Pub Date : 2024-10-15DOI: 10.1016/j.calphad.2024.102759
Peleg Lider, Shir Ben Shalom, Guy Makov
Pressure can affect phase diagrams significantly, as previously demonstrated on several binary systems. However, the effect of pressure on ternary phase diagrams is mostly unexplored. In this study, a thermodynamic model of a ternary phase diagram under high pressure is formulated and applied to calculate the Bi-Sb-Pb system. The model employs binary interaction parameters and elemental thermodynamic functions to which the effect of pressure on the binary interaction parameters and elemental properties are added. The complete ternary Bi-Sb-Pb phase diagram was calculated up to a pressure of 2 GPa at selected temperatures as a case study, as this system involves three different types of binary phase diagrams: isomorphous, eutectic, and peritectic. The results show how pressure affects the stability of solid phases, leading to changes in the three-phase triangles and the four-phase equilibrium quadrilateral. This study provides insights into the pressure-dependent behavior of ternary systems and contributes to the thermodynamic understanding of ternary phase diagrams under high-pressure conditions.
{"title":"Pressure effect on ternary phase diagrams: Bi-Sb-Pb as a case study","authors":"Peleg Lider, Shir Ben Shalom, Guy Makov","doi":"10.1016/j.calphad.2024.102759","DOIUrl":"10.1016/j.calphad.2024.102759","url":null,"abstract":"<div><div>Pressure can affect phase diagrams significantly, as previously demonstrated on several binary systems. However, the effect of pressure on ternary phase diagrams is mostly unexplored. In this study, a thermodynamic model of a ternary phase diagram under high pressure is formulated and applied to calculate the Bi-Sb-Pb system. The model employs binary interaction parameters and elemental thermodynamic functions to which the effect of pressure on the binary interaction parameters and elemental properties are added. The complete ternary Bi-Sb-Pb phase diagram was calculated up to a pressure of 2 GPa at selected temperatures as a case study, as this system involves three different types of binary phase diagrams: isomorphous, eutectic, and peritectic. The results show how pressure affects the stability of solid phases, leading to changes in the three-phase triangles and the four-phase equilibrium quadrilateral. This study provides insights into the pressure-dependent behavior of ternary systems and contributes to the thermodynamic understanding of ternary phase diagrams under high-pressure conditions.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102759"},"PeriodicalIF":1.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-13DOI: 10.1016/j.calphad.2024.102755
Wen Xia , Qian Wang , Xinyi Wang , Lili Wang , Jiansen Wen , Jian Wang , Baisheng Sa
Dental amalgam, known for its biocompatibility and ductility, is widely used in restorative materials. In dental crown restorations, studying the interactions between amalgam fillings and crown tissues, particularly the roles of calcium (Ca) and strontium (Sr), is essential for improving function stability and biocompatibility. This study conducts critical literature evaluation and thermodynamic optimization of binary systems involving mercury (Hg) with Ca and Sr, focusing specifically on their suitability for dental amalgam restoration. Using first-principles calculations (FPC), the enthalpies of formation for compounds within the Hg-Ca and Hg-Sr binary systems were calculated in this work. Thermodynamic modeling of the liquid solution employed the modified quasichemical model in the pair approximation (MQM), uncovering significant short-range ordering. Conversely, solid phases were modeled using the compound energy formalism (CEF). The incorporation of FPC proves to be a valuable and effective method, providing essential insights to complement the calculation of phase diagrams (CALPHAD) modeling approach. Ultimately, this research significantly enhances our understanding of the thermodynamic characteristics of Hg-X alloys, with notable implications for their potential application in dental amalgam restoration.
{"title":"Thermodynamic study on the phase diagram of the Hg-Ca and Hg-Sr binary systems for dental amalgam restoration application","authors":"Wen Xia , Qian Wang , Xinyi Wang , Lili Wang , Jiansen Wen , Jian Wang , Baisheng Sa","doi":"10.1016/j.calphad.2024.102755","DOIUrl":"10.1016/j.calphad.2024.102755","url":null,"abstract":"<div><div>Dental amalgam, known for its biocompatibility and ductility, is widely used in restorative materials. In dental crown restorations, studying the interactions between amalgam fillings and crown tissues, particularly the roles of calcium (Ca) and strontium (Sr), is essential for improving function stability and biocompatibility. This study conducts critical literature evaluation and thermodynamic optimization of binary systems involving mercury (Hg) with Ca and Sr, focusing specifically on their suitability for dental amalgam restoration. Using first-principles calculations (FPC), the enthalpies of formation for compounds within the Hg-Ca and Hg-Sr binary systems were calculated in this work. Thermodynamic modeling of the liquid solution employed the modified quasichemical model in the pair approximation (MQM), uncovering significant short-range ordering. Conversely, solid phases were modeled using the compound energy formalism (CEF). The incorporation of FPC proves to be a valuable and effective method, providing essential insights to complement the calculation of phase diagrams (CALPHAD) modeling approach. Ultimately, this research significantly enhances our understanding of the thermodynamic characteristics of Hg-X alloys, with notable implications for their potential application in dental amalgam restoration.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102755"},"PeriodicalIF":1.9,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1016/j.calphad.2024.102739
Xinming Wang , Chen Cui , Ying Ran , Yan Liu , Ya Liu , Wei Qiu , Yu Wu , Jingxian Hu
Nickel-based superalloys are extensively utilized in aerospace engines, marine gas turbines, and other environments with severe operating conditions. The phase relations of the Ni-Mo-Y ternary system were experimentally studied across the entire composition range at 800 °C and 1000 °C using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Thirteen three-phase regions were confirmed at 800 °C, and eleven three-phase regions were observed at 1000 °C. No ternary compound was observed at these temperatures. In addition, the experimental results indicate that molybdenum (Mo) has almost no solubility in the binary compounds found in the Ni-Y binary system. Furthermore, the primary solidification phases and the solidification process of typical alloys were investigated, and three different primary solidification phases were found. Based on the experimental results, thermodynamic calculations for the Ni-Mo-Y system were performed through the CALPHAD technique. The experimental results agree well with the calculated, a set of self-consistent thermodynamic parameters for the Ni-Mo-Y ternary system was obtained in the present work.
镍基超级合金广泛应用于航空航天发动机、船用燃气轮机和其他工作条件恶劣的环境中。利用扫描电子显微镜 (SEM)、能量色散光谱 (EDS) 和 X 射线衍射 (XRD),在 800 °C 和 1000 °C 的整个成分范围内对 Ni-Mo-Y 三元体系的相关系进行了实验研究。在 800 °C 时确认了 13 个三相区域,在 1000 °C 时观察到 11 个三相区域。在这些温度下均未观察到三元化合物。此外,实验结果表明,钼(Mo)几乎不溶于镍-钇二元体系中的二元化合物。此外,还研究了典型合金的初级凝固相和凝固过程,发现了三种不同的初级凝固相。根据实验结果,通过 CALPHAD 技术对 Ni-Mo-Y 体系进行了热力学计算。实验结果与计算结果吻合良好,从而获得了一套自洽的 Ni-Mo-Y 三元体系热力学参数。
{"title":"Experimental investigation and thermodynamic description of the Ni-Mo-Y ternary system","authors":"Xinming Wang , Chen Cui , Ying Ran , Yan Liu , Ya Liu , Wei Qiu , Yu Wu , Jingxian Hu","doi":"10.1016/j.calphad.2024.102739","DOIUrl":"10.1016/j.calphad.2024.102739","url":null,"abstract":"<div><div>Nickel-based superalloys are extensively utilized in aerospace engines, marine gas turbines, and other environments with severe operating conditions. The phase relations of the Ni-Mo-Y ternary system were experimentally studied across the entire composition range at 800 °C and 1000 °C using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Thirteen three-phase regions were confirmed at 800 °C, and eleven three-phase regions were observed at 1000 °C. No ternary compound was observed at these temperatures. In addition, the experimental results indicate that molybdenum (Mo) has almost no solubility in the binary compounds found in the Ni-Y binary system. Furthermore, the primary solidification phases and the solidification process of typical alloys were investigated, and three different primary solidification phases were found. Based on the experimental results, thermodynamic calculations for the Ni-Mo-Y system were performed through the CALPHAD technique. The experimental results agree well with the calculated, a set of self-consistent thermodynamic parameters for the Ni-Mo-Y ternary system was obtained in the present work.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102739"},"PeriodicalIF":1.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.calphad.2024.102754
Qisheng Feng , Mingrui Lv , Chenxi Liu , Guangyao Chen , Pengyue Gao , Chonghe Li
The thermodynamic database of ZrO2-SrO-BaO system was essential for the development of high-stability refractories. Thirteen samples were prepared using the solid-state reaction method to investigate the isothermal sections of ZrO2-SrO-BaO system at 1573 K and 1673 K. Four solid solution phases, (Ba, Sr)ZrO3, (Ba, Sr)2ZrO4, (Ba, Sr)3Zr2O7, and (Ba, Sr)4Zr3O10, were identified. Based on the re-assessment of SrO-BaO sub-binary system, a self-consistent thermodynamic database of ZrO2-SrO-BaO system was obtained. Calculated isothermal sections at 1573 K and 1673 K and liquidus projection showed good agreement with existing experimental data. Finally, a potential refractory (Sr0.06, Ba0.94)ZrO3 with better stability was designed using the thermodynamic database of ZrO2-SrO-BaO system.
ZrO2-SrO-BaO 系统的热力学数据库对于开发高稳定性耐火材料至关重要。采用固态反应法制备了 13 个样品,研究了 ZrO2-SrO-BaO 系统在 1573 K 和 1673 K 下的等温截面,确定了四种固溶相,即 (Ba,Sr)ZrO3、(Ba,Sr)2ZrO4、(Ba,Sr)3Zr2O7 和 (Ba,Sr)4Zr3O10。在重新评估 SrO-BaO 亚二元体系的基础上,获得了 ZrO2-SrO-BaO 体系的自洽热力学数据库。计算得出的 1573 K 和 1673 K 等温截面以及液相投影与现有实验数据显示出良好的一致性。最后,利用 ZrO2-SrO-BaO 体系的热力学数据库设计出了稳定性更好的潜在难熔(Sr0.06, Ba0.94)ZrO3。
{"title":"Phase relations at 1573 K and 1673 K and thermodynamic assessment of ZrO2-SrO-BaO system","authors":"Qisheng Feng , Mingrui Lv , Chenxi Liu , Guangyao Chen , Pengyue Gao , Chonghe Li","doi":"10.1016/j.calphad.2024.102754","DOIUrl":"10.1016/j.calphad.2024.102754","url":null,"abstract":"<div><div>The thermodynamic database of ZrO<sub>2</sub>-SrO-BaO system was essential for the development of high-stability refractories. Thirteen samples were prepared using the solid-state reaction method to investigate the isothermal sections of ZrO<sub>2</sub>-SrO-BaO system at 1573 K and 1673 K. Four solid solution phases, (Ba, Sr)ZrO<sub>3</sub>, (Ba, Sr)<sub>2</sub>ZrO<sub>4</sub>, (Ba, Sr)<sub>3</sub>Zr<sub>2</sub>O<sub>7</sub>, and (Ba, Sr)<sub>4</sub>Zr<sub>3</sub>O<sub>10</sub>, were identified. Based on the re-assessment of SrO-BaO sub-binary system, a self-consistent thermodynamic database of ZrO<sub>2</sub>-SrO-BaO system was obtained. Calculated isothermal sections at 1573 K and 1673 K and liquidus projection showed good agreement with existing experimental data. Finally, a potential refractory (Sr<sub>0.06</sub>, Ba<sub>0.94</sub>)ZrO<sub>3</sub> with better stability was designed using the thermodynamic database of ZrO<sub>2</sub>-SrO-BaO system.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102754"},"PeriodicalIF":1.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.calphad.2024.102752
Yanwen Liu, Shuhong Liu, Yong Du
Aluminum-lithium alloys are a kind of highly promising material due to low density, high strength and excellent modulus properties. The proper addition of Zn can effectively promote the precipitation of the main metastable strengthening phase δ′(Al3Li). As a crucial sub-system of Al-Li alloys, literature data on phase diagram and thermodynamic properties of the Al-Li-Zn system as well as the Al-Li and Li-Zn binary systems were comprehensively evaluated by the CALPHAD approach. The Li-Zn system was reassessed mainly by considering the newly reported data on formation enthalpy and activity and a 2-sublattice (SL) model was applied to describe the βLiZn4 phase. The Al-Li system was modified by considering AlLi2 and describing the metastable phase δ′(Al3Li) with interconvertible 4SL and 2SL ordered-disordered models. The predicted metastable fcc solvus was in perfect agreement with the measurements. Considering the available experimental data, the ternary Al-Li-Zn system was then re-optimized and a self-consistent thermodynamic description of the ternary Al-Li-Zn system was presented. The predicted metastable two-phase region of (Al)+δ’(Al3Li) in Al-Li-Zn system can be coupled with the accessible experimental data, which can be expected to well assist in designing high-strength Al-Li alloys.
{"title":"Thermodynamic re-assessment of the Al-Li-Zn system","authors":"Yanwen Liu, Shuhong Liu, Yong Du","doi":"10.1016/j.calphad.2024.102752","DOIUrl":"10.1016/j.calphad.2024.102752","url":null,"abstract":"<div><div>Aluminum-lithium alloys are a kind of highly promising material due to low density, high strength and excellent modulus properties. The proper addition of Zn can effectively promote the precipitation of the main metastable strengthening phase δ′(Al<sub>3</sub>Li). As a crucial sub-system of Al-Li alloys, literature data on phase diagram and thermodynamic properties of the Al-Li-Zn system as well as the Al-Li and Li-Zn binary systems were comprehensively evaluated by the CALPHAD approach. The Li-Zn system was reassessed mainly by considering the newly reported data on formation enthalpy and activity and a 2-sublattice (SL) model was applied to describe the βLiZn<sub>4</sub> phase. The Al-Li system was modified by considering AlLi<sub>2</sub> and describing the metastable phase δ′(Al<sub>3</sub>Li) with interconvertible 4SL and 2SL ordered-disordered models. The predicted metastable fcc solvus was in perfect agreement with the measurements. Considering the available experimental data, the ternary Al-Li-Zn system was then re-optimized and a self-consistent thermodynamic description of the ternary Al-Li-Zn system was presented. The predicted metastable two-phase region of (Al)+δ’(Al<sub>3</sub>Li) in Al-Li-Zn system can be coupled with the accessible experimental data, which can be expected to well assist in designing high-strength Al-Li alloys.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102752"},"PeriodicalIF":1.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.calphad.2024.102749
Kyaw Hla Saing Chak , Julia Medvedeva , Yijia Gu
A novel four-sublattice model for the phase, denoted as (Fe, Al)3(Fe, Al)1(C, Va)1(C, Va)3 was proposed to improve the thermodynamic prediction, such as equilibrium composition, phase stability of -carbide in Fe-Al-C system. The sublattice model explains the transformation from the disordered FCC solid solution to the ordered -carbide via concurrent ordering of substitutional and interstitial atoms. The dual ordering model can restrict the irregular contribution of configurational entropy arising at 20 at% C composition, which is an issue with the existing thermodynamic databases. For the CALPHAD assessment, -carbide was considered as a single, individual phase that is in equilibrium with the liquid, austenite (), ferrite () or other intermetallic and carbide phases in the Fe-Al-C system. The formation energy calculated from density functional theory (DFT) showed that Fe3Al–L12 phase is energetically more favorable than the Fe3AlC–E21 phase, and C atoms in sublattice IV are not energetically favorable at all. The assessed parameters provided better accuracy than the existing database in the calculations of isothermal sections, liquidus projection, invariant reactions, and low-temperature phase compositions. The model is highly suitable for the low temperature (<800 °C) phase predictions. Thus, the improved Fe-Al-C model lays the foundation for the thermodynamic and kinetic studies of -carbide for designing new Fe-Mn-Al-C alloys and optimizing the heat treatment processes.
{"title":"CALPHAD modeling of κ- carbide dual ordering in Fe-Al-C ternary alloys","authors":"Kyaw Hla Saing Chak , Julia Medvedeva , Yijia Gu","doi":"10.1016/j.calphad.2024.102749","DOIUrl":"10.1016/j.calphad.2024.102749","url":null,"abstract":"<div><div>A novel four-sublattice model for the <span><math><mrow><mi>κ</mi></mrow></math></span> phase, denoted as (Fe, Al)<sub>3</sub>(Fe, Al)<sub>1</sub>(C, Va)<sub>1</sub>(C, Va)<sub>3</sub> was proposed to improve the thermodynamic prediction, such as equilibrium composition, phase stability of <span><math><mrow><mi>κ</mi></mrow></math></span>-carbide in Fe-Al-C system. The sublattice model explains the transformation from the disordered FCC solid solution to the ordered <span><math><mrow><mi>κ</mi></mrow></math></span>-carbide via concurrent ordering of substitutional and interstitial atoms. The dual ordering model can restrict the irregular contribution of configurational entropy arising at 20 at% C composition, which is an issue with the existing thermodynamic databases. For the CALPHAD assessment, <span><math><mrow><mi>κ</mi></mrow></math></span>-carbide was considered as a single, individual phase that is in equilibrium with the liquid, austenite (<span><math><mrow><mi>γ</mi></mrow></math></span>), ferrite (<span><math><mrow><mi>α</mi></mrow></math></span>) or other intermetallic and carbide phases in the Fe-Al-C system. The formation energy calculated from density functional theory (DFT) showed that Fe<sub>3</sub>Al–L1<sub>2</sub> phase is energetically more favorable than the Fe<sub>3</sub>AlC–E2<sub>1</sub> phase, and C atoms in sublattice <em>IV</em> are not energetically favorable at all. The assessed parameters provided better accuracy than the existing database in the calculations of isothermal sections, liquidus projection, invariant reactions, and low-temperature phase compositions. The model is highly suitable for the low temperature (<800 °C) phase predictions. Thus, the improved Fe-Al-C model lays the foundation for the thermodynamic and kinetic studies of <span><math><mrow><mi>κ</mi></mrow></math></span>-carbide for designing new Fe-Mn-Al-C alloys and optimizing the heat treatment processes.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102749"},"PeriodicalIF":1.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.calphad.2024.102753
Ahmad Ostovari Moghaddam , Rahele Fereidonnejad , Dmitry Mikhailov , Mohammad Moaddeli , Evgeny Trofimov
Interatomic potentials based on the second nearest-neighbor modified embedded-atom method (2NN-MEAM) have been developed for Fe-V and Cr-V binary alloys. The structural, mechanical and thermodynamic properties of various stable and metastable phases in Fe-V and Cr-V binary systems were calculated by molecular dynamic (MD) simulation using the developed 2NN-MEAM potentials. A good consistency between the MD-calculated data and the experimental data or first-principles calculations was obtained. The potentials were further employed to predict several chemically complex intermetallic alloys (CCIAs) with stable B2 and L12 ordered structures in CoCrFeNiTiV system. Finally, this work pave the way to investigate the atomic scale physical metallurgy of V-containing and chemically complex intermetallic alloys and adjust their composition and microstructure to meet the specific requirements entailed in advanced applications.
{"title":"Modified embedded-atom method interatomic potentials for the V-X (X= Cr, Fe) binary and CoCrFeNiTiV multinary alloys","authors":"Ahmad Ostovari Moghaddam , Rahele Fereidonnejad , Dmitry Mikhailov , Mohammad Moaddeli , Evgeny Trofimov","doi":"10.1016/j.calphad.2024.102753","DOIUrl":"10.1016/j.calphad.2024.102753","url":null,"abstract":"<div><div>Interatomic potentials based on the second nearest-neighbor modified embedded-atom method (2NN-MEAM) have been developed for Fe-V and Cr-V binary alloys. The structural, mechanical and thermodynamic properties of various stable and metastable phases in Fe-V and Cr-V binary systems were calculated by molecular dynamic (MD) simulation using the developed 2NN-MEAM potentials. A good consistency between the MD-calculated data and the experimental data or first-principles calculations was obtained. The potentials were further employed to predict several chemically complex intermetallic alloys (CCIAs) with stable B2 and L1<sub>2</sub> ordered structures in CoCrFeNiTiV system. Finally, this work pave the way to investigate the atomic scale physical metallurgy of V-containing and chemically complex intermetallic alloys and adjust their composition and microstructure to meet the specific requirements entailed in advanced applications.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102753"},"PeriodicalIF":1.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.calphad.2024.102747
H. Bouchta , N. Selhaoui , D.O. Poletaev , M.A. Boukideur , A. Bendarma , S. Kardellass , A. Marjaoui , M. Zanouni , A. Khadija
The standard enthalpies of formation in this work have been measured calculated by First -principles calculations within DFT (density functional theory) for the metal compounds in the Ce-Rh system. Thermodynamic data and phase diagram information obtained from the literature were used as the input for a CALPHAD-type optimization and Thermo-Calc software of the Ce-Rh.
The Ce-Rh phase diagram contains seven intermetallic compounds: , , , , , and . All these phases were stoichiometric; The associated model concerning the phase equilibria, could accurately describe the full compositional range and the thermodynamic data input with as associate. The thermodynamic parameters of all intermetallic compounds were modeled by the Neumann-Kopp principle. The value of the temperature-dependent contributions to the individual Gibbs energies was used for all compounds. A fairly good agreement with all values of the enthalpies of formation calculated in this work using the VASP and data available in the literature. ultimately, a set of self-consistent thermodynamic parameters for the Ce-Rh system was obtained.
{"title":"Thermodynamic assessment of the Ce-Rh system by the combination of ab-initio calculations and the CALPHAD approach","authors":"H. Bouchta , N. Selhaoui , D.O. Poletaev , M.A. Boukideur , A. Bendarma , S. Kardellass , A. Marjaoui , M. Zanouni , A. Khadija","doi":"10.1016/j.calphad.2024.102747","DOIUrl":"10.1016/j.calphad.2024.102747","url":null,"abstract":"<div><div>The standard enthalpies of formation in this work have been <del>measured</del> calculated by First -principles calculations within DFT (density functional theory) for the metal compounds in the Ce-Rh system. Thermodynamic data and phase diagram information obtained from the literature were used as the input for a CALPHAD-type optimization and Thermo-Calc software of the Ce-Rh.</div><div>The Ce-Rh phase diagram contains seven intermetallic compounds: <span><math><mrow><msub><mrow><mi>C</mi><mi>e</mi></mrow><mn>7</mn></msub><msub><mrow><mi>R</mi><mi>h</mi></mrow><mn>3</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi><mi>e</mi></mrow><mn>5</mn></msub><msub><mrow><mi>R</mi><mi>h</mi></mrow><mn>3</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi><mi>e</mi></mrow><mn>3</mn></msub><msub><mrow><mi>R</mi><mi>h</mi></mrow><mn>2</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi><mi>e</mi></mrow><mn>5</mn></msub><msub><mrow><mi>R</mi><mi>h</mi></mrow><mn>4</mn></msub></mrow></math></span>, <span><math><mrow><mi>C</mi><mi>e</mi><mi>R</mi><mi>h</mi></mrow></math></span>, <span><math><mrow><mi>C</mi><mi>e</mi><msub><mrow><mi>R</mi><mi>h</mi></mrow><mn>2</mn></msub></mrow></math></span> and <span><math><mrow><mi>C</mi><mi>e</mi><msub><mrow><mi>R</mi><mi>h</mi></mrow><mn>3</mn></msub></mrow></math></span>. All these phases were stoichiometric; The associated model concerning the phase equilibria, could accurately describe the full compositional range and the thermodynamic data input with <span><math><mrow><mi>C</mi><mi>e</mi><mi>R</mi><mi>h</mi></mrow></math></span> as associate. The thermodynamic parameters of all intermetallic compounds were modeled by the Neumann-Kopp principle. The value of the temperature-dependent contributions to the individual Gibbs energies was used for all compounds. A fairly good agreement with all values of the enthalpies of formation calculated in this work using the VASP and data available in the literature. ultimately, a set of self-consistent thermodynamic parameters for the Ce-Rh system was obtained.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102747"},"PeriodicalIF":1.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The enthalpy of mixing in the liquid phase is a thermodynamic property reflecting interactions between elements that is key to predict phase transformations. Widely used models exist to predict it, but they have never been systematically evaluated. To address this, we collect a large amount of enthalpy of mixing data in binary liquids from a review of about 1000 thermodynamic evaluations. This allows us to clarify the prediction accuracy of Miedema's model which is state-of-the-art. We show that more accurate predictions can be obtained from a machine learning model based on LightGBM, and we provide them in 2415 binary systems. The data we collect also allows us to evaluate another empirical model to predict the excess heat capacity that we apply to 2211 binary liquids. We then extend the data collection to ternary metallic liquids and find that, when mixing is exothermic, extrapolations from the binary systems by Muggianu's model systematically lead to slight overestimations of roughly 10 % close to the equimolar composition. Therefore, our LightGBM model can provide reasonable estimates for ternary alloys and, by extension, for multicomponent alloys. Our findings extracted from rich datasets can be used to feed thermodynamic, empirical and machine learning models for material development. Our data, predictions, and code to generate machine learning descriptors from thermodynamic properties are all made available.
{"title":"Data-driven study of the enthalpy of mixing in the liquid phase","authors":"Guillaume Deffrennes , Bengt Hallstedt , Taichi Abe , Quentin Bizot , Evelyne Fischer , Jean-Marc Joubert , Kei Terayama , Ryo Tamura","doi":"10.1016/j.calphad.2024.102745","DOIUrl":"10.1016/j.calphad.2024.102745","url":null,"abstract":"<div><div>The enthalpy of mixing in the liquid phase is a thermodynamic property reflecting interactions between elements that is key to predict phase transformations. Widely used models exist to predict it, but they have never been systematically evaluated. To address this, we collect a large amount of enthalpy of mixing data in binary liquids from a review of about 1000 thermodynamic evaluations. This allows us to clarify the prediction accuracy of Miedema's model which is state-of-the-art. We show that more accurate predictions can be obtained from a machine learning model based on LightGBM, and we provide them in 2415 binary systems. The data we collect also allows us to evaluate another empirical model to predict the excess heat capacity that we apply to 2211 binary liquids. We then extend the data collection to ternary metallic liquids and find that, when mixing is exothermic, extrapolations from the binary systems by Muggianu's model systematically lead to slight overestimations of roughly 10 % close to the equimolar composition. Therefore, our LightGBM model can provide reasonable estimates for ternary alloys and, by extension, for multicomponent alloys. Our findings extracted from rich datasets can be used to feed thermodynamic, empirical and machine learning models for material development. Our data, predictions, and code to generate machine learning descriptors from thermodynamic properties are all made available.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102745"},"PeriodicalIF":1.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0364591624000877/pdfft?md5=df19fdf9c38bb676b03998398a380d44&pid=1-s2.0-S0364591624000877-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.calphad.2024.102751
V. Venkata Trinadh , P. Manikandan , Suranjan Bera , C.V.S. Brahmananda Rao
High-temperature vaporisation thermodynamic studies over <U3Sn7(cr) + USn2(cr)> and <USn2(cr) + USn(cr)> two-phase regions were carried out by employing Knudsen Effusion Mass Spectrometry (KEMS) in the temperature range 1148–1465 and 1222–1471 K, respectively. Sn(g) was the only species observed in the mass spectra of the equilibrium vapour phase over both the biphasic regions. The partial pressure-temperature relations of Sn(g) were deduced as
Using p-T relations, the enthalpies of the following heterogeneous reaction equilibria were evaluated by the second law method: U3Sn7(cr) = 3USn2(cr) + Sn(g) and USn2(cr) = USn(cr) + Sn(g). Subsequently, the Gibbs energies of the formation of U3Sn7(cr) and USn2(cr) were derived. Knudsen effusion mass spectrometric studies over these two biphasic regions are being reported for the first time.
{"title":"Vaporisation thermodynamic studies over <U3Sn7(cr) + USn2(cr)> and <USn2(cr) + USn(cr)> biphasic regions of U-Sn system using high temperature mass spectrometry","authors":"V. Venkata Trinadh , P. Manikandan , Suranjan Bera , C.V.S. Brahmananda Rao","doi":"10.1016/j.calphad.2024.102751","DOIUrl":"10.1016/j.calphad.2024.102751","url":null,"abstract":"<div><div>High-temperature vaporisation thermodynamic studies over <U<sub>3</sub>Sn<sub>7</sub>(cr) + USn<sub>2</sub>(cr)> and <USn<sub>2</sub>(cr) + USn(cr)> two-phase regions were carried out by employing Knudsen Effusion Mass Spectrometry (KEMS) in the temperature range 1148–1465 and 1222–1471 K, respectively. Sn(g) was the only species observed in the mass spectra of the equilibrium vapour phase over both the biphasic regions. The partial pressure-temperature relations of Sn(g) were deduced as</div><div>log(p<sub>Sn</sub>/Pa) = (−15,737 ± 73)/(T/K)) + (9.52 ± 0.06) (1148–1465 K) <U<sub>3</sub>Sn<sub>7</sub>(cr) + USn<sub>2</sub>(cr)> and</div><div>log(p<sub>Sn</sub>/Pa) = (−16,151 ± 67)/(T/K)) + (9.70 ± 0.05) (1222–1471 K) <USn<sub>2</sub>(cr) + USn(cr)></div><div>Using p-T relations, the enthalpies of the following heterogeneous reaction equilibria were evaluated by the second law method: U<sub>3</sub>Sn<sub>7</sub>(cr) = 3USn<sub>2</sub>(cr) + Sn(g) and USn<sub>2</sub>(cr) = USn(cr) + Sn(g). Subsequently, the Gibbs energies of the formation of U<sub>3</sub>Sn<sub>7</sub>(cr) and USn<sub>2</sub>(cr) were derived. Knudsen effusion mass spectrometric studies over these two biphasic regions are being reported for the first time.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102751"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}