首页 > 最新文献

Calphad-computer Coupling of Phase Diagrams and Thermochemistry最新文献

英文 中文
Phase equilibria relationship in the FetO-TiO2-CaO-SiO2 system with CaO/SiO2 weight ratio of 1.2 at 1673K 1673K 下 CaO/SiO2 重量比为 1.2 的 FetO-TiO2-CaO-SiO2 体系中的相平衡关系
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-11-14 DOI: 10.1016/j.calphad.2024.102768
Youyu Li, Baijun Yan
Phase equilibria relationship in the FetO-TiO2-CaO-SiO2 system with CaO/SiO2 weight ratio of 1.2 under argon atmosphere were identified experimentally at 1673K by employing high-temperature equilibration method followed by electron probe X-ray microanalysis (EPMA) and X-Ray Diffraction (XRD) measurements. It was found that there exist 7 crystal phases and 1 liquid phase in the system, and 19 different kinds of phase equilibria relationship exist among these 8 phases. The 7 crystal phases are as follows: kilchoanite (Ca3Si2O7), ulvöspinel (Fe3-xTixO4), pseudobrookite (FeO·2TiO2), ilmenite (FeTiO3), perovskite (CaTiO3), rutile (TiO2) and wüstite (FetO). By using L as the symbol for liquid phase, K for kilchoanite, U for ulvöspinel, B for pseudobrookite, I for ilmenite, P for perovskite, R for rutile and W for wüstite, the 19 phase equilibria relationships formed by these phases can be summarized as follows: 1) single L, 2) L + U, 3) L + R, 4) L + W, 5) L + K, 6) L + I, 7) L + B, 8) L + P, 9) L + R + P, 10) L + I + P, 11) L + B + I, 12) L + R + B, 13) L + U + W, 14) L + U + I, 15) L + U + P, 16) L + P + B, 17) L + U + I + P, 18) L + R + B + P, and 19) L + B + I + P. Finally, based on the above-determined phase equilibria relationship, a section phase diagram of the system at 1673K was constructed. From the constructed phase diagram, the evolution of phases caused by composition change can be seen graphically.
在氩气环境下,采用高温平衡法,通过电子探针 X 射线显微分析(EPMA)和 X 射线衍射(XRD)测量,在 1673K 温度下确定了 CaO/SiO2 重量比为 1.2 的 FetO-TiO2-CaO-SiO2 体系中的相平衡关系。研究发现,该体系中存在 7 种晶相和 1 种液相,这 8 种相之间存在 19 种不同的相平衡关系。这 7 种晶相分别是:千层岩(Ca3Si2O7)、乌尔沃斯宾石(Fe3-xTixO4)、假沸石(FeO-2TiO2)、钛铁矿(FeTiO3)、透辉石(CaTiO3)、金红石(TiO2)和武氏石(FetO)。用 L 表示液相,K 表示千长石,U 表示乌洛托品石,B 表示假沸石,I 表示钛铁矿,P 表示透辉石,R 表示金红石,W 表示绿泥石,这些相形成的 19 种相平衡关系可归纳如下:1) 单 L,2) L + U,3) L + R,4) L + W,5) L + K,6) L + I,7) L + B,8) L + P,9) L + R + P,10) L + I + P,11) L + B + I、12)L + R + B,13)L + U + W,14)L + U + I,15)L + U + P,16)L + P + B,17)L + U + I + P,18)L + R + B + P,19)L + B + I + P。最后,根据上述确定的相平衡关系,构建了 1673K 时体系的剖面相图。从所构建的相图中,我们可以看到成分变化所引起的相的演化过程。
{"title":"Phase equilibria relationship in the FetO-TiO2-CaO-SiO2 system with CaO/SiO2 weight ratio of 1.2 at 1673K","authors":"Youyu Li,&nbsp;Baijun Yan","doi":"10.1016/j.calphad.2024.102768","DOIUrl":"10.1016/j.calphad.2024.102768","url":null,"abstract":"<div><div>Phase equilibria relationship in the Fe<sub>t</sub>O-TiO<sub>2</sub>-CaO-SiO<sub>2</sub> system with CaO/SiO<sub>2</sub> weight ratio of 1.2 under argon atmosphere were identified experimentally at 1673K by employing high-temperature equilibration method followed by electron probe X-ray microanalysis (EPMA) and X-Ray Diffraction (XRD) measurements. It was found that there exist 7 crystal phases and 1 liquid phase in the system, and 19 different kinds of phase equilibria relationship exist among these 8 phases. The 7 crystal phases are as follows: kilchoanite (Ca<sub>3</sub>Si<sub>2</sub>O<sub>7</sub>), ulvöspinel (Fe<sub>3-x</sub>Ti<sub>x</sub>O<sub>4</sub>), pseudobrookite (FeO·2TiO<sub>2</sub>), ilmenite (FeTiO<sub>3</sub>), perovskite (CaTiO<sub>3</sub>), rutile (TiO<sub>2</sub>) and wüstite (Fe<sub>t</sub>O). By using L as the symbol for liquid phase, K for kilchoanite, U for ulvöspinel, B for pseudobrookite, I for ilmenite, P for perovskite, R for rutile and W for wüstite, the 19 phase equilibria relationships formed by these phases can be summarized as follows: 1) single L, 2) L + U, 3) L + R, 4) L + W, 5) L + K, 6) L + I, 7) L + B, 8) L + P, 9) L + R + P, 10) L + I + P, 11) L + B + I, 12) L + R + B, 13) L + U + W, 14) L + U + I, 15) L + U + P, 16) L + P + B, 17) L + U + I + P, 18) L + R + B + P, and 19) L + B + I + P. Finally, based on the above-determined phase equilibria relationship, a section phase diagram of the system at 1673K was constructed. From the constructed phase diagram, the evolution of phases caused by composition change can be seen graphically.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102768"},"PeriodicalIF":1.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase relationship in Gd2O3-Nd2O3-ZrO2 system at 1673 K and 1873 K 1673 K 和 1873 K 下 Gd2O3-Nd2O3-ZrO2 系统的相关系
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-11-13 DOI: 10.1016/j.calphad.2024.102767
Kai Xu, Taowen Zheng, Xuezhen Che, Liumei Su, Dandan Huang
The phase relationship in the Gd2O3-Nd2O3-ZrO2 system at 1673 K and 1873 K was investigated by X-ray diffraction, scanning electron microscopy and electron probe microanalysis. Samples with different compositions were annealed in air at temperatures of 1673 K and 1873 K after preparation. The isothermal section of the Gd2O3-Nd2O3-ZrO2 ternary system has been developed. No ternary compound was found at 1673 K and 1873 K. There exist fields of solid solution based on cubic (C) and monoclinic (B) modifications of Gd2O3, tetragonal (T) and cubic modifications of ZrO2, A-Nd2O3, and pyrochlore-type Nd2Zr2O7 phase.
通过 X 射线衍射、扫描电子显微镜和电子探针显微分析,研究了 1673 K 和 1873 K 下 Gd2O3-Nd2O3-ZrO2 系统的相关系。不同成分的样品在制备后分别在 1673 K 和 1873 K 的温度下进行空气退火。开发出了 Gd2O3-Nd2O3-ZrO2 三元体系的等温段。Gd2O3 的立方(C)和单斜(B)、ZrO2 的四方(T)和立方、A-Nd2O3 和火成岩型 Nd2Zr2O7 相都存在固溶体。
{"title":"Phase relationship in Gd2O3-Nd2O3-ZrO2 system at 1673 K and 1873 K","authors":"Kai Xu,&nbsp;Taowen Zheng,&nbsp;Xuezhen Che,&nbsp;Liumei Su,&nbsp;Dandan Huang","doi":"10.1016/j.calphad.2024.102767","DOIUrl":"10.1016/j.calphad.2024.102767","url":null,"abstract":"<div><div>The phase relationship in the Gd<sub>2</sub>O<sub>3</sub>-Nd<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> system at 1673 K and 1873 K was investigated by X-ray diffraction, scanning electron microscopy and electron probe microanalysis. Samples with different compositions were annealed in air at temperatures of 1673 K and 1873 K after preparation. The isothermal section of the Gd<sub>2</sub>O<sub>3</sub>-Nd<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> ternary system has been developed. No ternary compound was found at 1673 K and 1873 K. There exist fields of solid solution based on cubic (C) and monoclinic (B) modifications of Gd<sub>2</sub>O<sub>3</sub>, tetragonal (T) and cubic modifications of ZrO<sub>2</sub>, A-Nd<sub>2</sub>O<sub>3</sub>, and pyrochlore-type Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> phase.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102767"},"PeriodicalIF":1.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquidus projection and miscibility gap of the Ag-Cu-Te ternary system 银-铜-碲三元体系的液相投影和混溶间隙
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-11-08 DOI: 10.1016/j.calphad.2024.102765
Sinn-wen Chen , Pin-shuo Huang , Yung-Chun Tsai , Yohanes Hutabalian
Ag-Cu-Te is a significant material system, and experimental measurements have been conducted to determine its liquidus projection. Aside from the terminal solid solution phases and binary compounds, there exists a ternary compound known as AgCuTe. The ten primary solidification phases include (Ag), Ag2Te, Ag1.9Te, Ag5Te3, (Te), CuTe, Cu3Te2, Cu2Te, (Cu), and AgCuTe. A liquid miscibility gap with a very wide compositional range is observed. When the alloys are at temperatures higher than those of the binodal curves, they are entirely molten. Interesting spherical-shaped microstructures are observed when the alloys solidify passing through the liquid miscibility gap. Furthermore, it has been determined that there are nine invariant reactions, consisting of three Class I reactions (L ↔ α + β + γ) three Class II reactions (L + α ↔ β + γ), and three Class III reactions (L + α + β ↔ γ). The highest and lowest invariant reaction temperatures are determined to be 849.0 °C and 308.0 °C, respectively.
银-铜-碲是一种重要的材料系统,人们通过实验测量来确定其液相投影。除了终端固溶相和二元化合物外,还有一种称为 AgCuTe 的三元化合物。十种主要固溶相包括(Ag)、Ag2Te、Ag1.9Te、Ag5Te3、(Te)、CuTe、Cu3Te2、Cu2Te、(Cu)和 AgCuTe。观察到液态混溶间隙的成分范围非常宽。当合金的温度高于二元曲线的温度时,它们完全熔化。当合金凝固穿过液体混溶间隙时,会观察到有趣的球形微结构。此外,还确定了九种不变反应,包括三种 I 类反应(L ↔ α + β + γ)、三种 II 类反应(L + α ↔ β + γ)和三种 III 类反应(L + α + β ↔ γ)。最高和最低不变反应温度分别为 849.0 ℃ 和 308.0 ℃。
{"title":"Liquidus projection and miscibility gap of the Ag-Cu-Te ternary system","authors":"Sinn-wen Chen ,&nbsp;Pin-shuo Huang ,&nbsp;Yung-Chun Tsai ,&nbsp;Yohanes Hutabalian","doi":"10.1016/j.calphad.2024.102765","DOIUrl":"10.1016/j.calphad.2024.102765","url":null,"abstract":"<div><div>Ag-Cu-Te is a significant material system, and experimental measurements have been conducted to determine its liquidus projection. Aside from the terminal solid solution phases and binary compounds, there exists a ternary compound known as AgCuTe. The ten primary solidification phases include (Ag), Ag<sub>2</sub>Te, Ag<sub>1.9</sub>Te, Ag<sub>5</sub>Te<sub>3</sub>, (Te), CuTe, Cu<sub>3</sub>Te<sub>2</sub>, Cu<sub>2</sub>Te, (Cu), and AgCuTe. A liquid miscibility gap with a very wide compositional range is observed. When the alloys are at temperatures higher than those of the binodal curves, they are entirely molten. Interesting spherical-shaped microstructures are observed when the alloys solidify passing through the liquid miscibility gap. Furthermore, it has been determined that there are nine invariant reactions, consisting of three Class I reactions (L ↔ α + β + γ) three Class II reactions (L + α ↔ β + γ), and three Class III reactions (L + α + β ↔ γ). The highest and lowest invariant reaction temperatures are determined to be 849.0 °C and 308.0 °C, respectively.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102765"},"PeriodicalIF":1.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catastrophe theory and thermodynamic instability to predict congruent melting temperature of crystals 用灾难理论和热力学不稳定性预测晶体的同熔温度
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-11-04 DOI: 10.1016/j.calphad.2024.102761
Marcello Merli , Costanza Bonadiman , Alessandro Pavese
Melting temperature (Tm) is a crucial physical property of solids and plays an important role in the characterization of materials. Therefore, the capacity to predict Tm is a relevant issue for solid state sciences. This investigation aims i) to provide a theoretical basis for the link between catastrophe theory and thermodynamic instability; ii) to estimate Tm through the notion of “degenerate critical temperature” (Td), related to (Pd,Vd,Td), where KT → 0 and the Gibbs function shows a non-Morse behaviour; iii) to compare predictions of (Pm,Tm) with observations for three crystalline pure substances that undergo congruent melting and exhibit different bonding and stability ranges: NaCl (halite), SiO2,st (stishovite), and MgSiO3 (perovskite). The P-T locus of KT = 0 associated with melting is identified using the maximum values of Td and ΔHV at a given pressure. We observed an average absolute discrepancy ranging between 0.2 % (halite) and 5.8 % (stishovite), and an agreement between theoretical and experimental T(P)melting-points from better than 1 to approximately 14 %.
熔融温度(Tm)是固体的一项关键物理特性,在材料表征中发挥着重要作用。因此,预测 Tm 的能力是固体科学的一个相关问题。这项研究旨在 i) 为灾难理论与热力学不稳定性之间的联系提供理论依据;ii) 通过与 (Pd,Vd,Td) 相关的 "退化临界温度"(Td)概念估算 Tm,其中 KT → 0 且吉布斯函数显示非莫氏行为;iii) 将 (Pm,Tm) 的预测结果与对三种晶体纯物质的观察结果进行比较,这三种物质会发生同熔,并表现出不同的键合和稳定性范围:NaCl(海绿石)、SiO2,st(石英)和 MgSiO3(透辉石)。利用给定压力下 Td 和 ΔH/ΔV 的最大值,确定了与熔化相关的 KT = 0 的 P-T 位置。我们观察到的平均绝对差异范围在 0.2 %(海泡石)和 5.8 %(菱锰矿)之间,理论和实验 T(P)熔点之间的一致性从优于 1 % 到大约 14 % 不等。
{"title":"Catastrophe theory and thermodynamic instability to predict congruent melting temperature of crystals","authors":"Marcello Merli ,&nbsp;Costanza Bonadiman ,&nbsp;Alessandro Pavese","doi":"10.1016/j.calphad.2024.102761","DOIUrl":"10.1016/j.calphad.2024.102761","url":null,"abstract":"<div><div>Melting temperature (<em>T</em><sub>m</sub>) is a crucial physical property of solids and plays an important role in the characterization of materials. Therefore, the capacity to predict <em>T</em><sub>m</sub> is a relevant issue for solid state sciences. This investigation aims i) to provide a theoretical basis for the link between catastrophe theory and thermodynamic instability; ii) to estimate <em>T</em><sub>m</sub> through the notion of “degenerate critical temperature” (<em>T</em><sub>d</sub>), related to (<em>P</em><sub>d</sub>,<em>V</em><sub>d</sub>,<em>T</em><sub>d</sub>), where <em>K</em><sub><em>T</em></sub> → 0 and the Gibbs function shows a <em>non</em>-Morse behaviour; iii) to compare predictions of (<em>P</em><sub>m</sub>,<em>T</em><sub>m</sub>) with observations for three crystalline pure substances that undergo congruent melting and exhibit different bonding and stability ranges: NaCl (halite), SiO<sub>2,st</sub> (stishovite), and MgSiO<sub>3</sub> (perovskite). The <em>P</em>-<em>T locus</em> of <em>K</em><sub><em>T</em></sub> = 0 associated with melting is identified using the maximum values of <em>T</em><sub>d</sub> and Δ<em>H</em>/Δ<em>V</em> at a given pressure. We observed an average absolute discrepancy ranging between 0.2 % (halite) and 5.8 % (stishovite), and an agreement between theoretical and experimental <em>T</em>(<em>P</em>)<sub>melting</sub>-points from better than 1 to approximately 14 %.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102761"},"PeriodicalIF":1.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new model for precipitation kinetics considering diffusion within the precipitates 考虑到沉淀物内部扩散的沉淀动力学新模型
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-11-01 DOI: 10.1016/j.calphad.2024.102764
Ze Sheng , Manon Bonvalet Rolland , Peter Hedström
Quantitative modelling of precipitation kinetics can play an important role in a computational materials design framework. For many material systems, e.g., the Fe-Cu system, the precipitates (rich in Cu at equilibrium) nucleate at a composition far away from the equilibrium. This in turn affects the precipitation kinetics, and the capability to model the compositional evolution of the Cu precipitates is therefore important. In the present work we propose a new approach implemented in a Langer-Schwartz-Kampmann-Wagner precipitation modelling framework where the concentration profile inside the precipitates is defined with an explicit function and the diffusive fluxes in both precipitates and matrix are solved concurrently to compute the growth rate of the precipitates. The new model is evaluated with respect to results from atom probe tomography for Cu precipitation in a 15–5 PH stainless steel. A parameter study of the effect of diffusion coefficients and interfacial energies is conducted, and it is concluded that the new model is capable of describing the experimentally determined evolution of the Cu precipitate volume fraction, mean radius, number density and composition.
沉淀动力学定量建模可在计算材料设计框架中发挥重要作用。对于许多材料体系,例如铁-铜体系,沉淀物(平衡时富含铜)的成核成分与平衡成分相去甚远。这反过来又会影响沉淀动力学,因此建立铜沉淀物成分演变模型的能力非常重要。在本研究中,我们提出了一种在朗格-施瓦茨-坎普曼-瓦格纳沉淀建模框架中实施的新方法,即用一个显式函数定义沉淀物内部的浓度分布,并同时求解沉淀物和基体中的扩散通量,以计算沉淀物的增长率。根据原子探针层析成像法对 15-5 PH 不锈钢中的铜析出结果对新模型进行了评估。对扩散系数和界面能的影响进行了参数研究,得出的结论是新模型能够描述实验测定的铜沉淀体积分数、平均半径、数量密度和成分的演变。
{"title":"A new model for precipitation kinetics considering diffusion within the precipitates","authors":"Ze Sheng ,&nbsp;Manon Bonvalet Rolland ,&nbsp;Peter Hedström","doi":"10.1016/j.calphad.2024.102764","DOIUrl":"10.1016/j.calphad.2024.102764","url":null,"abstract":"<div><div>Quantitative modelling of precipitation kinetics can play an important role in a computational materials design framework. For many material systems, e.g., the Fe-Cu system, the precipitates (rich in Cu at equilibrium) nucleate at a composition far away from the equilibrium. This in turn affects the precipitation kinetics, and the capability to model the compositional evolution of the Cu precipitates is therefore important. In the present work we propose a new approach implemented in a Langer-Schwartz-Kampmann-Wagner precipitation modelling framework where the concentration profile inside the precipitates is defined with an explicit function and the diffusive fluxes in both precipitates and matrix are solved concurrently to compute the growth rate of the precipitates. The new model is evaluated with respect to results from atom probe tomography for Cu precipitation in a 15–5 PH stainless steel. A parameter study of the effect of diffusion coefficients and interfacial energies is conducted, and it is concluded that the new model is capable of describing the experimentally determined evolution of the Cu precipitate volume fraction, mean radius, number density and composition.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102764"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical assessment of the Si-P system: P solubility in the Si-rich region and refining by phosphorus distillation 硅-磷系统的关键评估:富硅区的磷溶解度和磷蒸馏提炼
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.calphad.2024.102758
Simon Favre, Ioana Nuta, Guy Chichignoud, Evelyne Fischer, Christian Chatillon
The P-Si system has been studied due to its poisonous importance in silicon electronic devices for photovoltaic applications. Thermodynamic and phase diagram data of the Si-P system available in literature are critically evaluated for further optimization of thermodynamic properties in order to improve the thermodynamic description of this system, especially in the Si-rich region. After revising the solubility data of P in solid Si in the Si-rich region its upper limit is now evaluated at 1w% P (mole fraction XP ≈ 0.0095). With this controversial solubility limit resolved, current modelling of the liquid and solid phases is described more accurately. Distillation capacity of phosphorus by vaporization is then assessed for liquid and solid silicon on the basis of the determination of the infinite dilution activity coefficient of phosphorus in silicon - the Henry's coefficient - as well as numerous gaseous species existing in the Si-P binary system. The lack of original calorimetric data is highlighted in view to a further more reliable description of the complete Si-P system.
由于 P-Si 系统在光伏应用的硅电子设备中具有重要的毒害作用,因此对该系统进行了研究。为了进一步优化热力学特性,我们对文献中提供的硅-硅体系的热力学和相图数据进行了严格评估,以改进该体系的热力学描述,尤其是在富硅区域。在修订了固态硅中 P 在富硅区域的溶解度数据后,其上限现在被评估为 1w% P(分子分数 XP ≈ 0.0095)。解决了这一有争议的溶解度上限问题后,目前对液相和固相的建模描述就更加准确了。然后,在确定硅中磷的无限稀释活性系数(亨利系数)以及硅-磷二元体系中存在的众多气态物质的基础上,对液态和固态硅的磷蒸发蒸馏能力进行了评估。为了进一步更可靠地描述完整的硅-磷系统,强调了原始量热数据的缺乏。
{"title":"Critical assessment of the Si-P system: P solubility in the Si-rich region and refining by phosphorus distillation","authors":"Simon Favre,&nbsp;Ioana Nuta,&nbsp;Guy Chichignoud,&nbsp;Evelyne Fischer,&nbsp;Christian Chatillon","doi":"10.1016/j.calphad.2024.102758","DOIUrl":"10.1016/j.calphad.2024.102758","url":null,"abstract":"<div><div>The P-Si system has been studied due to its poisonous importance in silicon electronic devices for photovoltaic applications. Thermodynamic and phase diagram data of the Si-P system available in literature are critically evaluated for further optimization of thermodynamic properties in order to improve the thermodynamic description of this system, especially in the Si-rich region. After revising the solubility data of P in solid Si in the Si-rich region its upper limit is now evaluated at 1w% P (mole fraction X<sub>P</sub> ≈ 0.0095). With this controversial solubility limit resolved, current modelling of the liquid and solid phases is described more accurately. Distillation capacity of phosphorus by vaporization is then assessed for liquid and solid silicon on the basis of the determination of the infinite dilution activity coefficient of phosphorus in silicon - the Henry's coefficient - as well as numerous gaseous species existing in the Si-P binary system. The lack of original calorimetric data is highlighted in view to a further more reliable description of the complete Si-P system.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102758"},"PeriodicalIF":1.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the γ + γ′ microstructure characterization of the Co–V–Zr system based on CALPHAD method 基于 CALPHAD 方法的 Co-V-Zr 体系 γ + γ′ 显微结构表征研究
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.calphad.2024.102762
Jiaxing Sun, Cuiping Guo, Changrong Li, Zhenmin Du
The γ + γ′ microstructure in novel Co-based superalloys is often obtained by means of alloying method. Therefore, this study focuses on exploring the evolution of the γ + γ′ microstructure through the addition of Zr using CALculation of PHAse Diagram (CALPHAD) method. The heat capacity of τ was experimentally determined by the sapphire method, and the enthalpy of formation of τ at 0 K was calculated using Density Functional Theory (DFT). The thermodynamic parameters were derived based on experimental results from phase equilibrium data and first-principles calculations using CALPHAD method. According to the thermodynamic analyses, the alloy Co80.0V18.5Zr1.5 (at. %) was homogenized at 1473 K for 10 h and aged at 1173 K for different time, the ordered L12-γ′ precipitates coarsened and dissolved after 2 h, and transformed into needle-like D019-Co3V after 67 h of aging, which indicated that the γ′ phase was not in a thermodynamically stable state in the Co–V–Zr system. If the stable γ′ phase is obtained, additional alloying elements is necessary to be added.
新型 Co 基超合金中的γ + γ′ 显微结构通常是通过合金化方法获得的。因此,本研究重点利用CALculation of PHAse Diagram(CALPHAD)方法探讨了添加Zr后γ+γ′微观结构的演变。τ的热容量通过蓝宝石法进行实验测定,τ在0 K时的形成焓则通过密度泛函理论(DFT)进行计算。热力学参数是根据相平衡数据的实验结果和使用 CALPHAD 方法进行的第一原理计算得出的。热力学分析表明,Co80.0V18.5Zr1.5(at. %)合金在 1473 K 下均质 10 h,在 1173 K 下老化不同时间后,有序的 L12-γ′ 沉淀在 2 h 后粗化并溶解,老化 67 h 后转变为针状的 D019-Co3V,这表明γ′相在 Co-V-Zr 体系中并不处于热力学稳定状态。如果要获得稳定的γ′相,就必须添加额外的合金元素。
{"title":"Study on the γ + γ′ microstructure characterization of the Co–V–Zr system based on CALPHAD method","authors":"Jiaxing Sun,&nbsp;Cuiping Guo,&nbsp;Changrong Li,&nbsp;Zhenmin Du","doi":"10.1016/j.calphad.2024.102762","DOIUrl":"10.1016/j.calphad.2024.102762","url":null,"abstract":"<div><div>The γ + γ′ microstructure in novel Co-based superalloys is often obtained by means of alloying method. Therefore, this study focuses on exploring the evolution of the γ + γ′ microstructure through the addition of Zr using CALculation of PHAse Diagram (CALPHAD) method. The heat capacity of τ was experimentally determined by the sapphire method, and the enthalpy of formation of τ at 0 K was calculated using Density Functional Theory (DFT). The thermodynamic parameters were derived based on experimental results from phase equilibrium data and first-principles calculations using CALPHAD method. According to the thermodynamic analyses, the alloy Co80.0V18.5Zr1.5 (at. %) was homogenized at 1473 K for 10 h and aged at 1173 K for different time, the ordered L1<sub>2</sub>-γ′ precipitates coarsened and dissolved after 2 h, and transformed into needle-like D0<sub>19</sub>-Co<sub>3</sub>V after 67 h of aging, which indicated that the γ′ phase was not in a thermodynamically stable state in the Co–V–Zr system. If the stable γ′ phase is obtained, additional alloying elements is necessary to be added.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102762"},"PeriodicalIF":1.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of thermal conductivity for FCC Al-X (X=Zn, Mg) and Al-Zn-Mg alloys: Experiments and modeling 评估催化裂化 Al-X(X=锌、镁)和 Al-Zn-Mg 合金的导热性:实验和建模
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.calphad.2024.102763
Bingjie Du, Jing Tan, Qiumei Wu, Shiyi Wen, Yuling Liu, Yong Du
Thermal conductivity is one of the critical thermophysical properties for Al alloys. However, in comparison with mechanical properties, fewer studies focused on investigating thermal conductivity for Al alloys such as Al-Zn-Mg and its sub-systems. This study aims to combine experiments and modeling to assess thermal conductivity of FCC Al-Zn, Al-Mg and Al-Zn-Mg alloys. FCC Al-Zn, Al-Mg and Al-Zn-Mg alloys were first designed by CALPHAD (Calculation of PHAse Diagram) method. The alloy samples were prepared using the vacuum induction melting furnace, and their compositions and structures were validated via ICP (Inductively Coupled Plasma), XRD (X-ray diffraction) and SEM (Scanning Electron Microscope). Subsequently, LFA (Laser Flash Analysis) was applied to measure thermal conductivity of the presently prepared samples at 298, 348, 398, 448 and 498 K. Moreover, a novel model incorporated in CALTPP (CALculation of ThermoPhysical Properties) software was implemented for evaluating thermal conductivity of FCC Al-Zn, Al-Mg and Al-Zn-Mg alloys from 298 K to 498 K. All the deviations between the model-evaluated thermal conductivity and measured ones are within ±10 %, indicating that the present calculations are reliable. Furthermore, this work used this developed model to predict composition-dependent and temperature-dependent thermal conductivity for FCC Al-Zn, Al-Mg and Al-Zn-Mg alloys. The present work provides an effective way to investigate thermal conductivity for single-phase solid solutions combining experiments and modeling.
导热性是铝合金的关键热物理性质之一。然而,与机械性能相比,专注于研究 Al-Zn-Mg 等铝合金及其子系统导热性能的研究较少。本研究旨在结合实验和建模来评估催化裂化铝锌、铝镁和铝锌镁合金的导热性。首先采用 CALPHAD(PHAse Diagram 计算)方法设计了催化裂化铝锌、铝镁和铝锌镁合金。使用真空感应熔炉制备合金样品,并通过 ICP(电感耦合等离子体)、XRD(X 射线衍射)和 SEM(扫描电子显微镜)验证其成分和结构。此外,还在 CALTPP(热物理特性计算)软件中加入了一个新模型,用于评估催化裂化铝锌、铝镁和铝锌镁合金在 298 K 至 498 K 的热导率。模型评估的热导率与测量值之间的所有偏差都在±10%以内,表明本计算结果是可靠的。此外,本研究还利用所开发的模型预测了催化裂化铝锌、铝镁和铝锌镁合金随成分和温度变化的热导率。本研究提供了一种结合实验和建模研究单相固溶体热导率的有效方法。
{"title":"Assessment of thermal conductivity for FCC Al-X (X=Zn, Mg) and Al-Zn-Mg alloys: Experiments and modeling","authors":"Bingjie Du,&nbsp;Jing Tan,&nbsp;Qiumei Wu,&nbsp;Shiyi Wen,&nbsp;Yuling Liu,&nbsp;Yong Du","doi":"10.1016/j.calphad.2024.102763","DOIUrl":"10.1016/j.calphad.2024.102763","url":null,"abstract":"<div><div>Thermal conductivity is one of the critical thermophysical properties for Al alloys. However, in comparison with mechanical properties, fewer studies focused on investigating thermal conductivity for Al alloys such as Al-Zn-Mg and its sub-systems. This study aims to combine experiments and modeling to assess thermal conductivity of FCC Al-Zn, Al-Mg and Al-Zn-Mg alloys. FCC Al-Zn, Al-Mg and Al-Zn-Mg alloys were first designed by CALPHAD (Calculation of PHAse Diagram) method. The alloy samples were prepared using the vacuum induction melting furnace, and their compositions and structures were validated via ICP (Inductively Coupled Plasma), XRD (X-ray diffraction) and SEM (Scanning Electron Microscope). Subsequently, LFA (Laser Flash Analysis) was applied to measure thermal conductivity of the presently prepared samples at 298, 348, 398, 448 and 498 K. Moreover, a novel model incorporated in CALTPP (CALculation of ThermoPhysical Properties) software was implemented for evaluating thermal conductivity of FCC Al-Zn, Al-Mg and Al-Zn-Mg alloys from 298 K to 498 K. All the deviations between the model-evaluated thermal conductivity and measured ones are within ±10 %, indicating that the present calculations are reliable. Furthermore, this work used this developed model to predict composition-dependent and temperature-dependent thermal conductivity for FCC Al-Zn, Al-Mg and Al-Zn-Mg alloys. The present work provides an effective way to investigate thermal conductivity for single-phase solid solutions combining experiments and modeling.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102763"},"PeriodicalIF":1.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-investigation the phase equilibria and thermodynamic assessment of the Nd-Sn binary system 钕硒二元体系相平衡和热力学评估的再研究
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-10-24 DOI: 10.1016/j.calphad.2024.102757
Cuiyun He , Yukun Huang , Shengyu Liu , Jianmin Zen , Ruyi Jiang
The Nd-Sn phase diagram has been investigated within the range of 20–80 at.% Sn using X-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS), and differential scanning calorimetric (DSC). In addition to the nine known compounds, Nd5Sn3, Nd5Sn4, Nd11Sn10, NdSn, Nd3Sn5, NdSn2, Nd3Sn7, Nd2Sn5 and NdSn3, two reported compounds, Nd3Sn and Nd2Sn3, as well as two new compounds Nd2Sn and Nd4Sn5, have been detected. The formation of Nd2Sn, Nd4Sn5 and Nd2Sn3 has been determined as follows: Nd2Sn forms by peritectoid reaction Nd3Sn + Nd5Sn3 → Nd2Sn at 1134 °C; Nd4Sn5 and Nd2Sn3 form by peritectic reaction at 1168 °C and 1146 °C, respectively. Nd3Sn and Nd3Sn5 are only stable at high temperatures, Nd3Sn forms by a peritectic reaction at 1163 °C and decomposes at 1114 °C, and Nd3Sn5 is formed via a peritectic reaction at 1153 °C and decomposes at 1136 °C. Additionally, five invariant reaction temperature have been updated. The Nd-Sn system was modeled using the Calphad approach, incorporating new experimental data along with all other available experimental information. A comprehensive thermodynamic description of the Nd-Sn system has been obtained, and extensive comparisons between calculated and experimental data indicating that almost all adopted experimental and theoretical data are satisfactorily matched.
利用 X 射线衍射 (XRD)、配备能量色散光谱仪的扫描电子显微镜 (SEM-EDS) 和差示扫描量热 (DSC) 研究了 20-80 at.% Sn 范围内的钕锡相图。除了九种已知化合物 Nd5Sn3、Nd5Sn4、Nd11Sn10、NdSn、Nd3Sn5、NdSn2、Nd3Sn7、Nd2Sn5 和 NdSn3 外,还检测到两种已报道的化合物 Nd3Sn 和 Nd2Sn3 以及两种新化合物 Nd2Sn 和 Nd4Sn5。Nd2Sn、Nd4Sn5 和 Nd2Sn3 的形成过程已确定如下:Nd2Sn 是在 1134 °C 时通过包晶反应 Nd3Sn + Nd5Sn3 → Nd2Sn 形成的;Nd4Sn5 和 Nd2Sn3 分别是在 1168 °C 和 1146 °C 时通过包晶反应形成的。Nd3Sn 和 Nd3Sn5 只在高温下稳定,Nd3Sn 在 1163 ℃ 时通过包晶反应形成,在 1114 ℃ 时分解;Nd3Sn5 在 1153 ℃ 时通过包晶反应形成,在 1136 ℃ 时分解。此外,还更新了五个不变的反应温度。掺杂了新实验数据和所有其他可用实验信息的 Nd-Sn 系统采用 Calphad 方法进行建模。对钕锑体系进行了全面的热力学描述,并对计算数据和实验数据进行了广泛的比较,结果表明几乎所有采用的实验数据和理论数据都能令人满意地匹配。
{"title":"Re-investigation the phase equilibria and thermodynamic assessment of the Nd-Sn binary system","authors":"Cuiyun He ,&nbsp;Yukun Huang ,&nbsp;Shengyu Liu ,&nbsp;Jianmin Zen ,&nbsp;Ruyi Jiang","doi":"10.1016/j.calphad.2024.102757","DOIUrl":"10.1016/j.calphad.2024.102757","url":null,"abstract":"<div><div>The Nd-Sn phase diagram has been investigated within the range of 20–80 at.% Sn using X-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS), and differential scanning calorimetric (DSC). In addition to the nine known compounds, Nd<sub>5</sub>Sn<sub>3</sub>, Nd<sub>5</sub>Sn<sub>4</sub>, Nd<sub>11</sub>Sn<sub>10</sub>, NdSn, Nd<sub>3</sub>Sn<sub>5</sub>, NdSn<sub>2</sub>, Nd<sub>3</sub>Sn<sub>7</sub>, Nd<sub>2</sub>Sn<sub>5</sub> and NdSn<sub>3</sub>, two reported compounds, Nd<sub>3</sub>Sn and Nd<sub>2</sub>Sn<sub>3,</sub> as well as two new compounds Nd<sub>2</sub>Sn and Nd<sub>4</sub>Sn<sub>5</sub>, have been detected. The formation of Nd<sub>2</sub>Sn, Nd<sub>4</sub>Sn<sub>5</sub> and Nd<sub>2</sub>Sn<sub>3</sub> has been determined as follows: Nd<sub>2</sub>Sn forms by peritectoid reaction Nd<sub>3</sub>Sn + Nd<sub>5</sub>Sn<sub>3</sub> → Nd<sub>2</sub>Sn at 1134 °C; Nd<sub>4</sub>Sn<sub>5</sub> and Nd<sub>2</sub>Sn<sub>3</sub> form by peritectic reaction at 1168 °C and 1146 °C, respectively. Nd<sub>3</sub>Sn and Nd<sub>3</sub>Sn<sub>5</sub> are only stable at high temperatures, Nd<sub>3</sub>Sn forms by a peritectic reaction at 1163 °C and decomposes at 1114 °C, and Nd<sub>3</sub>Sn<sub>5</sub> is formed via a peritectic reaction at 1153 °C and decomposes at 1136 °C. Additionally, five invariant reaction temperature have been updated. The Nd-Sn system was modeled using the Calphad approach, incorporating new experimental data along with all other available experimental information. A comprehensive thermodynamic description of the Nd-Sn system has been obtained, and extensive comparisons between calculated and experimental data indicating that almost all adopted experimental and theoretical data are satisfactorily matched.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102757"},"PeriodicalIF":1.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic properties of neodymium silicates at high temperature (298.15–1273K) and thermodynamic reassessment of the Nd2O3-SiO2 system 高温(298.15-1273K)下硅酸钕的热力学性质以及对 Nd2O3-SiO2 系统的热力学重新评估
IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-10-22 DOI: 10.1016/j.calphad.2024.102760
Wenjie Wei , Shu Li , Minkai Tan , Boya Zhang , Zhanmin Cao
Solid oxide fuel cells (SOFCs) have garnered significant interest due to their potential as alternative electrical power generation systems that offer low pollutant emissions and high energy conversion efficiency. Neodymium silicates have emerged as promising electrolyte materials owing to their high ionic conductivity. To enhance our understanding of their performance in SOFC applications, it is essential to investigate the thermodynamic properties of neodymium silicates. In this study, we measured the heat capacities of the prepared samples over the temperature range of 673–1273 K using a multi-high temperature calorimeter (MHTC) 96 line. The temperature dependence of heat capacities for Nd2SiO5, Nd14Si9O39, and Nd2Si2O7 were modeled as functions: Cp(Nd2SiO5) = 194.7 + 0.028 T–4,714,800 T−2 – 239.75 T−0.5 + 491568400 T−3 (J·mol−1·K−1) (298.15 - 1400K), Cp(Nd14Si9O39) =1527.1 + 0.22 T − 40097000 T−2 – 2150.3 T−0.5 + 4424200000 T−3 (J·mol−1·K−1) (298.15 - 1400K), Cp(Nd2Si2O7) =276 + 0.032 T − 8261400 T−2 – 480 T−0.5 + 983136800 T−3 (J mol−1 K−1) (298.15–1400K), and then used for computing changes in entropy and Gibbs free energy. The Nd2O3-SiO2 system was reassessed based on the phase diagram experimental data and measured heat capacities in this work.
固体氧化物燃料电池(SOFC)具有低污染排放和高能量转换效率的潜力,因此作为替代发电系统备受关注。钕硅酸盐具有高离子传导性,因此已成为很有前途的电解质材料。为了进一步了解它们在 SOFC 应用中的性能,研究钕硅酸盐的热力学特性至关重要。在本研究中,我们使用多高温量热仪(MHTC)96 线测量了所制备样品在 673-1273 K 温度范围内的热容量。Nd2SiO5、Nd14Si9O39 和 Nd2Si2O7 的热容与温度的关系被模拟为以下函数:Cp(Nd2SiO5) = 194.7 + 0.028 T-4,714,800 T-2 - 239.75 T-0.5 + 491568400 T-3 (J-mol-1-K-1) (298.15 - 1400K),Cp(Nd14Si9O39) = 1527.1 + 0.22 T - 40097000 T-2 - 2150.3 T-0.5 + 4424200000 T-3 (J-mol-1-K-1) (298.15 - 1400K),Cp(Nd2Si2O7) =276 + 0.032 T - 8261400 T-2 - 480 T-0.5 + 983136800 T-3 (J mol-1 K-1) (298.15-1400K),然后用于计算熵和吉布斯自由能的变化。在这项工作中,根据相图实验数据和测得的热容量对 Nd2O3-SiO2 系统进行了重新评估。
{"title":"Thermodynamic properties of neodymium silicates at high temperature (298.15–1273K) and thermodynamic reassessment of the Nd2O3-SiO2 system","authors":"Wenjie Wei ,&nbsp;Shu Li ,&nbsp;Minkai Tan ,&nbsp;Boya Zhang ,&nbsp;Zhanmin Cao","doi":"10.1016/j.calphad.2024.102760","DOIUrl":"10.1016/j.calphad.2024.102760","url":null,"abstract":"<div><div>Solid oxide fuel cells (SOFCs) have garnered significant interest due to their potential as alternative electrical power generation systems that offer low pollutant emissions and high energy conversion efficiency. Neodymium silicates have emerged as promising electrolyte materials owing to their high ionic conductivity. To enhance our understanding of their performance in SOFC applications, it is essential to investigate the thermodynamic properties of neodymium silicates. In this study, we measured the heat capacities of the prepared samples over the temperature range of 673–1273 K using a multi-high temperature calorimeter (MHTC) 96 line. The temperature dependence of heat capacities for Nd<sub>2</sub>SiO<sub>5</sub>, Nd<sub>14</sub>Si<sub>9</sub>O<sub>39</sub>, and Nd<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> were modeled as functions: Cp<sub>(Nd2SiO5)</sub> = 194.7 + 0.028 T–4,714,800 T<sup>−2</sup> – 239.75 T<sup>−0.5</sup> + 491568400 T<sup>−3</sup> (J·mol<sup>−1</sup>·K<sup>−1</sup>) (298.15 - 1400K), Cp<sub>(Nd14Si9O39)</sub> =1527.1 + 0.22 T − 40097000 T<sup>−2</sup> – 2150.3 T<sup>−0.5</sup> + 4424200000 T<sup>−3</sup> (J·mol<sup>−1</sup>·K<sup>−1</sup>) (298.15 - 1400K), Cp<sub>(Nd2Si2O7)</sub> =276 + 0.032 T − 8261400 T<sup>−2</sup> – 480 T<sup>−0.5</sup> + 983136800 T<sup>−3</sup> (J mol<sup>−1</sup> K<sup>−1</sup>) (298.15–1400K), and then used for computing changes in entropy and Gibbs free energy. The Nd<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system was reassessed based on the phase diagram experimental data and measured heat capacities in this work.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102760"},"PeriodicalIF":1.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Calphad-computer Coupling of Phase Diagrams and Thermochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1