Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-24-0751
Christopher M Arends, Siddhartha Jaiswal
There is no general consensus on the set of mutations capable of driving the age-related clonal expansions in hematopoietic stem cells known as clonal hematopoiesis, and current variant classifications typically rely on rules derived from expert knowledge. In this issue of Cancer Discovery, Damajo and colleagues trained and validated machine learning models without prior knowledge of clonal hematopoiesis driver mutations to classify somatic mutations in blood for 12 genes in a purely data-driven way. See related article by Demajo et al., p. 1717 (9).
{"title":"Gene-Specific Machine Learning Models to Classify Driver Mutations in Clonal Hematopoiesis.","authors":"Christopher M Arends, Siddhartha Jaiswal","doi":"10.1158/2159-8290.CD-24-0751","DOIUrl":"https://doi.org/10.1158/2159-8290.CD-24-0751","url":null,"abstract":"<p><p>There is no general consensus on the set of mutations capable of driving the age-related clonal expansions in hematopoietic stem cells known as clonal hematopoiesis, and current variant classifications typically rely on rules derived from expert knowledge. In this issue of Cancer Discovery, Damajo and colleagues trained and validated machine learning models without prior knowledge of clonal hematopoiesis driver mutations to classify somatic mutations in blood for 12 genes in a purely data-driven way. See related article by Demajo et al., p. 1717 (9).</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 9","pages":"1581-1583"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-24-0644
Etienne Leveille, Shalin Kothari, Kadriye N Cosgun, Coraline Mlynarczyk, Markus Müschen
Polatuzumab vedotin, an antibody-drug conjugate targeting CD79B, is the first new drug approved for first-line therapy of diffuse large B-cell lymphoma in more than two decades, although factors determining treatment responses to polatuzumab vedotin remain unknown. Two new studies identified central mechanisms of lower sensitivity, namely reduced accessibility of the CD79B epitope through N-linked glycosylation of CD79B and lower CD79B surface expression levels due to the activity of the KLHL6 E3 ligase. See related article by Corcoran et al., p. 1653 (6) See related article by Meriranta et al. (7).
{"title":"Tuning Responses to Polatuzumab Vedotin in B-cell Lymphoma.","authors":"Etienne Leveille, Shalin Kothari, Kadriye N Cosgun, Coraline Mlynarczyk, Markus Müschen","doi":"10.1158/2159-8290.CD-24-0644","DOIUrl":"https://doi.org/10.1158/2159-8290.CD-24-0644","url":null,"abstract":"<p><p>Polatuzumab vedotin, an antibody-drug conjugate targeting CD79B, is the first new drug approved for first-line therapy of diffuse large B-cell lymphoma in more than two decades, although factors determining treatment responses to polatuzumab vedotin remain unknown. Two new studies identified central mechanisms of lower sensitivity, namely reduced accessibility of the CD79B epitope through N-linked glycosylation of CD79B and lower CD79B surface expression levels due to the activity of the KLHL6 E3 ligase. See related article by Corcoran et al., p. 1653 (6) See related article by Meriranta et al. (7).</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 9","pages":"1577-1580"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-24-0862
{"title":"Correction: Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomarker.","authors":"","doi":"10.1158/2159-8290.CD-24-0862","DOIUrl":"10.1158/2159-8290.CD-24-0862","url":null,"abstract":"","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 9","pages":"1756"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-24-0774
Israel Cañadas, Gabriele Casirati, Kathleen E Houlahan, Kara N Maxwell, Arnav Mehta, Abhijit Parolia, Olivier Saulnier, Alison M Taylor, Claire E Thomas, Ignacio Vázquez-García
{"title":"Insights on Future Directions in Cancer Research from the AACR NextGen Stars.","authors":"Israel Cañadas, Gabriele Casirati, Kathleen E Houlahan, Kara N Maxwell, Arnav Mehta, Abhijit Parolia, Olivier Saulnier, Alison M Taylor, Claire E Thomas, Ignacio Vázquez-García","doi":"10.1158/2159-8290.CD-24-0774","DOIUrl":"10.1158/2159-8290.CD-24-0774","url":null,"abstract":"","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 9","pages":"1584-1589"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-23-0012
Xu Zhang, Shoufu Duan, Panagiota E Apostolou, Xiaoping Wu, Jun Watanabe, Matthew Gallitto, Tara Barron, Kathryn R Taylor, Pamelyn J Woo, Xu Hua, Hui Zhou, Hong-Jian Wei, Nicholas McQuillan, Kyung-Don Kang, Gregory K Friedman, Peter D Canoll, Kenneth Chang, Cheng-Chia Wu, Rintaro Hashizume, Christopher R Vakoc, Michelle Monje, Guy M McKhann, Joseph A Gogos, Zhiguo Zhang
High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes the progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler chromodomain helicase DNA-binding protein 2 (CHD2) regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons. Significance: Neurons drive the proliferation and invasion of glioma cells. Here we show that chromatin remodeler chromodomain helicase DNA-binding protein 2 controls the epigenome and expression of axon-guidance and synaptic genes, thereby promoting neuron-induced proliferation of H3.1K27M diffuse midline glioma and the pathogenesis of this deadly disease.
{"title":"CHD2 Regulates Neuron-Glioma Interactions in Pediatric Glioma.","authors":"Xu Zhang, Shoufu Duan, Panagiota E Apostolou, Xiaoping Wu, Jun Watanabe, Matthew Gallitto, Tara Barron, Kathryn R Taylor, Pamelyn J Woo, Xu Hua, Hui Zhou, Hong-Jian Wei, Nicholas McQuillan, Kyung-Don Kang, Gregory K Friedman, Peter D Canoll, Kenneth Chang, Cheng-Chia Wu, Rintaro Hashizume, Christopher R Vakoc, Michelle Monje, Guy M McKhann, Joseph A Gogos, Zhiguo Zhang","doi":"10.1158/2159-8290.CD-23-0012","DOIUrl":"10.1158/2159-8290.CD-23-0012","url":null,"abstract":"<p><p>High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes the progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler chromodomain helicase DNA-binding protein 2 (CHD2) regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons. Significance: Neurons drive the proliferation and invasion of glioma cells. Here we show that chromatin remodeler chromodomain helicase DNA-binding protein 2 controls the epigenome and expression of axon-guidance and synaptic genes, thereby promoting neuron-induced proliferation of H3.1K27M diffuse midline glioma and the pathogenesis of this deadly disease.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1732-1754"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141064938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-23-1157
Iros Barozzi, Neil Slaven, Eleonora Canale, Rui Lopes, Inês Amorim Monteiro Barbosa, Melusine Bleu, Diana Ivanoiu, Claudia Pacini, Emanuela Mensa', Alfie Chambers, Sara Bravaccini, Sara Ravaioli, Balázs Győrffy, Maria Vittoria Dieci, Giancarlo Pruneri, Giorgio Giacomo Galli, Luca Magnani
Only a handful of somatic alterations have been linked to endocrine therapy resistance in hormone-dependent breast cancer, potentially explaining ∼40% of relapses. If other mechanisms underlie the evolution of hormone-dependent breast cancer under adjuvant therapy is currently unknown. In this work, we employ functional genomics to dissect the contribution of cis-regulatory elements (CRE) to cancer evolution by focusing on 12 megabases of noncoding DNA, including clonal enhancers, gene promoters, and boundaries of topologically associating domains. Parallel epigenetic perturbation (CRISPRi) in vitro reveals context-dependent roles for many of these CREs, with a specific impact on dormancy entrance and endocrine therapy resistance. Profiling of CRE somatic alterations in a unique, longitudinal cohort of patients treated with endocrine therapies identifies a limited set of noncoding changes potentially involved in therapy resistance. Overall, our data uncover how endocrine therapies trigger the emergence of transient features which could ultimately be exploited to hinder the adaptive process. Significance: This study shows that cells adapting to endocrine therapies undergo changes in the usage or regulatory regions. Dormant cells are less vulnerable to regulatory perturbation but gain transient dependencies which can be exploited to decrease the formation of dormant persisters.
{"title":"A Functional Survey of the Regulatory Landscape of Estrogen Receptor-Positive Breast Cancer Evolution.","authors":"Iros Barozzi, Neil Slaven, Eleonora Canale, Rui Lopes, Inês Amorim Monteiro Barbosa, Melusine Bleu, Diana Ivanoiu, Claudia Pacini, Emanuela Mensa', Alfie Chambers, Sara Bravaccini, Sara Ravaioli, Balázs Győrffy, Maria Vittoria Dieci, Giancarlo Pruneri, Giorgio Giacomo Galli, Luca Magnani","doi":"10.1158/2159-8290.CD-23-1157","DOIUrl":"10.1158/2159-8290.CD-23-1157","url":null,"abstract":"<p><p>Only a handful of somatic alterations have been linked to endocrine therapy resistance in hormone-dependent breast cancer, potentially explaining ∼40% of relapses. If other mechanisms underlie the evolution of hormone-dependent breast cancer under adjuvant therapy is currently unknown. In this work, we employ functional genomics to dissect the contribution of cis-regulatory elements (CRE) to cancer evolution by focusing on 12 megabases of noncoding DNA, including clonal enhancers, gene promoters, and boundaries of topologically associating domains. Parallel epigenetic perturbation (CRISPRi) in vitro reveals context-dependent roles for many of these CREs, with a specific impact on dormancy entrance and endocrine therapy resistance. Profiling of CRE somatic alterations in a unique, longitudinal cohort of patients treated with endocrine therapies identifies a limited set of noncoding changes potentially involved in therapy resistance. Overall, our data uncover how endocrine therapies trigger the emergence of transient features which could ultimately be exploited to hinder the adaptive process. Significance: This study shows that cells adapting to endocrine therapies undergo changes in the usage or regulatory regions. Dormant cells are less vulnerable to regulatory perturbation but gain transient dependencies which can be exploited to decrease the formation of dormant persisters.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1612-1630"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-23-1416
Santiago Demajo, Joan E Ramis-Zaldivar, Ferran Muiños, Miguel L Grau, Maria Andrianova, Núria López-Bigas, Abel González-Pérez
Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of hematologic malignancies, cardiovascular diseases, and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. In this study, we trained machine learning models for 12 of the most recurrent CH genes to identify their driver mutations. These models outperform expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals. Significance: We developed and validated gene-specific machine learning models to identify CH driver mutations, showing their advantage with respect to expert-curated rules. These models can support the identification and clinical interpretation of CH mutations in newly sequenced individuals. See related commentary by Arends and Jaiswal, p. 1581.
{"title":"Identification of Clonal Hematopoiesis Driver Mutations through In Silico Saturation Mutagenesis.","authors":"Santiago Demajo, Joan E Ramis-Zaldivar, Ferran Muiños, Miguel L Grau, Maria Andrianova, Núria López-Bigas, Abel González-Pérez","doi":"10.1158/2159-8290.CD-23-1416","DOIUrl":"10.1158/2159-8290.CD-23-1416","url":null,"abstract":"<p><p>Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of hematologic malignancies, cardiovascular diseases, and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. In this study, we trained machine learning models for 12 of the most recurrent CH genes to identify their driver mutations. These models outperform expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals. Significance: We developed and validated gene-specific machine learning models to identify CH driver mutations, showing their advantage with respect to expert-curated rules. These models can support the identification and clinical interpretation of CH mutations in newly sequenced individuals. See related commentary by Arends and Jaiswal, p. 1581.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1717-1731"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-24-0006
Jing Zhang, Sun Min Lim, Mi Ra Yu, Cheng Chen, Jia Wang, Wenqian Wang, Haopeng Rui, Jingtao Lu, Shun Lu, Tony Mok, Zhi Jian Chen, Byoung Chul Cho
First-generation KRAS G12C inhibitors, such as sotorasib and adagrasib, are limited by the depth and duration of clinical responses. One potential explanation for their modest clinical activity is the dynamic "cycling" of KRAS between its guanosine diphosphate (GDP)- and guanosine triphosphate (GTP)-bound states, raising controversy about whether targeting the GDP-bound form can fully block this oncogenic driver. We herein report that D3S-001, a next-generation GDP-bound G12C inhibitor with faster target engagement (TE) kinetics, depletes cellular active KRAS G12C at nanomolar concentrations. In the presence of growth factors, such as epithelial growth factor and hepatocyte growth factor, the ability of sotorasib and adagrasib to inhibit KRAS was compromised whereas the TE kinetics of D3S-001 was nearly unaffected, a unique feature differentiating D3S-001 from other GDP-bound G12C inhibitors. Furthermore, the high covalent potency and cellular TE efficiency of D3S-001 contributed to robust antitumor activity preclinically and translated into promising clinical efficacy in an ongoing phase 1 trial (NCT05410145). Significance: The kinetic study presented in this work unveils, for the first time, that a GDP-bound conformation-selective KRAS G12C inhibitor can potentially deplete cellular active KRAS in the presence of growth factors and offers new insights into the critical features that drive preclinical and clinical efficacy for this class of drugs.
第一代 KRAS G12C 抑制剂(如 sotorasib 和 adagrasib)的临床反应深度和持续时间有限。它们临床活性不高的一个潜在原因是 KRAS 在其 GDP 结合态和 GTP 结合态之间的动态 "循环",从而引发了靶向 GDP 结合态是否能完全阻断这一致癌驱动因素的争议。我们在此报告了新一代 GDP 结合型 G12C 抑制剂 D3S-001,它具有更快的靶点啮合(TE)动力学,能在纳摩尔浓度下耗尽细胞活性 KRAS G12C。在EGF和HGF等生长因子存在的情况下,sotorasib和adagrasib抑制KRAS的能力会受到影响,而D3S-001的TE动力学几乎不受影响,这是D3S-001区别于其他GDP结合型G12C抑制剂的独特之处。此外,D3S-001的高共价效力和细胞TE效率有助于在临床前发挥强大的抗肿瘤活性,并在正在进行的1期试验(NCT05410145)中转化为有希望的临床活性。
{"title":"D3S-001, a KRAS G12C Inhibitor with Rapid Target Engagement Kinetics, Overcomes Nucleotide Cycling, and Demonstrates Robust Preclinical and Clinical Activities.","authors":"Jing Zhang, Sun Min Lim, Mi Ra Yu, Cheng Chen, Jia Wang, Wenqian Wang, Haopeng Rui, Jingtao Lu, Shun Lu, Tony Mok, Zhi Jian Chen, Byoung Chul Cho","doi":"10.1158/2159-8290.CD-24-0006","DOIUrl":"10.1158/2159-8290.CD-24-0006","url":null,"abstract":"<p><p>First-generation KRAS G12C inhibitors, such as sotorasib and adagrasib, are limited by the depth and duration of clinical responses. One potential explanation for their modest clinical activity is the dynamic \"cycling\" of KRAS between its guanosine diphosphate (GDP)- and guanosine triphosphate (GTP)-bound states, raising controversy about whether targeting the GDP-bound form can fully block this oncogenic driver. We herein report that D3S-001, a next-generation GDP-bound G12C inhibitor with faster target engagement (TE) kinetics, depletes cellular active KRAS G12C at nanomolar concentrations. In the presence of growth factors, such as epithelial growth factor and hepatocyte growth factor, the ability of sotorasib and adagrasib to inhibit KRAS was compromised whereas the TE kinetics of D3S-001 was nearly unaffected, a unique feature differentiating D3S-001 from other GDP-bound G12C inhibitors. Furthermore, the high covalent potency and cellular TE efficiency of D3S-001 contributed to robust antitumor activity preclinically and translated into promising clinical efficacy in an ongoing phase 1 trial (NCT05410145). Significance: The kinetic study presented in this work unveils, for the first time, that a GDP-bound conformation-selective KRAS G12C inhibitor can potentially deplete cellular active KRAS in the presence of growth factors and offers new insights into the critical features that drive preclinical and clinical efficacy for this class of drugs.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1675-1698"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1158/2159-8290.CD-22-0649
Jitendra K Meena, Jarey H Wang, Nicholas J Neill, Dianne Keough, Nagireddy Putluri, Panagiotis Katsonis, Amanda M Koire, Hyemin Lee, Elizabeth A Bowling, Siddhartha Tyagi, Mayra Orellana, Rocio Dominguez-Vidaña, Heyuan Li, Kenneth Eagle, Charles Danan, Hsiang-Ching Chung, Andrew D Yang, William Wu, Sarah J Kurley, Brian M Ho, Joseph R Zoeller, Calla M Olson, Kristen L Meerbrey, Olivier Lichtarge, Arun Sreekumar, Clifford C Dacso, Luke W Guddat, Dominik Rejman, Dana Hocková, Zlatko Janeba, Lukas M Simon, Charles Y Lin, Monica C Pillon, Thomas F Westbrook
Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically. Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers.
{"title":"MYC Induces Oncogenic Stress through RNA Decay and Ribonucleotide Catabolism in Breast Cancer.","authors":"Jitendra K Meena, Jarey H Wang, Nicholas J Neill, Dianne Keough, Nagireddy Putluri, Panagiotis Katsonis, Amanda M Koire, Hyemin Lee, Elizabeth A Bowling, Siddhartha Tyagi, Mayra Orellana, Rocio Dominguez-Vidaña, Heyuan Li, Kenneth Eagle, Charles Danan, Hsiang-Ching Chung, Andrew D Yang, William Wu, Sarah J Kurley, Brian M Ho, Joseph R Zoeller, Calla M Olson, Kristen L Meerbrey, Olivier Lichtarge, Arun Sreekumar, Clifford C Dacso, Luke W Guddat, Dominik Rejman, Dana Hocková, Zlatko Janeba, Lukas M Simon, Charles Y Lin, Monica C Pillon, Thomas F Westbrook","doi":"10.1158/2159-8290.CD-22-0649","DOIUrl":"10.1158/2159-8290.CD-22-0649","url":null,"abstract":"<p><p>Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically. Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1699-1716"},"PeriodicalIF":29.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}