Pancreatic cancer, a prevalent malignancy of the digestive system, has a poor 5-year survival rate of around 10%. Although numerous minimally invasive alternative treatments, including photothermal therapy and photodynamic therapy, have shown effectiveness compared with traditional surgical procedures, radiotherapy, and chemotherapy. However, the application of these alternative treatments is constrained by their depth of penetration, making it challenging to treat pancreatic cancer situated deep within the tissue. Sonodynamic therapy (SDT) has emerged as a promising minimally invasive therapy method that is particularly potent against deep-seated tumors such as pancreatic cancer. However, the unique characteristics of pancreatic cancer, including a dense surrounding matrix, high reductivity, and a hypoxic tumor microenvironment, impede the efficient application of SDT. Thus, to guide the evolution of SDT for pancreatic cancer therapy, this review addresses these challenges, examines current strategies for effective SDT enhancement for pancreatic cancer, and investigates potential future advances to boost clinical applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
{"title":"Recent advances in sonodynamic therapy strategies for pancreatic cancer.","authors":"Peng Cheng, Shuai Ming, Wei Cao, Jixiao Wu, Qiwei Tian, Jing Zhu, Wei Wei","doi":"10.1002/wnan.1945","DOIUrl":"10.1002/wnan.1945","url":null,"abstract":"<p><p>Pancreatic cancer, a prevalent malignancy of the digestive system, has a poor 5-year survival rate of around 10%. Although numerous minimally invasive alternative treatments, including photothermal therapy and photodynamic therapy, have shown effectiveness compared with traditional surgical procedures, radiotherapy, and chemotherapy. However, the application of these alternative treatments is constrained by their depth of penetration, making it challenging to treat pancreatic cancer situated deep within the tissue. Sonodynamic therapy (SDT) has emerged as a promising minimally invasive therapy method that is particularly potent against deep-seated tumors such as pancreatic cancer. However, the unique characteristics of pancreatic cancer, including a dense surrounding matrix, high reductivity, and a hypoxic tumor microenvironment, impede the efficient application of SDT. Thus, to guide the evolution of SDT for pancreatic cancer therapy, this review addresses these challenges, examines current strategies for effective SDT enhancement for pancreatic cancer, and investigates potential future advances to boost clinical applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 1","pages":"e1945"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-11-05DOI: 10.1002/wnan.1935
Iwona T Dobrucki, Angelo Miskalis, Michael Nelappana, Catherine Applegate, Marcin Wozniak, Andrzej Czerwinski, Leszek Kalinowski, Lawrence W Dobrucki
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
{"title":"Receptor for advanced glycation end-products: Biological significance and imaging applications.","authors":"Iwona T Dobrucki, Angelo Miskalis, Michael Nelappana, Catherine Applegate, Marcin Wozniak, Andrzej Czerwinski, Leszek Kalinowski, Lawrence W Dobrucki","doi":"10.1002/wnan.1935","DOIUrl":"10.1002/wnan.1935","url":null,"abstract":"<p><p>The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1935"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
{"title":"Nanomedicine against biofilm infections: A roadmap of challenges and limitations.","authors":"Núria Blanco-Cabra, Júlia Alcàcer-Almansa, Joana Admella, Betsy Verónica Arévalo-Jaimes, Eduard Torrents","doi":"10.1002/wnan.1944","DOIUrl":"10.1002/wnan.1944","url":null,"abstract":"<p><p>Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 1","pages":"e1944"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-10-01DOI: 10.1002/wnan.1922
Sakine Shirvalilou, Zahed Tavangari, Mohammad Hossein Parsaei, Saman Sargazi, Roghayeh Sheervalilou, Milad Shirvaliloo, Habib Ghaznavi, Samideh Khoei
A pivotal cause of death in the modern world, cancer is an insidious pathology that should be diagnosed at an early stage for successful treatment. Development of therapeutic interventions with minimal invasiveness and high efficacy that can discriminate between tumor and normal cells is of particular interest to the clinical science, as they can enhance patient survival. Nanoparticles are an invaluable asset that can be adopted for development of such diagnostic and therapeutic modalities, since they come in very small sizes with modifiable surface, are highly safe and stable, and can be synthesized in a controlled fashion. To date, different nanoparticles have been incorporated into numerous modalities such as tumor-targeted therapy, thermal therapy, chemotherapy, and radiotherapy. This review article seeks to deliver a brief account of recent advances in research and application of nanoparticles in hyperthermia-based cancer therapies. The most recent investigations are summarized to highlight the latest advances in the development of combined thermo-chemo-radiotherapy, along with the challenges associated with the application of nanoparticles in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
{"title":"The future opportunities and remaining challenges in the application of nanoparticle-mediated hyperthermia combined with chemo-radiotherapy in cancer.","authors":"Sakine Shirvalilou, Zahed Tavangari, Mohammad Hossein Parsaei, Saman Sargazi, Roghayeh Sheervalilou, Milad Shirvaliloo, Habib Ghaznavi, Samideh Khoei","doi":"10.1002/wnan.1922","DOIUrl":"10.1002/wnan.1922","url":null,"abstract":"<p><p>A pivotal cause of death in the modern world, cancer is an insidious pathology that should be diagnosed at an early stage for successful treatment. Development of therapeutic interventions with minimal invasiveness and high efficacy that can discriminate between tumor and normal cells is of particular interest to the clinical science, as they can enhance patient survival. Nanoparticles are an invaluable asset that can be adopted for development of such diagnostic and therapeutic modalities, since they come in very small sizes with modifiable surface, are highly safe and stable, and can be synthesized in a controlled fashion. To date, different nanoparticles have been incorporated into numerous modalities such as tumor-targeted therapy, thermal therapy, chemotherapy, and radiotherapy. This review article seeks to deliver a brief account of recent advances in research and application of nanoparticles in hyperthermia-based cancer therapies. The most recent investigations are summarized to highlight the latest advances in the development of combined thermo-chemo-radiotherapy, along with the challenges associated with the application of nanoparticles in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1922"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41159318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-10-24DOI: 10.1002/wnan.1931
Jeff W M Bulte, Ali Shakeri-Zadeh
{"title":"Persian perspectives: Special issue on nanomedicine and nanobiotechnology in Iran.","authors":"Jeff W M Bulte, Ali Shakeri-Zadeh","doi":"10.1002/wnan.1931","DOIUrl":"10.1002/wnan.1931","url":null,"abstract":"","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":" ","pages":"e1931"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Infectious diseases that result from pathogen infection are among the leading causes of human death, with pathogens such as human immunodeficiency virus, malaria, influenza, and ongoing SARS‐COV‐2 viruses constantly threatening the global population. While the mechanisms behind various infectious diseases are not entirely clear and thus retard the development of effective therapeutics, vaccines have served as a universal approach to containing infectious diseases. However, conventional vaccines that solely consist of antigens or simply mix antigens and adjuvants have failed to control various highly infective or deadly pathogens. Biomaterials‐based vaccines have provided a promising solution due to their ability to synergize the function of antigens and adjuvants, troubleshoot delivery issues, home and manipulate immune cells in situ. In this review, we will summarize different types of materials‐based vaccines for generating cellular and humoral responses against pathogens and discuss the design criteria for amplifying the efficacy of materials‐based vaccines against infectious diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
{"title":"Materials‐based vaccines for infectious diseases","authors":"Yang Bo, Hua Wang","doi":"10.1002/wnan.1824","DOIUrl":"https://doi.org/10.1002/wnan.1824","url":null,"abstract":"Abstract Infectious diseases that result from pathogen infection are among the leading causes of human death, with pathogens such as human immunodeficiency virus, malaria, influenza, and ongoing SARS‐COV‐2 viruses constantly threatening the global population. While the mechanisms behind various infectious diseases are not entirely clear and thus retard the development of effective therapeutics, vaccines have served as a universal approach to containing infectious diseases. However, conventional vaccines that solely consist of antigens or simply mix antigens and adjuvants have failed to control various highly infective or deadly pathogens. Biomaterials‐based vaccines have provided a promising solution due to their ability to synergize the function of antigens and adjuvants, troubleshoot delivery issues, home and manipulate immune cells in situ. In this review, we will summarize different types of materials‐based vaccines for generating cellular and humoral responses against pathogens and discuss the design criteria for amplifying the efficacy of materials‐based vaccines against infectious diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74346925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elayaraja Kolanthai, Craig J. Neal, Udit Kumar, Yifei Fu, S. Seal
The COVID-19 pandemic has inspired large research investments from the global scientific community in the study of viral properties and antiviral technologies (e.g., self-cleaning surfaces, virucides, antiviral drugs, and vaccines). Emerging viruses are a constant threat due to the substantial variation in viral structures, limiting the potential for expanded broad-spectrum antiviral agent development, and the complexity of targeting multiple and diverse viral species with unique characteristics involving their virulence. Multiple, more infectious variants of SARS-CoV2 (e.g., Delta, Omicron) have already appeared, necessitating research into versatile, robust control strategies in response to the looming threat of future viruses. Nanotechnology and nanomaterials have played a vital role in addressing current viral threats, from mRNA-based vaccines to nanoparticle-based drugs and nanotechnology enhanced disinfection methods. Rapid progress in the field has prompted a review of the current literature primarily focused on nanotechnology-based virucides and antivirals. In this review, a brief description of antiviral drugs is provided first as background with most of the discussion focused on key design considerations for high-efficacy antiviral nanomaterials (e.g., nanopharmaceuticals) as determined from published studies as well as related modes of biological activity. Insights into potential future research directions are also provided with a section devoted specifically to the SARS-CoV2 virus. This article is categorized under: Toxicology and Regulatory Issues in Nanomediciney > Toxicology of Nanomaterials Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
{"title":"Antiviral nanopharmaceuticals: Engineered surface interactions and virus-selective activity.","authors":"Elayaraja Kolanthai, Craig J. Neal, Udit Kumar, Yifei Fu, S. Seal","doi":"10.1002/wnan.1823","DOIUrl":"https://doi.org/10.1002/wnan.1823","url":null,"abstract":"The COVID-19 pandemic has inspired large research investments from the global scientific community in the study of viral properties and antiviral technologies (e.g., self-cleaning surfaces, virucides, antiviral drugs, and vaccines). Emerging viruses are a constant threat due to the substantial variation in viral structures, limiting the potential for expanded broad-spectrum antiviral agent development, and the complexity of targeting multiple and diverse viral species with unique characteristics involving their virulence. Multiple, more infectious variants of SARS-CoV2 (e.g., Delta, Omicron) have already appeared, necessitating research into versatile, robust control strategies in response to the looming threat of future viruses. Nanotechnology and nanomaterials have played a vital role in addressing current viral threats, from mRNA-based vaccines to nanoparticle-based drugs and nanotechnology enhanced disinfection methods. Rapid progress in the field has prompted a review of the current literature primarily focused on nanotechnology-based virucides and antivirals. In this review, a brief description of antiviral drugs is provided first as background with most of the discussion focused on key design considerations for high-efficacy antiviral nanomaterials (e.g., nanopharmaceuticals) as determined from published studies as well as related modes of biological activity. Insights into potential future research directions are also provided with a section devoted specifically to the SARS-CoV2 virus. This article is categorized under: Toxicology and Regulatory Issues in Nanomediciney > Toxicology of Nanomaterials Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"139 1","pages":"e1823"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83365862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Wang, Jinlong Qin, Jia-jing Cheng, Chang Li, Jianzhong Du
Polymersomes (or polymer vesicles) have attracted much attention for biomedical applications in recent years because their lumen can be used for drug delivery and their coronas and membrane can be modified with a variety of functional groups. Thus, polymersomes are very suitable for improved antibacterial and anticancer therapy. This review mainly highlighted recent advances in the synthetic protocols and design principles of intelligent antibacterial and anticancer polymersomes. Antibacterial polymersomes are divided into three categories: polymersomes as antibiotic nanocarriers, intrinsically antibacterial polymersomes, and antibacterial polymersomes with supplementary means including photothermal and photodynamic therapy. Similarly, the anticancer polymersomes are divided into two categories: polymersomes-based delivery systems and anticancer polymersomes with supplementary means. In addition, the bilateral relationship between bacteria and cancer is addressed, since more and more evidences show that bacteria may cause cancer or promote cancer progression. Finally, prospective on next-generation antibacterial and anticancer polymersomes are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
{"title":"Intelligent design of polymersomes for antibacterial and anticancer applications.","authors":"Tao Wang, Jinlong Qin, Jia-jing Cheng, Chang Li, Jianzhong Du","doi":"10.1002/wnan.1822","DOIUrl":"https://doi.org/10.1002/wnan.1822","url":null,"abstract":"Polymersomes (or polymer vesicles) have attracted much attention for biomedical applications in recent years because their lumen can be used for drug delivery and their coronas and membrane can be modified with a variety of functional groups. Thus, polymersomes are very suitable for improved antibacterial and anticancer therapy. This review mainly highlighted recent advances in the synthetic protocols and design principles of intelligent antibacterial and anticancer polymersomes. Antibacterial polymersomes are divided into three categories: polymersomes as antibiotic nanocarriers, intrinsically antibacterial polymersomes, and antibacterial polymersomes with supplementary means including photothermal and photodynamic therapy. Similarly, the anticancer polymersomes are divided into two categories: polymersomes-based delivery systems and anticancer polymersomes with supplementary means. In addition, the bilateral relationship between bacteria and cancer is addressed, since more and more evidences show that bacteria may cause cancer or promote cancer progression. Finally, prospective on next-generation antibacterial and anticancer polymersomes are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"22 1","pages":"e1822"},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87133517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrícia Alexandra Pereira, M. E. Serra, A. Serra, J. Coelho
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
{"title":"Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy.","authors":"Patrícia Alexandra Pereira, M. E. Serra, A. Serra, J. Coelho","doi":"10.1002/wnan.1820","DOIUrl":"https://doi.org/10.1002/wnan.1820","url":null,"abstract":"Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"208 1","pages":"e1820"},"PeriodicalIF":0.0,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79004583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain diseases, including neurodegenerative diseases, acute ischemic stroke and brain tumors, have become a major health problem and a huge burden on society with high morbidity and mortality. However, most of the current therapeutic drugs can only relieve the symptoms of brain diseases, and it is difficult to achieve satisfactory therapeutic effects fundamentally. Extensive studies have shown that the therapeutic effects of brain diseases are mainly affected by two factors: the conservation of the blood-brain barrier (BBB) and the complexity of the brain micro-environment. Brain-targeting drug delivery systems provide new possibilities for overcoming these barriers with versatility. In this review, it provides an overview of BBB alteration and discusses targeting delivery strategies for brain diseases therapy. Furthermore, delivery systems which are designed to modulate the brain micro-environment with synergistic effects were also highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
{"title":"Brain-targeting drug delivery systems.","authors":"Peixin Liu, Chen Jiang","doi":"10.1002/wnan.1818","DOIUrl":"https://doi.org/10.1002/wnan.1818","url":null,"abstract":"Brain diseases, including neurodegenerative diseases, acute ischemic stroke and brain tumors, have become a major health problem and a huge burden on society with high morbidity and mortality. However, most of the current therapeutic drugs can only relieve the symptoms of brain diseases, and it is difficult to achieve satisfactory therapeutic effects fundamentally. Extensive studies have shown that the therapeutic effects of brain diseases are mainly affected by two factors: the conservation of the blood-brain barrier (BBB) and the complexity of the brain micro-environment. Brain-targeting drug delivery systems provide new possibilities for overcoming these barriers with versatility. In this review, it provides an overview of BBB alteration and discusses targeting delivery strategies for brain diseases therapy. Furthermore, delivery systems which are designed to modulate the brain micro-environment with synergistic effects were also highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"40 1","pages":"e1818"},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83153798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}