Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-24-0177
Julien Dilly, Megan T Hoffman, Laleh Abbassi, Ziyue Li, Francesca Paradiso, Brendan D Parent, Connor J Hennessey, Alexander C Jordan, Micaela Morgado, Shatavisha Dasgupta, Giselle A Uribe, Annan Yang, Kevin S Kapner, Felix P Hambitzer, Li Qiang, Hanrong Feng, Jacob Geisberg, Junning Wang, Kyle E Evans, Hengyu Lyu, Aislyn Schalck, Ningping Feng, Anastasia M Lopez, Christopher A Bristow, Michael P Kim, Kimal I Rajapakshe, Vahid Bahrambeigi, Jennifer A Roth, Kavita Garg, Paola A Guerrero, Ben Z Stanger, Simona Cristea, Scott W Lowe, Timour Baslan, Eliezer M Van Allen, Joseph D Mancias, Emily Chan, Abraham Anderson, Yuliya V Katlinskaya, Alex K Shalek, David S Hong, Shubham Pant, Jill Hallin, Kenna Anderes, Peter Olson, Timothy P Heffernan, Seema Chugh, James G Christensen, Anirban Maitra, Brian M Wolpin, Srivatsan Raghavan, Jonathan A Nowak, Peter S Winter, Stephanie K Dougan, Andrew J Aguirre
KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+; Trp53LSL-R172H/+; p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, Cdk6, and Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies. Significance: Acquired resistance may limit the impact of KRAS inhibition in patients with PDAC. Using clinical samples and multiple preclinical models, we define heterogeneous genetic and non-genetic mechanisms of resistance to KRAS inhibition that may guide combination therapy approaches to improve the efficacy and durability of these promising therapies for patients. See related commentary by Marasco and Misale, p. 2018.
{"title":"Mechanisms of Resistance to Oncogenic KRAS Inhibition in Pancreatic Cancer.","authors":"Julien Dilly, Megan T Hoffman, Laleh Abbassi, Ziyue Li, Francesca Paradiso, Brendan D Parent, Connor J Hennessey, Alexander C Jordan, Micaela Morgado, Shatavisha Dasgupta, Giselle A Uribe, Annan Yang, Kevin S Kapner, Felix P Hambitzer, Li Qiang, Hanrong Feng, Jacob Geisberg, Junning Wang, Kyle E Evans, Hengyu Lyu, Aislyn Schalck, Ningping Feng, Anastasia M Lopez, Christopher A Bristow, Michael P Kim, Kimal I Rajapakshe, Vahid Bahrambeigi, Jennifer A Roth, Kavita Garg, Paola A Guerrero, Ben Z Stanger, Simona Cristea, Scott W Lowe, Timour Baslan, Eliezer M Van Allen, Joseph D Mancias, Emily Chan, Abraham Anderson, Yuliya V Katlinskaya, Alex K Shalek, David S Hong, Shubham Pant, Jill Hallin, Kenna Anderes, Peter Olson, Timothy P Heffernan, Seema Chugh, James G Christensen, Anirban Maitra, Brian M Wolpin, Srivatsan Raghavan, Jonathan A Nowak, Peter S Winter, Stephanie K Dougan, Andrew J Aguirre","doi":"10.1158/2159-8290.CD-24-0177","DOIUrl":"10.1158/2159-8290.CD-24-0177","url":null,"abstract":"<p><p>KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+; Trp53LSL-R172H/+; p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, Cdk6, and Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies. Significance: Acquired resistance may limit the impact of KRAS inhibition in patients with PDAC. Using clinical samples and multiple preclinical models, we define heterogeneous genetic and non-genetic mechanisms of resistance to KRAS inhibition that may guide combination therapy approaches to improve the efficacy and durability of these promising therapies for patients. See related commentary by Marasco and Misale, p. 2018.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2135-2161"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-24-1196
Pedro Berraondo, Raquel Cuesta, Miguel F Sanmamed, Ignacio Melero
In this issue, Gainor and colleagues report on the immunogenicity of personalized neoantigen-encoding mRNA vaccines that elicit measurable polyfunctional CD8+ and CD4+ T-cell responses in patients whose tumors have been resected. Reactivity is substantiated to 20% to 30% of the predicted MHC-I and MHC-II epitopes in four patients with NSCLC postsurgically treated with the vaccine alone and in 12 patients with melanoma treated with their individualized vaccines plus pembrolizumab in the context of a phase 1 clinical trial (NCT03313778). See related article by Gainor et al., p. 2209.
{"title":"Immunogenicity and Efficacy of Personalized Adjuvant mRNA Cancer Vaccines.","authors":"Pedro Berraondo, Raquel Cuesta, Miguel F Sanmamed, Ignacio Melero","doi":"10.1158/2159-8290.CD-24-1196","DOIUrl":"10.1158/2159-8290.CD-24-1196","url":null,"abstract":"<p><p>In this issue, Gainor and colleagues report on the immunogenicity of personalized neoantigen-encoding mRNA vaccines that elicit measurable polyfunctional CD8+ and CD4+ T-cell responses in patients whose tumors have been resected. Reactivity is substantiated to 20% to 30% of the predicted MHC-I and MHC-II epitopes in four patients with NSCLC postsurgically treated with the vaccine alone and in 12 patients with melanoma treated with their individualized vaccines plus pembrolizumab in the context of a phase 1 clinical trial (NCT03313778). See related article by Gainor et al., p. 2209.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 11","pages":"2021-2024"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-24-0137
Simone Benitz, Alec Steep, Malak M Nasser, Jonathan Preall, Ujjwal Mukund Mahajan, Holly McQuithey, Ian Loveless, Erick T Davis, Hui-Ju Wen, Daniel W Long, Thomas Metzler, Samuel Zwernik, Michaela Louw, Donald Rempinski, Daniel J Salas-Escabillas, Sydney M Brender, Linghao Song, Ling Huang, Brian K Theisen, Zhenyu Zhang, Nina G Steele, Ivonne Regel, Filip Bednar, Howard C Crawford
Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions, to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor PDX1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in a mouse and human. We identified the receptor tyrosine kinase ROR2 as marker of a gastric metaplasia-like identity in pancreas neoplasms. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition. Significance: We discovered the receptor tyrosine kinase ROR2 as an important regulator of cellular identity in pancreatic precancerous lesions and pancreatic cancer. ROR2 drives an aggressive PDAC phenotype and confers resistance to KRAS inhibitors, suggesting that targeting ROR2 will enhance sensitivity to this new generation of targeted therapies. See related commentary by Marasco and Misale, p. 2018.
{"title":"ROR2 Regulates Cellular Plasticity in Pancreatic Neoplasia and Adenocarcinoma.","authors":"Simone Benitz, Alec Steep, Malak M Nasser, Jonathan Preall, Ujjwal Mukund Mahajan, Holly McQuithey, Ian Loveless, Erick T Davis, Hui-Ju Wen, Daniel W Long, Thomas Metzler, Samuel Zwernik, Michaela Louw, Donald Rempinski, Daniel J Salas-Escabillas, Sydney M Brender, Linghao Song, Ling Huang, Brian K Theisen, Zhenyu Zhang, Nina G Steele, Ivonne Regel, Filip Bednar, Howard C Crawford","doi":"10.1158/2159-8290.CD-24-0137","DOIUrl":"10.1158/2159-8290.CD-24-0137","url":null,"abstract":"<p><p>Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions, to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor PDX1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in a mouse and human. We identified the receptor tyrosine kinase ROR2 as marker of a gastric metaplasia-like identity in pancreas neoplasms. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition. Significance: We discovered the receptor tyrosine kinase ROR2 as an important regulator of cellular identity in pancreatic precancerous lesions and pancreatic cancer. ROR2 drives an aggressive PDAC phenotype and confers resistance to KRAS inhibitors, suggesting that targeting ROR2 will enhance sensitivity to this new generation of targeted therapies. See related commentary by Marasco and Misale, p. 2018.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2162-2182"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-24-0158
Justin F Gainor, Manish R Patel, Jeffrey S Weber, Martin Gutierrez, Julie E Bauman, Jeffrey M Clarke, Ricklie Julian, Aaron J Scott, Jessica L Geiger, Kedar Kirtane, Celine Robert-Tissot, Brandon Coder, Moomal Tasneem, Jing Sun, Wei Zheng, Lauren Gerbereux, Andressa Laino, Filippos Porichis, Jack Russella Pollard, Peijie Hou, Vasudha Sehgal, Xing Chen, Manju Morrissey, Hikmat N Daghestani, Igor Feldman, Lakshmi Srinivasan, Joshua P Frederick, Michelle Brown, Praveen Aanur, Robert Meehan, Howard A Burris
mRNA-4157 (V940) is an individualized neoantigen therapy targeting up to 34 patient-specific tumor neoantigens to induce T-cell responses and potentiate antitumor activity. We report mechanistic insights into the immunogenicity of mRNA-4157 via characterization of T-cell responses to neoantigens from the first-in-human, phase 1, KEYNOTE-603 study (NCT03313778) in patients with resected non-small cell lung cancer (Part A: 1-mg mRNA-4157, n = 4) or resected cutaneous melanoma (Part D: 1-mg mRNA-4157 + 200-mg pembrolizumab, n = 12). Safety, tolerability, and immunogenicity were assessed. All patients experienced ≥1 treatment-emergent adverse event; there were no grade 4/5 adverse events or dose-limiting toxicities. mRNA-4157 alone induced consistent de novo and strengthened preexisting T-cell responses to targeted neoantigens. Following combination therapy, sustained mRNA-4157-induced neoantigen-specific T-cell responses and expansion of cytotoxic CD8 and CD4 T cells were observed. These findings show the potential of a novel mRNA individualized neoantigen therapy approach in oncology. Significance: The safety and immunogenicity results from this phase 1 study of mRNA-4157 as adjuvant monotherapy or combination therapy with pembrolizumab show generation of de novo and enhancement of existing neoantigen-specific T-cell responses and provide mechanistic proof of concept to support further development of mRNA-4157 for patients with resected solid tumors. See related commentary by Berraondo et al., p. 2021.
{"title":"T-cell Responses to Individualized Neoantigen Therapy mRNA-4157 (V940) Alone or in Combination with Pembrolizumab in the Phase 1 KEYNOTE-603 Study.","authors":"Justin F Gainor, Manish R Patel, Jeffrey S Weber, Martin Gutierrez, Julie E Bauman, Jeffrey M Clarke, Ricklie Julian, Aaron J Scott, Jessica L Geiger, Kedar Kirtane, Celine Robert-Tissot, Brandon Coder, Moomal Tasneem, Jing Sun, Wei Zheng, Lauren Gerbereux, Andressa Laino, Filippos Porichis, Jack Russella Pollard, Peijie Hou, Vasudha Sehgal, Xing Chen, Manju Morrissey, Hikmat N Daghestani, Igor Feldman, Lakshmi Srinivasan, Joshua P Frederick, Michelle Brown, Praveen Aanur, Robert Meehan, Howard A Burris","doi":"10.1158/2159-8290.CD-24-0158","DOIUrl":"10.1158/2159-8290.CD-24-0158","url":null,"abstract":"<p><p>mRNA-4157 (V940) is an individualized neoantigen therapy targeting up to 34 patient-specific tumor neoantigens to induce T-cell responses and potentiate antitumor activity. We report mechanistic insights into the immunogenicity of mRNA-4157 via characterization of T-cell responses to neoantigens from the first-in-human, phase 1, KEYNOTE-603 study (NCT03313778) in patients with resected non-small cell lung cancer (Part A: 1-mg mRNA-4157, n = 4) or resected cutaneous melanoma (Part D: 1-mg mRNA-4157 + 200-mg pembrolizumab, n = 12). Safety, tolerability, and immunogenicity were assessed. All patients experienced ≥1 treatment-emergent adverse event; there were no grade 4/5 adverse events or dose-limiting toxicities. mRNA-4157 alone induced consistent de novo and strengthened preexisting T-cell responses to targeted neoantigens. Following combination therapy, sustained mRNA-4157-induced neoantigen-specific T-cell responses and expansion of cytotoxic CD8 and CD4 T cells were observed. These findings show the potential of a novel mRNA individualized neoantigen therapy approach in oncology. Significance: The safety and immunogenicity results from this phase 1 study of mRNA-4157 as adjuvant monotherapy or combination therapy with pembrolizumab show generation of de novo and enhancement of existing neoantigen-specific T-cell responses and provide mechanistic proof of concept to support further development of mRNA-4157 for patients with resected solid tumors. See related commentary by Berraondo et al., p. 2021.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2209-2223"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-24-0837
Huaxin Song, Shujun Xiao, Jiaqi Wu, Min Lu
Pharmacologically targeting tumor suppressors necessitates an unprecedented strategy of restoring, rather than conventionally inhibiting, protein function, and p53, the most commonly mutated protein in cancer, has thus remained undruggable. In this study, we address long-standing misconceptions in the field and gaps in the scientific logic for a p53 function-restoration strategy, identify four barriers for drugging mutant p53, and accordingly propose effectiveness evaluation criteria, clinical-translating norms, and prospects for mutant p53 rescue compounds.
{"title":"Drugging p53: Barriers, Criteria, and Prospects.","authors":"Huaxin Song, Shujun Xiao, Jiaqi Wu, Min Lu","doi":"10.1158/2159-8290.CD-24-0837","DOIUrl":"https://doi.org/10.1158/2159-8290.CD-24-0837","url":null,"abstract":"<p><p>Pharmacologically targeting tumor suppressors necessitates an unprecedented strategy of restoring, rather than conventionally inhibiting, protein function, and p53, the most commonly mutated protein in cancer, has thus remained undruggable. In this study, we address long-standing misconceptions in the field and gaps in the scientific logic for a p53 function-restoration strategy, identify four barriers for drugging mutant p53, and accordingly propose effectiveness evaluation criteria, clinical-translating norms, and prospects for mutant p53 rescue compounds.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 11","pages":"2055-2060"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-23-1393
Ju-Fang Chang, Jack H Landmann, Tien-Ching Chang, Mehmet Emrah Selli, Yangdon Tenzin, John M Warrington, Julie Ritchey, Yu-Sung Hsu, Michael Slade, Deepesh Kumar Gupta, John F DiPersio, Alex S Holehouse, Nathan Singh
Chimeric antigen receptor (CAR)-based therapies have pioneered synthetic cellular immunity but remain limited in their long-term efficacy. Emerging data suggest that dysregulated CAR-driven T-cell activation causes T-cell dysfunction and therapeutic failure. To re-engage the precision of the endogenous T-cell response, we designed MHC-independent T-cell receptors (miTCR) by linking antibody variable domains to T-cell receptor constant chains. Using predictive modeling, we observed that this standard "cut and paste" approach to synthetic protein design resulted in myriad biochemical conflicts at the hybrid variable-constant domain interface. Through iterative modeling and sequence modifications, we developed structure-enhanced miTCRs which significantly improved receptor-driven T-cell function across multiple tumor models. We found that 41BB costimulation specifically prolonged miTCR T-cell persistence and enabled improved leukemic control in vivo compared with classic CAR T cells. Collectively, we have identified core features of hybrid receptor structure responsible for regulating function. Significance: Improving the durability of engineered T-cell immunotherapies is critical to enhancing efficacy. We used a structure-informed design to evolve improved miTCR function across several models. This work underscores the central role of synthetic receptor structure in T-cell function and provides a framework for improved receptor engineering.
基于嵌合抗原受体(CAR)的疗法开创了合成细胞免疫疗法,但其长期疗效仍然有限。新出现的数据表明,CAR 驱动的 T 细胞活化失调会导致 T 细胞功能障碍和治疗失败。为了重新精确激活内源性 T 细胞反应,我们将抗体可变域与 TCR 常链连接,设计出了不依赖 MHC 的 T 细胞受体(miTCRs)。通过预测建模,我们发现这种标准的 "剪切和粘贴 "合成蛋白质设计方法会在可变结构域与恒定结构域的混合界面上产生无数的生化冲突。通过迭代建模和序列修改,我们开发出了结构增强型 miTCR,在多个肿瘤模型中显著改善了受体驱动的 T 细胞功能。我们发现,与传统的 CAR T 细胞相比,41BB 成本刺激特异性地延长了 miTCR T 细胞的存活时间,并改善了体内的白血病控制。总之,我们确定了混合受体结构中负责调节功能的核心特征。
{"title":"Rational Protein Engineering to Enhance MHC-Independent T-cell Receptors.","authors":"Ju-Fang Chang, Jack H Landmann, Tien-Ching Chang, Mehmet Emrah Selli, Yangdon Tenzin, John M Warrington, Julie Ritchey, Yu-Sung Hsu, Michael Slade, Deepesh Kumar Gupta, John F DiPersio, Alex S Holehouse, Nathan Singh","doi":"10.1158/2159-8290.CD-23-1393","DOIUrl":"10.1158/2159-8290.CD-23-1393","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR)-based therapies have pioneered synthetic cellular immunity but remain limited in their long-term efficacy. Emerging data suggest that dysregulated CAR-driven T-cell activation causes T-cell dysfunction and therapeutic failure. To re-engage the precision of the endogenous T-cell response, we designed MHC-independent T-cell receptors (miTCR) by linking antibody variable domains to T-cell receptor constant chains. Using predictive modeling, we observed that this standard \"cut and paste\" approach to synthetic protein design resulted in myriad biochemical conflicts at the hybrid variable-constant domain interface. Through iterative modeling and sequence modifications, we developed structure-enhanced miTCRs which significantly improved receptor-driven T-cell function across multiple tumor models. We found that 41BB costimulation specifically prolonged miTCR T-cell persistence and enabled improved leukemic control in vivo compared with classic CAR T cells. Collectively, we have identified core features of hybrid receptor structure responsible for regulating function. Significance: Improving the durability of engineered T-cell immunotherapies is critical to enhancing efficacy. We used a structure-informed design to evolve improved miTCR function across several models. This work underscores the central role of synthetic receptor structure in T-cell function and provides a framework for improved receptor engineering.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2109-2121"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-23-1212
Shiyan Wang, Yong Zeng, Lin Zhu, Min Zhang, Lei Zhou, Weixiong Yang, Weishan Luo, Lina Wang, Yanming Liu, Helen Zhu, Xin Xu, Peiran Su, Xinyue Zhang, Musaddeque Ahmed, Wei Chen, Moliang Chen, Sujun Chen, Mykhaylo Slobodyanyuk, Zhongpeng Xie, Jiansheng Guan, Wen Zhang, Aafaque Ahmad Khan, Shingo Sakashita, Ni Liu, Nhu-An Pham, Paul C Boutros, Zunfu Ke, Michael F Moran, Zongwei Cai, Chao Cheng, Jun Yu, Ming S Tsao, Housheng H He
Comprehensive N6-methyladenosine (m6A) epitranscriptomic profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 nonneoplastic lung tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptomic, proteomic, and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with nonneoplastic lung tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hypermethylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics by interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small-molecule inhibitor markedly diminished both EML4 m6A and protein abundance and efficiently suppressed lung metastases in vivo. Significance: Our study reveals a dynamic and functional epitranscriptomic landscape in LUAD, offering a valuable resource for further research in the field. We identified EML4 hypermethylation as a key driver of tumor metastasis, highlighting a novel therapeutic strategy of targeting EML4 to prevent LUAD metastasis.
{"title":"The N6-methyladenosine Epitranscriptomic Landscape of Lung Adenocarcinoma.","authors":"Shiyan Wang, Yong Zeng, Lin Zhu, Min Zhang, Lei Zhou, Weixiong Yang, Weishan Luo, Lina Wang, Yanming Liu, Helen Zhu, Xin Xu, Peiran Su, Xinyue Zhang, Musaddeque Ahmed, Wei Chen, Moliang Chen, Sujun Chen, Mykhaylo Slobodyanyuk, Zhongpeng Xie, Jiansheng Guan, Wen Zhang, Aafaque Ahmad Khan, Shingo Sakashita, Ni Liu, Nhu-An Pham, Paul C Boutros, Zunfu Ke, Michael F Moran, Zongwei Cai, Chao Cheng, Jun Yu, Ming S Tsao, Housheng H He","doi":"10.1158/2159-8290.CD-23-1212","DOIUrl":"10.1158/2159-8290.CD-23-1212","url":null,"abstract":"<p><p>Comprehensive N6-methyladenosine (m6A) epitranscriptomic profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 nonneoplastic lung tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptomic, proteomic, and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with nonneoplastic lung tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hypermethylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics by interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small-molecule inhibitor markedly diminished both EML4 m6A and protein abundance and efficiently suppressed lung metastases in vivo. Significance: Our study reveals a dynamic and functional epitranscriptomic landscape in LUAD, offering a valuable resource for further research in the field. We identified EML4 hypermethylation as a key driver of tumor metastasis, highlighting a novel therapeutic strategy of targeting EML4 to prevent LUAD metastasis.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2279-2299"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-24-0836
Kailong Li, Gong-Hong Wei, Yuxin Yin, Jiawen Feng
Significant efforts have been made to identify and validate oncoproteins and ncRNAs as therapeutic targets for cancer therapy; however, emerging observations suggest that noncoding cis-regulatory elements, which orchestrate the 3D organization of the genome and thus the transcriptional landscape, are potential therapeutic targets as well. In this commentary, we envisage that further efforts to decipher the noncoding cis-regulatory code and performing systematic surveys of functional noncoding cis-regulatory elements and recurrent 3D genome alterations in both cancerous and nonmalignant cells within tumor tissues will pave the way to the development of novel therapeutic strategies.
{"title":"Targeting Noncoding cis-Regulatory Elements for Cancer Therapy in the Context of the 3D Genome.","authors":"Kailong Li, Gong-Hong Wei, Yuxin Yin, Jiawen Feng","doi":"10.1158/2159-8290.CD-24-0836","DOIUrl":"https://doi.org/10.1158/2159-8290.CD-24-0836","url":null,"abstract":"<p><p>Significant efforts have been made to identify and validate oncoproteins and ncRNAs as therapeutic targets for cancer therapy; however, emerging observations suggest that noncoding cis-regulatory elements, which orchestrate the 3D organization of the genome and thus the transcriptional landscape, are potential therapeutic targets as well. In this commentary, we envisage that further efforts to decipher the noncoding cis-regulatory code and performing systematic surveys of functional noncoding cis-regulatory elements and recurrent 3D genome alterations in both cancerous and nonmalignant cells within tumor tissues will pave the way to the development of novel therapeutic strategies.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 11","pages":"2061-2065"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-24-1195
Daniel A Haber, Steven J Skates
Annual low-dose CT screening of individuals with a smoking history identifies early curable lung tumors and reduces cancer mortality by 20%, yet only a minority of eligible patients undergo such monitoring. Mazzone and colleagues apply a blood-based cfDNA fragmentomic assay as a high-sensitivity/low-specificity pre-screen to help stratify individuals who may benefit most from more definitive low-dose CT imaging. See related article by Mazzone et al., p. 2224.
{"title":"Combination Diagnostics: Adding Blood-Based ctDNA Screening to Low-Dose CT Imaging for Early Detection of Lung Cancer.","authors":"Daniel A Haber, Steven J Skates","doi":"10.1158/2159-8290.CD-24-1195","DOIUrl":"https://doi.org/10.1158/2159-8290.CD-24-1195","url":null,"abstract":"<p><p>Annual low-dose CT screening of individuals with a smoking history identifies early curable lung tumors and reduces cancer mortality by 20%, yet only a minority of eligible patients undergo such monitoring. Mazzone and colleagues apply a blood-based cfDNA fragmentomic assay as a high-sensitivity/low-specificity pre-screen to help stratify individuals who may benefit most from more definitive low-dose CT imaging. See related article by Mazzone et al., p. 2224.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 11","pages":"2025-2027"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1158/2159-8290.CD-24-0831
Jiang Chang, Tongsen Zheng, Chen Wu
Current strategies for early cancer detection and diagnosis need updating to achieve greater precision, necessitating the creation of a comprehensive evolutionary map of tumorigenesis. This requires establishing high-quality prospective cohorts, systematically collecting samples for integrated spatiotemporal multiomics analyses, and efficiently translating laboratory findings into clinical applications.
{"title":"Early Cancer Detection Through Comprehensive Mapping of Dynamic Tumorigenesis.","authors":"Jiang Chang, Tongsen Zheng, Chen Wu","doi":"10.1158/2159-8290.CD-24-0831","DOIUrl":"https://doi.org/10.1158/2159-8290.CD-24-0831","url":null,"abstract":"<p><p>Current strategies for early cancer detection and diagnosis need updating to achieve greater precision, necessitating the creation of a comprehensive evolutionary map of tumorigenesis. This requires establishing high-quality prospective cohorts, systematically collecting samples for integrated spatiotemporal multiomics analyses, and efficiently translating laboratory findings into clinical applications.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 11","pages":"2037-2040"},"PeriodicalIF":29.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}