNA and protein level and exhibited statistical association with tumor stage and tumor grade (p = 0.02, p = 0.04, Mann-Whitney test). Significant statistical correlation in tumor tissues with overexpressed MMPs has also been observed between gain of transcriptional factors and weak expression of E-cadherin with tumor stage, grade, gender, presence of hematuria and smoking history of the patients. Gene expression patterns of EMT markers in bladder tumors with overexpressed MMPs and their significant association with clinical profile validate the important role of MMPs in the pathogenesis of urothelial carcinoma of bladder (UCB). Increased expression of specific MMPs may affect several downstream EMT programs and thus may improve its diagnostic and prognostic utility in clinical setting.
{"title":"Positive Correlation between Matrix Metalloproteinases and Epithelial-to-Mesenchymal Transition and its Association with Clinical Outcome in Bladder Cancer Patients.","authors":"R Singh, A Mandhani, V Agrawal, Minal Garg","doi":"10.1007/s12307-017-0199-4","DOIUrl":"https://doi.org/10.1007/s12307-017-0199-4","url":null,"abstract":"<p><p>Involvement of matrix metalloproteinases (MMPs) in the pathogenesis of urothelial carcinoma elects them to be sensitive marker for clinical and prognostic implications. MMPs regulate tumor growth and invasion by inducing epithelial-to-mesenchymal transition (EMT) which is characterized by the complex reprogramming of epithelial cells and ultimately bring about major changes in the structural organization of bladder urothelium. The present study has been undertaken to evaluate the clinical relevance of MMPs in two distinct types of bladder cancer disease. Expression analysis of MMPs namely MMP-2, MMP-7, MMP-9 and EMT markers including epithelial marker, E-cadherin; mesenchymal markers, N-cadherin and Vimentin; and EMT-activating transcriptional factors (EMT-ATFs), Snail, Slug, Twist and Zeb was done in 64 cases of bladder tumor tissues [{Non-muscle invasive bladder cancer (NMIBC): 35 cases} and {Muscle invasive bladder cancer (MIBC): 29 cases}] by real-time quantitative polymerase chain reaction (RT-qPCR). Immunohistochemistry (IHC) staining was done in matched bladder tumor tissues to evaluate the protein expression and localization of E-cadherin, N-cadherin, Vimentin, Snail, and Slug. Our data showed overexpression of MMP-2, MMP-7 and MMP-9 at transcriptome level in 32.8%, 25% and 37.5% bladder tumor cases respectively. These tumor tissues were examined for higher expression of mesenchymal markers (N-cadherin and Vimentin) at mRNA and protein level and exhibited statistical association with tumor stage and tumor grade (p = 0.02, p = 0.04, Mann-Whitney test). Significant statistical correlation in tumor tissues with overexpressed MMPs has also been observed between gain of transcriptional factors and weak expression of E-cadherin with tumor stage, grade, gender, presence of hematuria and smoking history of the patients. Gene expression patterns of EMT markers in bladder tumors with overexpressed MMPs and their significant association with clinical profile validate the important role of MMPs in the pathogenesis of urothelial carcinoma of bladder (UCB). Increased expression of specific MMPs may affect several downstream EMT programs and thus may improve its diagnostic and prognostic utility in clinical setting.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"23-39"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-017-0199-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35750851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-01Epub Date: 2018-02-05DOI: 10.1007/s12307-018-0205-5
Jacob C Kinskey, Yaping N Tu, Wei Lue Tong, John M Yavorski, George Blanck
We assessed pancreatic cancer, lymphocyte infiltrates with a computational genomics approach. We took advantage of tumor-specimen exome files available from the cancer genome atlas to mine T- and B-cell immune receptor recombinations, using highly efficient, scripted algorithms established in several previous reports. Surprisingly, the results indicated that pancreatic cancer exomes represent one of the highest level yields for immune receptor recombinations, significantly higher than two comparison cancers used in this study, head and neck and bladder cancer. In particular, pancreatic cancer exomes have very large numbers of immunoglobulin light chain recombinations, both with regard to number of samples characterized by recovery of such recombinations and with regard to numbers of recombination reads per sample. These results were consistent with B-cell biomarkers, which emphasized the Th2 nature of the pancreatic lymphocyte infiltrate. The tumor specimen exomes with B-cell immune receptor recombination reads represented a dramatically poor outcome, a result not detected with either the head and neck or bladder cancer datasets. The results presented here support the potential value of immunotherapies designed to engineer a Th2 to Th1 shift in treating certain forms of pancreatic cancer.
{"title":"Recovery of Immunoglobulin VJ Recombinations from Pancreatic Cancer Exome Files Strongly Correlates with Reduced Survival.","authors":"Jacob C Kinskey, Yaping N Tu, Wei Lue Tong, John M Yavorski, George Blanck","doi":"10.1007/s12307-018-0205-5","DOIUrl":"https://doi.org/10.1007/s12307-018-0205-5","url":null,"abstract":"<p><p>We assessed pancreatic cancer, lymphocyte infiltrates with a computational genomics approach. We took advantage of tumor-specimen exome files available from the cancer genome atlas to mine T- and B-cell immune receptor recombinations, using highly efficient, scripted algorithms established in several previous reports. Surprisingly, the results indicated that pancreatic cancer exomes represent one of the highest level yields for immune receptor recombinations, significantly higher than two comparison cancers used in this study, head and neck and bladder cancer. In particular, pancreatic cancer exomes have very large numbers of immunoglobulin light chain recombinations, both with regard to number of samples characterized by recovery of such recombinations and with regard to numbers of recombination reads per sample. These results were consistent with B-cell biomarkers, which emphasized the Th2 nature of the pancreatic lymphocyte infiltrate. The tumor specimen exomes with B-cell immune receptor recombination reads represented a dramatically poor outcome, a result not detected with either the head and neck or bladder cancer datasets. The results presented here support the potential value of immunotherapies designed to engineer a Th2 to Th1 shift in treating certain forms of pancreatic cancer.</p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"11 1","pages":"51-59"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12307-018-0205-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35796970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}