Pub Date : 2025-01-01DOI: 10.2174/0115672050401966250625171338
Wenjing Wang, Xueyan Huang, Zucai Xu, Changyin Yu
Oligodendrocytes (OLs) are the primary myelinating cells in the central nervous system (CNS), responsible for maintaining the rapid conduction of nerve signals and ensuring neuronal stability through metabolic and nutritional support. Recent studies have reported that OLs are also involved in the development and progression of Alzheimer's disease (AD), particularly in the production and clearance of amyloid-beta (Aβ), exhibiting complex and critical regulatory functions. While traditional research has predominantly focused on the roles of neurons and microglia in Aβ metabolism, recent evidence indicates that OLs engage in a complex bidirectional interaction with Aβ in AD. On the one hand, OLs can produce Aβ, frequently generating aggregated and highly toxic Aβ42, which contributes to plaque expansion and disease progression. On the other hand, neuronderived Aβ exerts a concentration-dependent dual effect on OLs. At high concentrations, it induces oxidative stress and cell apoptosis, while at low concentrations, it promotes their differentiation and myelin repair functions. Therefore, OLs serve as both a "source" and a "target" of Aβ production and response, making them a key factor in AD pathogenesis. This review discusses the interaction between OLs and Aβ in AD, aiming to provide new perspectives on targeting OLs for AD therapy. Given the dual role of OLs in Aβ metabolism, targeting OLs dysfunction and the regulatory mechanisms underlying Aβ production and clearance could provide novel therapeutic strategies for AD. Future research should investigate the roles of specific OL populations (including oligodendrocyte precursor cells (OPCs), pre-myelinating OLs, and mature OLs) in Aβ generation and metabolism, focusing on the signaling pathways involved. Additionally, the molecular mechanisms by which OLs regulate other glial cells, such as astrocytes and microglia, through intercellular signaling to facilitate Aβ clearance and maintain neuroglial homeostasis warrant further exploration.
{"title":"The Interaction between Oligodendrocytes and Aβ in Alzheimer's Disease.","authors":"Wenjing Wang, Xueyan Huang, Zucai Xu, Changyin Yu","doi":"10.2174/0115672050401966250625171338","DOIUrl":"10.2174/0115672050401966250625171338","url":null,"abstract":"<p><p>Oligodendrocytes (OLs) are the primary myelinating cells in the central nervous system (CNS), responsible for maintaining the rapid conduction of nerve signals and ensuring neuronal stability through metabolic and nutritional support. Recent studies have reported that OLs are also involved in the development and progression of Alzheimer's disease (AD), particularly in the production and clearance of amyloid-beta (Aβ), exhibiting complex and critical regulatory functions. While traditional research has predominantly focused on the roles of neurons and microglia in Aβ metabolism, recent evidence indicates that OLs engage in a complex bidirectional interaction with Aβ in AD. On the one hand, OLs can produce Aβ, frequently generating aggregated and highly toxic Aβ42, which contributes to plaque expansion and disease progression. On the other hand, neuronderived Aβ exerts a concentration-dependent dual effect on OLs. At high concentrations, it induces oxidative stress and cell apoptosis, while at low concentrations, it promotes their differentiation and myelin repair functions. Therefore, OLs serve as both a \"source\" and a \"target\" of Aβ production and response, making them a key factor in AD pathogenesis. This review discusses the interaction between OLs and Aβ in AD, aiming to provide new perspectives on targeting OLs for AD therapy. Given the dual role of OLs in Aβ metabolism, targeting OLs dysfunction and the regulatory mechanisms underlying Aβ production and clearance could provide novel therapeutic strategies for AD. Future research should investigate the roles of specific OL populations (including oligodendrocyte precursor cells (OPCs), pre-myelinating OLs, and mature OLs) in Aβ generation and metabolism, focusing on the signaling pathways involved. Additionally, the molecular mechanisms by which OLs regulate other glial cells, such as astrocytes and microglia, through intercellular signaling to facilitate Aβ clearance and maintain neuroglial homeostasis warrant further exploration.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"403-413"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12678986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144586051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115672050388220250511174043
Kubra Karaduran, Ahmet Aydogdu, Ozlem Gelisin, Sadiye Gunpinar
Introduction/objective: Given the role of inflammation in the development of both Alzheimer's disease (AD) and periodontal disease, it is plausible that periodontal disease may influence the progression of AD. Complete blood count (CBC) parameters may also serve as predictive indicators for this condition. This study investigated the predictive value of CBC parameters on the progression of AD in patients with periodontal disease.
Methods: Data from a prospective cohort study (n=90) with 6-month follow-up was analyzed. AD was assessed based on the Clinical Dementia Rating Scale. Records of C-reactive Protein (CRP) levels and CBC parameters measured within the 6 months preceding the participation date were evaluated. Cognitive assessments at the initial and 6th-month follow-up were performed using the Standardized Mini-Mental Test (SMMT). All patients underwent clinical periodontal examination.
Results and discussion: The difference in SMMT score change (ΔSMMT) and platelet distribution width (PDW) value between groups with and without periodontitis was statistically notable (p<0.05). The presence of periodontitis was found to be significantly associated with age, ΔSMMT, and PDW values using the multivariate logistic regression model (p<0.05). Furthermore, having Stage II and Stage III AD, periodontitis, age factor, and mean platelet volume (MPV) value had a notable impact on ΔSMMT (p<0.05). These findings may indicate that systemic inflammation as reflected by complete blood count parameters (such as PDW and MPV) may play a predictive role in cognitive decline in Alzheimer's disease patients with periodontitis.
Conclusion: PDW and MPV levels may have a predictive significance in clarifying the association between periodontitis and AD progression.
{"title":"Predictive Value of Complete Blood Count Parameters for Alzheimer's Disease in Relation to Periodontal Status.","authors":"Kubra Karaduran, Ahmet Aydogdu, Ozlem Gelisin, Sadiye Gunpinar","doi":"10.2174/0115672050388220250511174043","DOIUrl":"10.2174/0115672050388220250511174043","url":null,"abstract":"<p><strong>Introduction/objective: </strong>Given the role of inflammation in the development of both Alzheimer's disease (AD) and periodontal disease, it is plausible that periodontal disease may influence the progression of AD. Complete blood count (CBC) parameters may also serve as predictive indicators for this condition. This study investigated the predictive value of CBC parameters on the progression of AD in patients with periodontal disease.</p><p><strong>Methods: </strong>Data from a prospective cohort study (n=90) with 6-month follow-up was analyzed. AD was assessed based on the Clinical Dementia Rating Scale. Records of C-reactive Protein (CRP) levels and CBC parameters measured within the 6 months preceding the participation date were evaluated. Cognitive assessments at the initial and 6th-month follow-up were performed using the Standardized Mini-Mental Test (SMMT). All patients underwent clinical periodontal examination.</p><p><strong>Results and discussion: </strong>The difference in SMMT score change (ΔSMMT) and platelet distribution width (PDW) value between groups with and without periodontitis was statistically notable (p<0.05). The presence of periodontitis was found to be significantly associated with age, ΔSMMT, and PDW values using the multivariate logistic regression model (p<0.05). Furthermore, having Stage II and Stage III AD, periodontitis, age factor, and mean platelet volume (MPV) value had a notable impact on ΔSMMT (p<0.05). These findings may indicate that systemic inflammation as reflected by complete blood count parameters (such as PDW and MPV) may play a predictive role in cognitive decline in Alzheimer's disease patients with periodontitis.</p><p><strong>Conclusion: </strong>PDW and MPV levels may have a predictive significance in clarifying the association between periodontitis and AD progression.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"302-314"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144113311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115672050396361250730115305
Reem Bu Saeed, Raghad Ahmed Alkharouby, Leen Abdulrahman Niaz, Rand Ayman Maddah, Wed Mazin Ismail, Lama Abdulkader Tonkal, Lama Sultan, Nisreen Jastaniah, Muhammad A Khan, Amani Y Alhalwani
<p><strong>Background: </strong>Type 2 Diabetes Mellitus (T2DM) patients are 50-60% more likely to develop Alzheimer's Disease (AD). T2DM has many risk factors, including inflammation. Previous studies suggest that CRP was higher in diabetic patients, indicating that it may play a role in diabetogenesis and insulin resistance. Many diseases are prevalent in older age, including T2DM and AD. Moreover, multiple studies suggested a possible association between vitamin A levels, AD, and T2DM. However, the role of Vitamin A in Alzheimer's patients with T2DM has not yet been fully investigated. Therefore, this study aims to measure the association between dietary vitamin A deficiency and AD patients with T2DM in King Abdulaziz Medical City, Jeddah, Western Region, Saudi Arabia, to help expand the preexisting knowledge of the diagnostic risk factors of both the diseases and to determine the significance of vitamin A as a nutritional factor in their management and prevention.</p><p><strong>Methods: </strong>This case-control study investigates the prevalence of vitamin A deficiency (VAD) among Alzheimer's disease (AD) patients with and without type 2 diabetes mellitus (T2DM). Participants included 103 AD patients aged 40 and older from the National Guard Hospital in Saudi Arabia, recruited between 2016 and 2022. Data collection occurred in two phases: first, through a review of medical records to gather demographic and health history information, including retrospective blood tests for systemic C-reactive protein (CRP) levels and comorbidities; second, using the HKI Food Frequency Questionnaire (FFQ) to assess dietary intake of vitamin A-rich foods over the past week, with caregiver interviews facilitating this process. Each subject was also prospectively interviewed to assess the presence of VAD events. The study aims to elucidate the relationship between dietary habits and VAD prevalence in AD patients, contributing to the understanding of nutritional impacts on cognitive health in this population.</p><p><strong>Results: </strong>This study examined demographic and clinical characteristics of the Alzheimer's group, with 70.1% having both Alzheimer's with T2DM and 29.9% having Alzheimer's alone. Significant differences in age were found (p-value = 0.03), but gender distribution was similar (p-value = 0.45). Most caregivers were sons, and 81.43% of patients received oral feeding. Comorbidities included hypertension (94.90%) and dyslipidemia (63.4%), with significant differences (p-value < 0.001). Correlation analyses showed weak negative correlations between CRP and vitamin A concentrations in both groups (Alzheimer with T2DM: p-value = 0.713, rho = -0.064; AD only: p-value = 0.223, rho = -0.121). Age and vitamin A levels also exhibited weak correlations: Alzheimer's with 2DM (p-value = 0.727, rho = 0.053) and Alzheimer's only (p-value = 0.223, rho = -0.253), neither of them was statistically significant. Symptoms of vitamin A deficiency were noted in Al
{"title":"The Comparison Between Dietary Vitamin A Deficiency and the CRP Level in Alzheimer's Disease in Patients with Type 2 Diabetes: A Case-Control Study.","authors":"Reem Bu Saeed, Raghad Ahmed Alkharouby, Leen Abdulrahman Niaz, Rand Ayman Maddah, Wed Mazin Ismail, Lama Abdulkader Tonkal, Lama Sultan, Nisreen Jastaniah, Muhammad A Khan, Amani Y Alhalwani","doi":"10.2174/0115672050396361250730115305","DOIUrl":"10.2174/0115672050396361250730115305","url":null,"abstract":"<p><strong>Background: </strong>Type 2 Diabetes Mellitus (T2DM) patients are 50-60% more likely to develop Alzheimer's Disease (AD). T2DM has many risk factors, including inflammation. Previous studies suggest that CRP was higher in diabetic patients, indicating that it may play a role in diabetogenesis and insulin resistance. Many diseases are prevalent in older age, including T2DM and AD. Moreover, multiple studies suggested a possible association between vitamin A levels, AD, and T2DM. However, the role of Vitamin A in Alzheimer's patients with T2DM has not yet been fully investigated. Therefore, this study aims to measure the association between dietary vitamin A deficiency and AD patients with T2DM in King Abdulaziz Medical City, Jeddah, Western Region, Saudi Arabia, to help expand the preexisting knowledge of the diagnostic risk factors of both the diseases and to determine the significance of vitamin A as a nutritional factor in their management and prevention.</p><p><strong>Methods: </strong>This case-control study investigates the prevalence of vitamin A deficiency (VAD) among Alzheimer's disease (AD) patients with and without type 2 diabetes mellitus (T2DM). Participants included 103 AD patients aged 40 and older from the National Guard Hospital in Saudi Arabia, recruited between 2016 and 2022. Data collection occurred in two phases: first, through a review of medical records to gather demographic and health history information, including retrospective blood tests for systemic C-reactive protein (CRP) levels and comorbidities; second, using the HKI Food Frequency Questionnaire (FFQ) to assess dietary intake of vitamin A-rich foods over the past week, with caregiver interviews facilitating this process. Each subject was also prospectively interviewed to assess the presence of VAD events. The study aims to elucidate the relationship between dietary habits and VAD prevalence in AD patients, contributing to the understanding of nutritional impacts on cognitive health in this population.</p><p><strong>Results: </strong>This study examined demographic and clinical characteristics of the Alzheimer's group, with 70.1% having both Alzheimer's with T2DM and 29.9% having Alzheimer's alone. Significant differences in age were found (p-value = 0.03), but gender distribution was similar (p-value = 0.45). Most caregivers were sons, and 81.43% of patients received oral feeding. Comorbidities included hypertension (94.90%) and dyslipidemia (63.4%), with significant differences (p-value < 0.001). Correlation analyses showed weak negative correlations between CRP and vitamin A concentrations in both groups (Alzheimer with T2DM: p-value = 0.713, rho = -0.064; AD only: p-value = 0.223, rho = -0.121). Age and vitamin A levels also exhibited weak correlations: Alzheimer's with 2DM (p-value = 0.727, rho = 0.053) and Alzheimer's only (p-value = 0.223, rho = -0.253), neither of them was statistically significant. Symptoms of vitamin A deficiency were noted in Al","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"770-778"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145351018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115672050393583250718145103
Shima Mehrabadi, Sama Barati
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. The etiology of AD is complex and multifactorial, with contributions from genetic, lifestyle, and environmental factors. Recent advances in genetics, epigenetics, and animal models have shed light on the underlying mechanisms of brain aging and the development of AD, revealing potential targets for therapeutic intervention. In this comprehensive review, we examine the current understanding of the genetic, lifestyle, and epigenetic factors that shape the landscape of brain aging and AD. We discuss recent findings in the field of AD genetics, including the role of the APOE gene, and the potential of novel genome-wide association studies to identify new genetic risk factors. We also review the impact of lifestyle factors, such as diet, exercise, and social engagement, on brain aging and AD, and explore the role of epigenetic mechanisms, such as DNA methylation and histone modifications, in shaping AD risk.
{"title":"Exploring the Interconnections of Genetic, Lifestyle, and Epigenetic Influences on Brain Aging: A Comprehensive Review.","authors":"Shima Mehrabadi, Sama Barati","doi":"10.2174/0115672050393583250718145103","DOIUrl":"10.2174/0115672050393583250718145103","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. The etiology of AD is complex and multifactorial, with contributions from genetic, lifestyle, and environmental factors. Recent advances in genetics, epigenetics, and animal models have shed light on the underlying mechanisms of brain aging and the development of AD, revealing potential targets for therapeutic intervention. In this comprehensive review, we examine the current understanding of the genetic, lifestyle, and epigenetic factors that shape the landscape of brain aging and AD. We discuss recent findings in the field of AD genetics, including the role of the APOE gene, and the potential of novel genome-wide association studies to identify new genetic risk factors. We also review the impact of lifestyle factors, such as diet, exercise, and social engagement, on brain aging and AD, and explore the role of epigenetic mechanisms, such as DNA methylation and histone modifications, in shaping AD risk.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"488-501"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144786342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system characterized by complex pathological manifestations and an unclear pathogenesis. Lithium chloride (LiCl) exhibits certain neuroprotective effects. However, its performance and mechanisms in different types of AD models remain unclear.
Methods: The streptozotocin (STZ)-induced AD rat model was used to evaluate the ameliorating effects of LiCl. LiCl was administered orally for one month, and then evaluations were conducted in terms of nerve electrophysiology, behavioral science, and molecular biology.
Results: In this study, STZ was found to significantly affect the electrophysiological functions and behavioral performances of rats. However, LiCl was able to mitigate these effects. Specifically, it led to the restoration of electrophysiological functions, with long-term potentiation (LTP) being successfully induced. LiCl also demonstrated favorable therapeutic effects in rats, as confirmed by the nest-building tests, Y-maze, and Morris water maze. Further research revealed that LiCl promoted the phosphorylation of GSK-3β in the hippocampal region of rats.
Discussion: These findings indicated that LiCl demonstrated beneficial effects on AD-like pathological changes in STZ-induced AD rats, possibly by activating GSK-3β phosphorylation in the hippocampus, improving electrophysiological functions, and further restoring behavioral characteristics.
Conclusion: In conclusion, LiCl demonstrated therapeutic potential for AD by improving neurophysiological and behavioral deficits via hippocampal GSK-3β phosphorylation.
{"title":"Lithium Chloride Improves Electrophysiological and Memory Deficits in Rats with Streptozotocin-Induced Alzheimer's Disease.","authors":"Zheng Xing, Xiaolian Jiang, Wenhao Yang, Yuhui Wang, Xiaoxiao Zhang, Chen Zhao","doi":"10.2174/0115672050399032250715043316","DOIUrl":"10.2174/0115672050399032250715043316","url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system characterized by complex pathological manifestations and an unclear pathogenesis. Lithium chloride (LiCl) exhibits certain neuroprotective effects. However, its performance and mechanisms in different types of AD models remain unclear.</p><p><strong>Methods: </strong>The streptozotocin (STZ)-induced AD rat model was used to evaluate the ameliorating effects of LiCl. LiCl was administered orally for one month, and then evaluations were conducted in terms of nerve electrophysiology, behavioral science, and molecular biology.</p><p><strong>Results: </strong>In this study, STZ was found to significantly affect the electrophysiological functions and behavioral performances of rats. However, LiCl was able to mitigate these effects. Specifically, it led to the restoration of electrophysiological functions, with long-term potentiation (LTP) being successfully induced. LiCl also demonstrated favorable therapeutic effects in rats, as confirmed by the nest-building tests, Y-maze, and Morris water maze. Further research revealed that LiCl promoted the phosphorylation of GSK-3β in the hippocampal region of rats.</p><p><strong>Discussion: </strong>These findings indicated that LiCl demonstrated beneficial effects on AD-like pathological changes in STZ-induced AD rats, possibly by activating GSK-3β phosphorylation in the hippocampus, improving electrophysiological functions, and further restoring behavioral characteristics.</p><p><strong>Conclusion: </strong>In conclusion, LiCl demonstrated therapeutic potential for AD by improving neurophysiological and behavioral deficits via hippocampal GSK-3β phosphorylation.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"536-547"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144777482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115672050443568250926174642
Shampa Ghosh, Jitendra Kumar Sinha
{"title":"Integrative Perspectives on Neurodegeneration and Aging: From Molecular Insights to Therapeutic Strategies.","authors":"Shampa Ghosh, Jitendra Kumar Sinha","doi":"10.2174/0115672050443568250926174642","DOIUrl":"10.2174/0115672050443568250926174642","url":null,"abstract":"","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"631-633"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145234879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.2174/0115672050345431241113112608
Jiayuan Wang, Xinyu Wang, Zihui An, Xuan Wang, Yaru Wang, Yuehan Lu, Mengsheng Qiu, Zheqi Liu, Zhou Tan
Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the central nervous system (CNS), with its etiology still shrouded in uncertainty. The interplay of extracellular amyloid-β (Aβ) deposition, intracellular neurofibrillary tangles (NFTs) composed of tau protein, cholinergic neuronal impairment, and other pathogenic factors is implicated in the progression of AD.
Objective: The current study endeavors to delineate the proteomic landscape alterations in the hippocampus of an AD murine model, utilizing proteomic analysis to identify key physiological and pathological shifts induced by the disease. This endeavor aims to shed light on the underlying pathogenic mechanisms, which could facilitate early diagnosis and pave the way for novel therapeutic interventions for AD.
Methods: To dissect the proteomic perturbations induced by Aβ and Presenilin-1 (PS1) in the AD pathogenesis, we undertook a label-free quantitative (LFQ) proteomic analysis focusing on the hippocampal proteome of the APP/PS1 transgenic mouse model. Employing a multi-faceted approach that included differential protein functional enrichment, cluster analysis, and protein-protein interaction (PPI) network analysis, we conducted a comprehensive comparative proteomic study between APP/PS1 transgenic mice and their wild-type C57BL/6 counterparts.
Results: Mass spectrometry identified a total of 4817 proteins in the samples, with 2762 proteins being quantifiable. Comparative analysis revealed 396 proteins with differential expression between the APP/PS1 and control groups. Notably, 35 proteins exhibited consistent temporal regulation trends in the hippocampus, with concomitant alterations in biological pathways and PPI networks.
Conclusions: This study presents a comparative proteomic profile of transgenic (APP/PS1) and wild-type mice, highlighting the proteomic divergences. Furthermore, it charts the trajectory of proteomic changes in the AD mouse model across the developmental stages from 2 to 12 months, providing insights into the physiological and pathological implications of the disease-associated genetic mutations.
{"title":"Quantitative Proteomic Analysis of APP/PS1 Transgenic Mice.","authors":"Jiayuan Wang, Xinyu Wang, Zihui An, Xuan Wang, Yaru Wang, Yuehan Lu, Mengsheng Qiu, Zheqi Liu, Zhou Tan","doi":"10.2174/0115672050345431241113112608","DOIUrl":"https://doi.org/10.2174/0115672050345431241113112608","url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the central nervous system (CNS), with its etiology still shrouded in uncertainty. The interplay of extracellular amyloid-β (Aβ) deposition, intracellular neurofibrillary tangles (NFTs) composed of tau protein, cholinergic neuronal impairment, and other pathogenic factors is implicated in the progression of AD.</p><p><strong>Objective: </strong>The current study endeavors to delineate the proteomic landscape alterations in the hippocampus of an AD murine model, utilizing proteomic analysis to identify key physiological and pathological shifts induced by the disease. This endeavor aims to shed light on the underlying pathogenic mechanisms, which could facilitate early diagnosis and pave the way for novel therapeutic interventions for AD.</p><p><strong>Methods: </strong>To dissect the proteomic perturbations induced by Aβ and Presenilin-1 (PS1) in the AD pathogenesis, we undertook a label-free quantitative (LFQ) proteomic analysis focusing on the hippocampal proteome of the APP/PS1 transgenic mouse model. Employing a multi-faceted approach that included differential protein functional enrichment, cluster analysis, and protein-protein interaction (PPI) network analysis, we conducted a comprehensive comparative proteomic study between APP/PS1 transgenic mice and their wild-type C57BL/6 counterparts.</p><p><strong>Results: </strong>Mass spectrometry identified a total of 4817 proteins in the samples, with 2762 proteins being quantifiable. Comparative analysis revealed 396 proteins with differential expression between the APP/PS1 and control groups. Notably, 35 proteins exhibited consistent temporal regulation trends in the hippocampus, with concomitant alterations in biological pathways and PPI networks.</p><p><strong>Conclusions: </strong>This study presents a comparative proteomic profile of transgenic (APP/PS1) and wild-type mice, highlighting the proteomic divergences. Furthermore, it charts the trajectory of proteomic changes in the AD mouse model across the developmental stages from 2 to 12 months, providing insights into the physiological and pathological implications of the disease-associated genetic mutations.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0115672050320921240627050736
Ryszard Pluta
Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, i.e., progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.
阿尔茨海默病(AD)是世界上常见的痴呆症。尽管对包括淀粉样蛋白和 tau 蛋白在内的阿兹海默症病因的研究已有 100 多年的历史,但研究一直停滞不前,没有得出任何结论。此外,许多旨在寻找 AD 治疗方法的项目也未能取得突破性进展。因此,抗淀粉样蛋白和抗tau蛋白疗法在治疗AD方面的失败极大地影响了我们对该疾病病因的思考。这种情况促使一批研究人员开始关注缺血性脑病,因为缺血性脑病与注意力缺失症一样,主要表现为海马体的改变。在这种情况下,有人提出,脑缺血事件可能在促进淀粉样蛋白和 tau 蛋白在 AD 神经变性中发挥重要作用。在这篇综述中,我们总结了数年来关于脑缺血事件在 AD 发病中的作用的实验和临床研究。研究表明,缺血后脑神经变性过程中会出现典型的 AD 变化,即大脑和海马体进行性萎缩、淀粉样蛋白生成增加和 tau 蛋白改变。在缺血后的大脑中,弥漫性和衰老性淀粉样蛋白斑块以及神经纤维缠结的发展显示出 AD 的特征。上述数据清楚地表明,脑缺血后,蛋白质折叠发生改变,导致大量神经元死亡和神经元网络受损,从而引发具有 AD 表型的痴呆症。
{"title":"A Look at the Etiology of Alzheimer's Disease based on the Brain Ischemia Model.","authors":"Ryszard Pluta","doi":"10.2174/0115672050320921240627050736","DOIUrl":"10.2174/0115672050320921240627050736","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, i.e., progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"166-182"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD) is the most common type of dementia among middle-aged and elderly individuals. Accelerating the prevention and treatment of AD has become an urgent problem. New technology including Computer-aided drug design (CADD) can effectively reduce the medication cost for patients with AD, reduce the cost of living, and improve the quality of life of patients, providing new ideas for treating AD. This paper reviews the pathogenesis of AD, the latest developments in CADD and other small-molecule docking technologies for drug discovery and development; the current research status of small-molecule compounds for AD at home and abroad from the perspective of drug action targets; the future of AD drug development.
{"title":"Advances in Developing Small Molecule Drugs for Alzheimer's Disease.","authors":"Wei Zhang, Liujie Zhang, Mingti Lv, Yun Fu, Xiaowen Meng, Mingyong Wang, Hecheng Wang","doi":"10.2174/0115672050329828240805074938","DOIUrl":"10.2174/0115672050329828240805074938","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common type of dementia among middle-aged and elderly individuals. Accelerating the prevention and treatment of AD has become an urgent problem. New technology including Computer-aided drug design (CADD) can effectively reduce the medication cost for patients with AD, reduce the cost of living, and improve the quality of life of patients, providing new ideas for treating AD. This paper reviews the pathogenesis of AD, the latest developments in CADD and other small-molecule docking technologies for drug discovery and development; the current research status of small-molecule compounds for AD at home and abroad from the perspective of drug action targets; the future of AD drug development.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"221-231"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, with a significant burden on global health. AD is characterized by a progressive cognitive decline and memory loss. Emerging research suggests a potential link between periodontitis, specifically the presence of oral bacteria such as Porphyromonas gingivalis (P. gingivalis), and AD progression. P. gingivalis produces an enzyme, Agmatine deiminase (AgD), which converts agmatine to N-carbamoyl putrescine (NCP), serving as a precursor to essential polyamines. Recent studies have confirmed the correlation between disruptions in polyamine metabolism and cognitive impairment.
Objective: This study aims to investigate the dysregulation of P. gingivalis Agmatine deiminase (PgAgD) in the context of AD.
Methods: Saliva samples were collected from a total of 54 individuals, including 27 AD patients and 27 healthy controls. The expression of the PgAgD gene was analyzed using quantitative Real-- Time PCR.
Results: The results showed a significant decrease in PgAgD gene expression in the saliva samples of AD patients compared to healthy controls. This downregulation was found in AD patients with advanced stages of periodontitis. Additionally, a correlation was observed between the decrease in PgAgD expression and the 30-item Mini-Mental State Examination (MMSE) score.
Conclusion: These findings suggest that measuring PgAgD expression in saliva could be a noninvasive tool for monitoring AD progression and aid in the early diagnosis of patients with periodontitis. Further research is needed to validate our results and explore the underlying mechanisms linking periodontitis, PgAgD expression, and AD pathophysiology.
背景:阿尔茨海默病(AD)是最普遍的神经退行性疾病,对全球健康造成了重大负担。阿尔茨海默病的特点是认知能力逐渐下降和记忆力减退。新近的研究表明,牙周炎,特别是牙龈卟啉单胞菌(P. gingivalis)等口腔细菌的存在与老年痴呆症的进展之间存在潜在联系。牙龈卟啉单胞菌会产生一种酶,即阿格马丁脱氨酶(AgD),它能将阿格马丁转化为 N-氨基甲酰基腐胺(NCP),作为必需多胺的前体。最近的研究证实了多胺代谢紊乱与认知障碍之间的相关性:本研究旨在探讨在注意力缺失症的背景下牙龈脓疱菌阿加明脱氨酶(PgAgD)的失调情况:方法:共收集了 54 人的唾液样本,其中包括 27 名 AD 患者和 27 名健康对照者。方法:共采集了54人的唾液样本,其中包括27名AD患者和27名健康对照者,采用Real-Time PCR定量分析PgAgD基因的表达:结果表明,与健康对照组相比,AD 患者唾液样本中 PgAgD 基因的表达明显下降。牙周炎晚期的 AD 患者也出现了这种基因表达下调的情况。此外,还观察到 PgAgD 表达的下降与 30 项迷你精神状态检查(MMSE)评分之间存在相关性:这些研究结果表明,测量唾液中 PgAgD 的表达可作为一种非侵入性工具,用于监测 AD 的进展,并有助于牙周炎患者的早期诊断。还需要进一步的研究来验证我们的结果,并探索牙周炎、PgAgD表达和AD病理生理学之间的内在联系。
{"title":"Dysregulation of <i>Porphyromonas gingivalis</i> Agmatine Deiminase Expression in Alzheimer's Disease.","authors":"Asma Hamdi, Sana Baroudi, Alya Gharbi, Wafa Babay, Ahmed Baligh Laaribi, Imene Kacem, Saloua Mrabet, Ines Zidi, Naouel Klibi, Riadh Gouider, Hadda-Imene Ouzari","doi":"10.2174/0115672050327009240808103542","DOIUrl":"10.2174/0115672050327009240808103542","url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, with a significant burden on global health. AD is characterized by a progressive cognitive decline and memory loss. Emerging research suggests a potential link between periodontitis, specifically the presence of oral bacteria such as <i>Porphyromonas gingivalis</i> (<i>P. gingivalis</i>), and AD progression. <i>P. gingivalis</i> produces an enzyme, Agmatine deiminase (AgD), which converts agmatine to N-carbamoyl putrescine (NCP), serving as a precursor to essential polyamines. Recent studies have confirmed the correlation between disruptions in polyamine metabolism and cognitive impairment.</p><p><strong>Objective: </strong>This study aims to investigate the dysregulation of <i>P. gingivalis</i> Agmatine deiminase (<i>PgAgD</i>) in the context of AD.</p><p><strong>Methods: </strong>Saliva samples were collected from a total of 54 individuals, including 27 AD patients and 27 healthy controls. The expression of the <i>PgAgD</i> gene was analyzed using quantitative Real-- Time PCR.</p><p><strong>Results: </strong>The results showed a significant decrease in <i>PgAgD</i> gene expression in the saliva samples of AD patients compared to healthy controls. This downregulation was found in AD patients with advanced stages of periodontitis. Additionally, a correlation was observed between the decrease in <i>PgAgD</i> expression and the 30-item Mini-Mental State Examination (MMSE) score.</p><p><strong>Conclusion: </strong>These findings suggest that measuring <i>PgAgD</i> expression in saliva could be a noninvasive tool for monitoring AD progression and aid in the early diagnosis of patients with periodontitis. Further research is needed to validate our results and explore the underlying mechanisms linking periodontitis, <i>PgAgD</i> expression, and AD pathophysiology.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"232-241"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}