Pub Date : 2023-01-01DOI: 10.2174/0115672050299004240129051655
Yun Guo, Cheng-Kun Sun, Lian Tang, Meng-Shan Tan
Alzheimer's disease (AD) is a highly hereditary disease with complex genetic susceptibility factors. Extensive genome-wide association studies have established a distinct susceptibility link between the protein tyrosine kinase 2β (PTK2B) gene and late-onset Alzheimer's disease (LOAD), but the specific pathogenic mechanisms remain incompletely understood. PTK2B is known to be expressed in neurons, and recent research has revealed its more important significance in microglia. Elucidating the role of PTK2B high expression in microglia in AD's progression is crucial for uncovering novel pathogenic mechanisms of the disease. Our review of existing studies suggests a close relationship between PTK2B/proline-rich tyrosine kinase 2 (Pyk2) and tau pathology, and this process might be β-amyloid (Aβ) dependence. Pyk2 is hypothesized as a pivotal target linking Aβ and tau pathologies. Concurrently, Aβ-activated Pyk2 participates in the regulation of microglial activation and its proinflammatory functions. Consequently, it is reasonable to presume that Pyk2 in microglia contributes to amyloid-induced tau pathology in AD via a neuroinflammatory pathway. Furthermore, many things remain unclear, such as identifying the specific pathways that lead to the release of downstream inflammatory factors due to Pyk2 phosphorylation and whether all types of inflammatory factors can activate neuronal kinase pathways. Additionally, further in vivo experiments are essential to validate this hypothesized pathway. Considering PTK2B/Pyk2's potential role in AD pathogenesis, targeting this pathway may offer innovative and promising therapeutic approaches for AD.
阿尔茨海默病(AD)是一种高度遗传性疾病,遗传易感因素复杂。广泛的全基因组关联研究证实,蛋白酪氨酸激酶 2β (PTK2B)基因与晚发性阿尔茨海默病(LOAD)之间存在明显的易感性联系,但具体的致病机制仍不完全清楚。众所周知,PTK2B 在神经元中表达,最近的研究揭示了它在小胶质细胞中更重要的意义。阐明PTK2B在小胶质细胞中的高表达在AD进展中的作用对于发现该病的新致病机制至关重要。我们对现有研究的回顾表明,PTK2B/富脯氨酸酪氨酸激酶2(Pyk2)与tau病理学之间存在密切关系,而这一过程可能依赖于β-淀粉样蛋白(Aβ)。Pyk2被认为是连接Aβ和tau病理学的关键靶点。同时,Aβ激活的Pyk2参与调节小胶质细胞的活化及其促炎功能。因此,我们有理由推测,小胶质细胞中的 Pyk2 通过神经炎症途径导致了淀粉样蛋白诱导的 tau 病理学。此外,还有许多事情尚不清楚,如确定PTK2B磷酸化导致下游炎症因子释放的具体途径,以及是否所有类型的炎症因子都能激活神经元激酶通路。此外,进一步的体内实验对于验证这一假设的通路至关重要。考虑到PTK2B/Pyk2在AD发病机制中的潜在作用,靶向这一通路可能会为AD提供创新且有前景的治疗方法。
{"title":"Microglia <i>PTK2B</i>/Pyk2 in the Pathogenesis of Alzheimer's Disease.","authors":"Yun Guo, Cheng-Kun Sun, Lian Tang, Meng-Shan Tan","doi":"10.2174/0115672050299004240129051655","DOIUrl":"10.2174/0115672050299004240129051655","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a highly hereditary disease with complex genetic susceptibility factors. Extensive genome-wide association studies have established a distinct susceptibility link between the protein tyrosine kinase 2β (<i>PTK2B</i>) gene and late-onset Alzheimer's disease (LOAD), but the specific pathogenic mechanisms remain incompletely understood. <i>PTK2B</i> is known to be expressed in neurons, and recent research has revealed its more important significance in microglia. Elucidating the role of <i>PTK2B</i> high expression in microglia in AD's progression is crucial for uncovering novel pathogenic mechanisms of the disease. Our review of existing studies suggests a close relationship between <i>PTK2B</i>/proline-rich tyrosine kinase 2 (Pyk2) and tau pathology, and this process might be β-amyloid (Aβ) dependence. Pyk2 is hypothesized as a pivotal target linking Aβ and tau pathologies. Concurrently, Aβ-activated Pyk2 participates in the regulation of microglial activation and its proinflammatory functions. Consequently, it is reasonable to presume that Pyk2 in microglia contributes to amyloid-induced tau pathology in AD via a neuroinflammatory pathway. Furthermore, many things remain unclear, such as identifying the specific pathways that lead to the release of downstream inflammatory factors due to Pyk2 phosphorylation and whether all types of inflammatory factors can activate neuronal kinase pathways. Additionally, further in vivo experiments are essential to validate this hypothesized pathway. Considering <i>PTK2B</i>/Pyk2's potential role in AD pathogenesis, targeting this pathway may offer innovative and promising therapeutic approaches for AD.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"692-704"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2174/0115672050287534240215052417
Maria Paula Maziero, Natalia P Rocha, Antonio L Teixeira
Psychosis and hyperactive behaviors, such as agitation and wandering, affect a significant proportion of patients with Alzheimer's disease (AD). These symptoms are often treated with antipsychotics, usually in an off-label approach. This mini-review provides an updated perspective on the pharmacological approach for the neuropsychiatric symptoms (NPS) in AD. The results of new studies have provided a better understanding of AD-related NPS management, but high-quality evidence still needs to be obtained. Herein, we argue for a more cautious approach to the use of antipsychotics in AD and highlight the importance of exploring alternative treatments for NPS. By doing so, we can ensure that patients with AD receive optimal care that is both effective and safe.
很大一部分阿尔茨海默病患者会出现精神错乱和多动行为,如激动和徘徊。这些症状通常采用抗精神病药物治疗,通常是标示外治疗。本篇微型综述从最新角度介绍了治疗阿尔茨海默病(AD)神经精神症状(NPS)的药物疗法。新研究的结果使人们对与 AD 相关的 NPS 治疗有了更好的了解,但仍需获得高质量的证据。在此,我们主张在 AD 中使用抗精神病药物时应更加谨慎,并强调探索 NPS 替代疗法的重要性。通过这样做,我们可以确保AD患者得到既有效又安全的最佳治疗。
{"title":"Antipsychotics in Alzheimer's Disease: Current Status and Therapeutic Alternatives.","authors":"Maria Paula Maziero, Natalia P Rocha, Antonio L Teixeira","doi":"10.2174/0115672050287534240215052417","DOIUrl":"10.2174/0115672050287534240215052417","url":null,"abstract":"<p><p>Psychosis and hyperactive behaviors, such as agitation and wandering, affect a significant proportion of patients with Alzheimer's disease (AD). These symptoms are often treated with antipsychotics, usually in an off-label approach. This mini-review provides an updated perspective on the pharmacological approach for the neuropsychiatric symptoms (NPS) in AD. The results of new studies have provided a better understanding of AD-related NPS management, but high-quality evidence still needs to be obtained. Herein, we argue for a more cautious approach to the use of antipsychotics in AD and highlight the importance of exploring alternative treatments for NPS. By doing so, we can ensure that patients with AD receive optimal care that is both effective and safe.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"682-691"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.2174/1567205013666151218145431
Michelle C Bell, Shelby E Meier, Alexandria L Ingram, Jose F Abisambra
The unfolded protein response (UPR) plays a vital role in maintaining cell homeostasis as a consequence of endoplasmic reticulum (ER) stress. However, prolonged UPR activity leads to cell death. This time-dependent dual functionality of the UPR represents the adaptive and cytotoxic pathways that result from ER stress. Chronic UPR activation in systemic and neurodegenerative diseases has been identified as an early sign of cellular dyshomeostasis. The Protein Kinase R-like ER Kinase (PERK) pathway is one of three major branches in the UPR, and it is the only one to modulate protein synthesis as an adaptive response. The specific identification of prolonged PERK activity has been correlated with the progression of disorders such as diabetes, Alzheimer's disease, and cancer, suggesting that PERK plays a role in the pathology of these disorders. For the first time, the term "PERK-opathies" is used to group these diseases in which PERK mediates detriment to the cell culminating in chronic disorders. This article reviews the literature documenting links between systemic disorders with the UPR, but with a specific emphasis on the PERK pathway. Then, articles reporting links between the UPR, and more specifically PERK, and neurodegenerative disorders are presented. Finally, a therapeutic perspective is discussed, where PERK interventions could be potential remedies for cellular dysfunction in chronic neurodegenerative disorders.
{"title":"PERK-opathies: An Endoplasmic Reticulum Stress Mechanism Underlying Neurodegeneration.","authors":"Michelle C Bell, Shelby E Meier, Alexandria L Ingram, Jose F Abisambra","doi":"10.2174/1567205013666151218145431","DOIUrl":"https://doi.org/10.2174/1567205013666151218145431","url":null,"abstract":"<p><p>The unfolded protein response (UPR) plays a vital role in maintaining cell homeostasis as a consequence of endoplasmic reticulum (ER) stress. However, prolonged UPR activity leads to cell death. This time-dependent dual functionality of the UPR represents the adaptive and cytotoxic pathways that result from ER stress. Chronic UPR activation in systemic and neurodegenerative diseases has been identified as an early sign of cellular dyshomeostasis. The Protein Kinase R-like ER Kinase (PERK) pathway is one of three major branches in the UPR, and it is the only one to modulate protein synthesis as an adaptive response. The specific identification of prolonged PERK activity has been correlated with the progression of disorders such as diabetes, Alzheimer's disease, and cancer, suggesting that PERK plays a role in the pathology of these disorders. For the first time, the term \"PERK-opathies\" is used to group these diseases in which PERK mediates detriment to the cell culminating in chronic disorders. This article reviews the literature documenting links between systemic disorders with the UPR, but with a specific emphasis on the PERK pathway. Then, articles reporting links between the UPR, and more specifically PERK, and neurodegenerative disorders are presented. Finally, a therapeutic perspective is discussed, where PERK interventions could be potential remedies for cellular dysfunction in chronic neurodegenerative disorders. </p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":"13 2","pages":"150-63"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542591/pdf/nihms-1025111.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}