This column highlights recently published articles that are of interest to the readership of this publication. We encourage ABRF members to forward information on articles they feel are important and useful to Clive Slaughter, MCG-UGA Medical Partnership, 1425 Prince Ave., Athens, GA 30606, USA. Tel: (706) 713-2216; Fax: (706) 713-2221; E-mail: cslaught@uga.edu; or to any member of the editorial board. Article summaries reflect the reviewer's opinions and not necessarily those of the association.
本专栏重点介绍本出版物的读者感兴趣的最近发表的文章。我们鼓励ABRF成员将他们认为重要和有用的文章信息转发给Clive Slaughter, MCG-UGA医疗合作伙伴,1425 Prince Ave., Athens, GA 30606, USA。电话:(706)713-2216;传真:(706)713-2221;电子邮件:cslaught@uga.edu;或者给任何编辑委员会的成员。文章摘要反映的是审稿人的意见,而不一定是协会的意见。
{"title":"Article Watch: July 2018.","authors":"C. Slaughter","doi":"10.7171/jbt.18-2902-004","DOIUrl":"https://doi.org/10.7171/jbt.18-2902-004","url":null,"abstract":"This column highlights recently published articles that are of interest to the readership of this publication. We encourage ABRF members to forward information on articles they feel are important and useful to Clive Slaughter, MCG-UGA Medical Partnership, 1425 Prince Ave., Athens, GA 30606, USA. Tel: (706) 713-2216; Fax: (706) 713-2221; E-mail: cslaught@uga.edu; or to any member of the editorial board. Article summaries reflect the reviewer's opinions and not necessarily those of the association.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"37 ","pages":"54-60"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91552024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This column highlights recently published articles that are of interest to the readership of this publication. We encourage ABRF members to forward information on articles they feel are important and useful to Clive Slaughter, MCG-UGA Medical Partnership, 1425 Prince Ave., Athens, GA 30606, USA. Tel: (706) 713-2216; Fax: (706) 713-2221; E-mail: cslaught@uga.edu, or to any member of the editorial board. Article summaries reflect the reviewer's opinions and not necessarily those of the association.
本专栏重点介绍本出版物的读者感兴趣的最近发表的文章。我们鼓励ABRF成员将他们认为重要和有用的文章信息转发给Clive Slaughter, MCG-UGA医疗合作伙伴,1425 Prince Ave., Athens, GA 30606, USA。电话:(706)713-2216;传真:(706)713-2221;电子邮件:cslaught@uga.edu,或任何编委会成员。文章摘要反映的是审稿人的意见,而不一定是协会的意见。
{"title":"Article Watch: April 2018.","authors":"C. Slaughter","doi":"10.7171/jbt.18-2901-004","DOIUrl":"https://doi.org/10.7171/jbt.18-2901-004","url":null,"abstract":"This column highlights recently published articles that are of interest to the readership of this publication. We encourage ABRF members to forward information on articles they feel are important and useful to Clive Slaughter, MCG-UGA Medical Partnership, 1425 Prince Ave., Athens, GA 30606, USA. Tel: (706) 713-2216; Fax: (706) 713-2221; E-mail: cslaught@uga.edu, or to any member of the editorial board. Article summaries reflect the reviewer's opinions and not necessarily those of the association.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"19 1","pages":"16-22"},"PeriodicalIF":0.0,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72718657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CTLS-2016 and the Formation of a Pan-European Professional Society through the Lens of an ABRF Founding Member.","authors":"R. Niece","doi":"10.7171/jbt.17-2801-002","DOIUrl":"https://doi.org/10.7171/jbt.17-2801-002","url":null,"abstract":"","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"60 1","pages":"65-66"},"PeriodicalIF":0.0,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74003104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
From June 12 to 15, 2016, the second Core Technologies in Life Sciences (CTLS) conference was held at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. The CTLS grew out of a sense in the core facilities community that there was no single organization that could provide direct representation of all European core facility scientists. In April 2013, Spencer Shorte, the director of the Imagopole imaging platform at Institut Pasteur in Paris, hosted a meeting where numerous stakeholders from throughout Europe and beyond came together to discuss the possibility of forming a new organization to promote and support European core facility science. Presentations and discussions focused on what the attendees would like to see in a core facility association based in Europe. George Grills, Association of Biomolecular Resource Facilities (ABRF) Executive Board member, spoke via teleconference, and from the start, connections between CTLS and ABRF were considered essential.
{"title":"Core Technologies in Life Sciences (CTLS) 2016 Conference Summary.","authors":"J. Rappoport","doi":"10.7171/JBT.16-2704-003","DOIUrl":"https://doi.org/10.7171/JBT.16-2704-003","url":null,"abstract":"From June 12 to 15, 2016, the second Core Technologies in Life Sciences (CTLS) conference was held at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. The CTLS grew out of a sense in the core facilities community that there was no single organization that could provide direct representation of all European core facility scientists. In April 2013, Spencer Shorte, the director of the Imagopole imaging platform at Institut Pasteur in Paris, hosted a meeting where numerous stakeholders from throughout Europe and beyond came together to discuss the possibility of forming a new organization to promote and support European core facility science. Presentations and discussions focused on what the attendees would like to see in a core facility association based in Europe. George Grills, Association of Biomolecular Resource Facilities (ABRF) Executive Board member, spoke via teleconference, and from the start, connections between CTLS and ABRF were considered essential.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"19 1","pages":"138-140"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75270282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This column highlights recently published articles that are of interest to the readership of this publication. We encourage ABRF members to forward information on articles they feel are important and useful to Clive Slaughter, MCG-UGA Medical Partnership, 1425 Prince Ave., Athens, GA 30606, USA. Tel: (706) 713-2216; Fax: (706) 713-2221; E-mail: cslaught@uga.edu, or to any member of the editorial board. Article summaries reflect the reviewer's opinions and not necessarily those of the association.
本专栏重点介绍本出版物的读者感兴趣的最近发表的文章。我们鼓励ABRF成员将他们认为重要和有用的文章信息转发给Clive Slaughter, MCG-UGA医疗合作伙伴,1425 Prince Ave., Athens, GA 30606, USA。电话:(706)713-2216;传真:(706)713-2221;电子邮件:cslaught@uga.edu,或任何编委会成员。文章摘要反映的是审稿人的意见,而不一定是协会的意见。
{"title":"Article Watch: December 2016.","authors":"C. Slaughter","doi":"10.7171/JBT.16-2704-004","DOIUrl":"https://doi.org/10.7171/JBT.16-2704-004","url":null,"abstract":"This column highlights recently published articles that are of interest to the readership of this publication. We encourage ABRF members to forward information on articles they feel are important and useful to Clive Slaughter, MCG-UGA Medical Partnership, 1425 Prince Ave., Athens, GA 30606, USA. Tel: (706) 713-2216; Fax: (706) 713-2221; E-mail: cslaught@uga.edu, or to any member of the editorial board. Article summaries reflect the reviewer's opinions and not necessarily those of the association.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"1 1","pages":"141-147"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77560455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read "*.ab1" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28.
{"title":"Automated Sanger Analysis Pipeline (ASAP): A Tool for Rapidly Analyzing Sanger Sequencing Data with Minimum User Interference.","authors":"Aditya Singh, P. Bhatia","doi":"10.7171/JBT.16-2704-005","DOIUrl":"https://doi.org/10.7171/JBT.16-2704-005","url":null,"abstract":"Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read \"*.ab1\" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"1 1","pages":"129-131"},"PeriodicalIF":0.0,"publicationDate":"2016-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82933766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song-Tao Han, Y. Fei, Jin-You Huang, Mei Xu, Li-Chan Chen, D. Liao, Yujie Tan
Extended-spectrum β-lactamase (ESBL) genes that render bacteria resistant to antibiotics are commonly detected using phenotype testing, which is time consuming and not sufficiently accurate. To establish a better method, we used phenotype testing to identify ESBL-positive bacterial strains and conducted PCR to screen for TEM (named after the patient Temoneira who provided the first sample), sulfhydryl reagent variable (SHV), cefotaxime (CTX)-M-1, and CTX-M-9, the 4 most common ESBL types and subtypes. We then performed multiplex PCR with 1 primer containing a biotin and hybridized the PCR products with gene-specific probes that were coupled with microbeads and coated with a specific fluorescence. The hybrids were linked to streptavidin-R-phycoerythrins (SA-PEs) and run through a flow cytometer, which sorted the fluorescently dyed microbeads and quantified the PEs. The results from single PCR, multiplex PCR, and cytometry were consistent with each other. We used this method to test 169 clinical specimens that had been determined for phenotypes and found 154 positive for genotypes, including 30 of the 45 samples that were negative for phenotypes. The CTX-M genotype tests alone, counting both positive and negative cases, showed 99.41% (168/169) consistency with the ESBL phenotype test. Thus, we have established a multiplex-PCR system as a simple and quick method that is high throughput and accurate for detecting 4 common ESBL types and subtypes.
使细菌对抗生素产生耐药性的广谱β-内酰胺酶(ESBL)基因通常使用表型检测来检测,这种检测既耗时又不够准确。为了建立更好的方法,我们采用表型检测方法鉴定ESBL阳性菌株,并采用PCR方法筛选TEM(以提供第一份样品的患者Temoneira命名)、巯基试剂变量(SHV)、头孢噻肟(CTX)-M-1和CTX- m -9这4种最常见的ESBL型和亚型。然后,我们用1个含有生物素的引物进行多重PCR,并将PCR产物与基因特异性探针杂交,该探针与微珠偶联并涂有特异性荧光。这些杂交体与链亲和素- r -植红蛋白(SA-PEs)相连,并通过流式细胞仪对荧光染色的微珠进行分类并定量PEs。单次PCR、多重PCR及细胞术检测结果一致。我们使用这种方法对169个临床标本进行了表型检测,发现154个基因型阳性,包括45个表型阴性样本中的30个。CTX-M基因型检测与ESBL表型检测的一致性为99.41%(168/169)。因此,我们建立了一种简便、快速、高通量、准确检测4种常见ESBL型和亚型的多重pcr系统。
{"title":"Establishment of a Simple and Quick Method for Detecting Extended-Spectrum β-Lactamase (ESBL) Genes in Bacteria.","authors":"Song-Tao Han, Y. Fei, Jin-You Huang, Mei Xu, Li-Chan Chen, D. Liao, Yujie Tan","doi":"10.7171/JBT.16-2704-001","DOIUrl":"https://doi.org/10.7171/JBT.16-2704-001","url":null,"abstract":"Extended-spectrum β-lactamase (ESBL) genes that render bacteria resistant to antibiotics are commonly detected using phenotype testing, which is time consuming and not sufficiently accurate. To establish a better method, we used phenotype testing to identify ESBL-positive bacterial strains and conducted PCR to screen for TEM (named after the patient Temoneira who provided the first sample), sulfhydryl reagent variable (SHV), cefotaxime (CTX)-M-1, and CTX-M-9, the 4 most common ESBL types and subtypes. We then performed multiplex PCR with 1 primer containing a biotin and hybridized the PCR products with gene-specific probes that were coupled with microbeads and coated with a specific fluorescence. The hybrids were linked to streptavidin-R-phycoerythrins (SA-PEs) and run through a flow cytometer, which sorted the fluorescently dyed microbeads and quantified the PEs. The results from single PCR, multiplex PCR, and cytometry were consistent with each other. We used this method to test 169 clinical specimens that had been determined for phenotypes and found 154 positive for genotypes, including 30 of the 45 samples that were negative for phenotypes. The CTX-M genotype tests alone, counting both positive and negative cases, showed 99.41% (168/169) consistency with the ESBL phenotype test. Thus, we have established a multiplex-PCR system as a simple and quick method that is high throughput and accurate for detecting 4 common ESBL types and subtypes.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"1 1","pages":"132-137"},"PeriodicalIF":0.0,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83229584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guaranteeing high-quality next-generation sequencing data in a rapidly changing environment is an ongoing challenge. The introduction of the Illumina NextSeq 500 and the depreciation of specific metrics from Illumina's Sequencing Analysis Viewer (SAV; Illumina, San Diego, CA, USA) have made it more difficult to determine directly the baseline error rate of sequencing runs. To improve our ability to measure base quality, we have created an open-source tool to construct the Percent Perfect Reads (PPR) plot, previously provided by the Illumina sequencers. The PPR program is compatible with HiSeq 2000/2500, MiSeq, and NextSeq 500 instruments and provides an alternative to Illumina's quality value (Q) scores for determining run quality. Whereas Q scores are representative of run quality, they are often overestimated and are sourced from different look-up tables for each platform. The PPR's unique capabilities as a cross-instrument comparison device, as a troubleshooting tool, and as a tool for monitoring instrument performance can provide an increase in clarity over SAV metrics that is often crucial for maintaining instrument health. These capabilities are highlighted.
在快速变化的环境中保证高质量的下一代测序数据是一个持续的挑战。Illumina NextSeq 500的推出和Illumina测序分析查看器(SAV)特定指标的贬值;Illumina, San Diego, CA, USA)使得直接确定测序运行的基线错误率变得更加困难。为了提高我们测量碱基质量的能力,我们已经创建了一个开源工具来构建百分比完美读取(PPR)图,之前由Illumina测序仪提供。PPR程序与HiSeq 2000/2500, MiSeq和NextSeq 500仪器兼容,并为确定运行质量提供了Illumina质量值(Q)分数的替代方案。虽然Q分数是运行质量的代表,但它们经常被高估,并且来自每个平台的不同查找表。PPR作为跨仪器比较设备、故障排除工具和监测仪器性能的工具,具有独特的功能,可以提高SAV指标的清晰度,而SAV指标通常对维持仪器健康至关重要。突出显示了这些功能。
{"title":"Monitoring Error Rates In Illumina Sequencing.","authors":"Leigh J. Manley, Duanduan Ma, S. Levine","doi":"10.7171/JBT.16-2704-002","DOIUrl":"https://doi.org/10.7171/JBT.16-2704-002","url":null,"abstract":"Guaranteeing high-quality next-generation sequencing data in a rapidly changing environment is an ongoing challenge. The introduction of the Illumina NextSeq 500 and the depreciation of specific metrics from Illumina's Sequencing Analysis Viewer (SAV; Illumina, San Diego, CA, USA) have made it more difficult to determine directly the baseline error rate of sequencing runs. To improve our ability to measure base quality, we have created an open-source tool to construct the Percent Perfect Reads (PPR) plot, previously provided by the Illumina sequencers. The PPR program is compatible with HiSeq 2000/2500, MiSeq, and NextSeq 500 instruments and provides an alternative to Illumina's quality value (Q) scores for determining run quality. Whereas Q scores are representative of run quality, they are often overestimated and are sourced from different look-up tables for each platform. The PPR's unique capabilities as a cross-instrument comparison device, as a troubleshooting tool, and as a tool for monitoring instrument performance can provide an increase in clarity over SAV metrics that is often crucial for maintaining instrument health. These capabilities are highlighted.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"19 1","pages":"125-128"},"PeriodicalIF":0.0,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89702730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This column highlights recently published articles that are of interest to the readership of this publication. We encourage ABRF members to forward information on articles they feel are important and useful to Clive Slaughter, MCG-UGA Medical Partnership, 1425 Prince Ave., Athens, GA 30606, USA; Tel: (706) 713-2216; Fax: (706) 713-2221; E-mail: cslaught@uga.edu, or to any member of the editorial board. Article summaries reflect the reviewer's opinions and not necessarily those of the association.
本专栏重点介绍本出版物的读者感兴趣的最近发表的文章。我们鼓励ABRF成员将他们认为重要和有用的文章信息转发给Clive Slaughter, MCG-UGA医疗合作伙伴,1425 Prince Ave., Athens, GA 30606, USA;电话:(706)713-2216;传真:(706)713-2221;电子邮件:cslaught@uga.edu,或任何编委会成员。文章摘要反映的是审稿人的意见,而不一定是协会的意见。
{"title":"Article Watch: April 2016.","authors":"C. Slaughter","doi":"10.7171/jbt.16-2701-006","DOIUrl":"https://doi.org/10.7171/jbt.16-2701-006","url":null,"abstract":"This column highlights recently published articles that are of interest to the readership of this publication. We encourage ABRF members to forward information on articles they feel are important and useful to Clive Slaughter, MCG-UGA Medical Partnership, 1425 Prince Ave., Athens, GA 30606, USA; Tel: (706) 713-2216; Fax: (706) 713-2221; E-mail: cslaught@uga.edu, or to any member of the editorial board. Article summaries reflect the reviewer's opinions and not necessarily those of the association.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"28 1","pages":"40-5"},"PeriodicalIF":0.0,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75169353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shared Resource Laboratories (SRLs) provide investigators access to necessary scientific and resource expertise to leverage complex technologies fully for advancing high-quality biomedical research in a cost-effective manner. At the University of Nebraska Medical Center, the Flow Cytometry Research Facility (FCRF) offered access to exceptional technology, but the methods of operation were outdated and unsustainable. Whereas technology has advanced and the institute has expanded, the operations at the facility remained unchanged for 35 yr. To rectify this, at the end of 2013, we took a product lifecycle management approach to affect large operational changes and align the services offered with the SRL goal of education, as well as to provide service to researchers. These disruptive operational changes took over 10 mo to complete and allowed for independent end-user acquisition of flow cytometry data. The results have been monitored for the past 12 mo. The operational changes have had a positive impact on the quality of research, increased investigator-facility interaction, reduced stress of facility staff, and increased overall use of the resources. This product lifecycle management approach to facility operations allowed us to conceive of, design, implement, and monitor effectively the changes at the FCRF. This approach should be considered by SRL management when faced with the need for operationally disruptive measures.
{"title":"Operational Changes in a Shared Resource Laboratory with the Use of a Product Lifecycle Management Approach: A Case Study.","authors":"P. Hexley, Victoria Smith, S. Wall","doi":"10.7171/jbt.16-2701-002","DOIUrl":"https://doi.org/10.7171/jbt.16-2701-002","url":null,"abstract":"Shared Resource Laboratories (SRLs) provide investigators access to necessary scientific and resource expertise to leverage complex technologies fully for advancing high-quality biomedical research in a cost-effective manner. At the University of Nebraska Medical Center, the Flow Cytometry Research Facility (FCRF) offered access to exceptional technology, but the methods of operation were outdated and unsustainable. Whereas technology has advanced and the institute has expanded, the operations at the facility remained unchanged for 35 yr. To rectify this, at the end of 2013, we took a product lifecycle management approach to affect large operational changes and align the services offered with the SRL goal of education, as well as to provide service to researchers. These disruptive operational changes took over 10 mo to complete and allowed for independent end-user acquisition of flow cytometry data. The results have been monitored for the past 12 mo. The operational changes have had a positive impact on the quality of research, increased investigator-facility interaction, reduced stress of facility staff, and increased overall use of the resources. This product lifecycle management approach to facility operations allowed us to conceive of, design, implement, and monitor effectively the changes at the FCRF. This approach should be considered by SRL management when faced with the need for operationally disruptive measures.","PeriodicalId":94326,"journal":{"name":"Journal of biomolecular techniques : JBT","volume":"110 5 1","pages":"18-24"},"PeriodicalIF":0.0,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89397866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}