Long non-coding RNAs (lncRNAs) play crucial roles in the tumorigenesis and progression of lung adenocarcinoma (LUAD). However, little was known about the role of lncRNAs in high-risk LUAD subtypes: micropapillary-predominant adenocarcinoma (MPA) and solid-predominant adenocarcinoma (SPA). In this study, we conducted a systematic screening of differentially expressed lncRNAs using RNA sequencing in 10 paired MPA/SPA tumor tissues and adjacent normal tissues. Consequently, 110 significantly up-regulated lncRNAs and 288 aberrantly down-regulated lncRNAs were identified (|Log2 Foldchange| ≥ 1 and corrected P < 0.05). The top 10 lncRNAs were further analyzed in 89 MPA/SPA tumor tissues and 59 normal tissues from The Cancer Genome Atlas database. Among them, CARD8-AS1 showed the most significant differential expression, and decreased expression of CARD8-AS1 was significantly associated with a poorer prognosis. Functionally, CARD8-AS1 overexpression remarkably suppressed the proliferation, migration and invasion of LUAD cells both in vitro and in vivo. Conversely, inhibition of CARD8-AS1 yielded opposite effects. Mechanistically, CARD8-AS1 acted as a scaffold to facilitate the interaction between TXNRD1 and E3 ubiquitin ligase TRIM25, thereby promoting the degradation of TXNRD1 through the ubiquitin-proteasome pathway. Additionally, TXNRD1 was found to promote LUAD cell proliferation, migration and invasion in vitro. Furthermore, the suppressed progression of LUAD cells resulting from CARD8-AS1 overexpression could be significantly reversed by simultaneous overexpression of TXNRD1. In conclusion, this study revealed that the lncRNA CARD8-AS1 played a suppressive role in the progression of LUAD by enhancing TRIM25-mediated ubiquitination of TXNRD1. The CARD8-AS1-TRIM25-TXNRD1 axis may represent a promising therapeutic target for LUAD.
{"title":"LncRNA CARD8-AS1 suppresses lung adenocarcinoma progression by enhancing TRIM25-mediated ubiquitination of TXNRD1.","authors":"Cheng Pan, Qi Wang, Hongshun Wang, Xiaheng Deng, Liang Chen, Zhihua Li","doi":"10.1093/carcin/bgad097","DOIUrl":"10.1093/carcin/bgad097","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) play crucial roles in the tumorigenesis and progression of lung adenocarcinoma (LUAD). However, little was known about the role of lncRNAs in high-risk LUAD subtypes: micropapillary-predominant adenocarcinoma (MPA) and solid-predominant adenocarcinoma (SPA). In this study, we conducted a systematic screening of differentially expressed lncRNAs using RNA sequencing in 10 paired MPA/SPA tumor tissues and adjacent normal tissues. Consequently, 110 significantly up-regulated lncRNAs and 288 aberrantly down-regulated lncRNAs were identified (|Log2 Foldchange| ≥ 1 and corrected P < 0.05). The top 10 lncRNAs were further analyzed in 89 MPA/SPA tumor tissues and 59 normal tissues from The Cancer Genome Atlas database. Among them, CARD8-AS1 showed the most significant differential expression, and decreased expression of CARD8-AS1 was significantly associated with a poorer prognosis. Functionally, CARD8-AS1 overexpression remarkably suppressed the proliferation, migration and invasion of LUAD cells both in vitro and in vivo. Conversely, inhibition of CARD8-AS1 yielded opposite effects. Mechanistically, CARD8-AS1 acted as a scaffold to facilitate the interaction between TXNRD1 and E3 ubiquitin ligase TRIM25, thereby promoting the degradation of TXNRD1 through the ubiquitin-proteasome pathway. Additionally, TXNRD1 was found to promote LUAD cell proliferation, migration and invasion in vitro. Furthermore, the suppressed progression of LUAD cells resulting from CARD8-AS1 overexpression could be significantly reversed by simultaneous overexpression of TXNRD1. In conclusion, this study revealed that the lncRNA CARD8-AS1 played a suppressive role in the progression of LUAD by enhancing TRIM25-mediated ubiquitination of TXNRD1. The CARD8-AS1-TRIM25-TXNRD1 axis may represent a promising therapeutic target for LUAD.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"311-323"},"PeriodicalIF":4.7,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: (-)-Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells.","authors":"","doi":"10.1093/carcin/bgad045","DOIUrl":"10.1093/carcin/bgad045","url":null,"abstract":"","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"360-361"},"PeriodicalIF":3.3,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuiping Liu, Lvjia Zhuo, Lu Chen, Ying He, Xudong Chen, Hao Zhang, Yuan Zhou, Ziheng Ni, Shujuan Zhao, Xiaotong Hu
We previously reported that RNF148 was involved in the ubiquitination-mediated degradation of CHAC2. However, its molecular mechanism was not determined. In this study, we investigated the role and mechanism of RNF148 in the progression of colorectal cancer (CRC), especially in the process of ubiquitination-mediated degradation of CHAC2. Our results revealed that RNF148 was upregulated in most CRC tissues, and its expression significantly correlated with the 3-year overall survival rate and most clinicopathological parameters of CRC patients. Furthermore, RNF148 served as an independent prognostic biomarker of CRC and promoted CRC cell proliferation and migration while inhibiting cell apoptosis and sensitivity to 5-FU. Mechanistically, RNF148 used its protease-associated domain to bind to the CHAC domain of CHAC2 and target it for degradation. In addition, we identified two phosphorylation and three ubiquitination residues of CHAC2 and identified Y118 and K102 as the critical phosphorylation and ubiquitination residues, respectively. We also identified CHAC2's and RNF148's interacting proteins and discovered their potential interaction network. In conclusion, our current study unveiled the role of RNF148 in CRC and the mechanism of RNF148 in the ubiquitination-mediated degradation of CHAC2, which shed light on providing potential prognostic biomarkers and molecular targets for CRC patients.
{"title":"E3 ubiquitin ligase RNF148 functions as an oncogene in colorectal cancer by ubiquitination-mediated degradation of CHAC2.","authors":"Shuiping Liu, Lvjia Zhuo, Lu Chen, Ying He, Xudong Chen, Hao Zhang, Yuan Zhou, Ziheng Ni, Shujuan Zhao, Xiaotong Hu","doi":"10.1093/carcin/bgae002","DOIUrl":"10.1093/carcin/bgae002","url":null,"abstract":"<p><p>We previously reported that RNF148 was involved in the ubiquitination-mediated degradation of CHAC2. However, its molecular mechanism was not determined. In this study, we investigated the role and mechanism of RNF148 in the progression of colorectal cancer (CRC), especially in the process of ubiquitination-mediated degradation of CHAC2. Our results revealed that RNF148 was upregulated in most CRC tissues, and its expression significantly correlated with the 3-year overall survival rate and most clinicopathological parameters of CRC patients. Furthermore, RNF148 served as an independent prognostic biomarker of CRC and promoted CRC cell proliferation and migration while inhibiting cell apoptosis and sensitivity to 5-FU. Mechanistically, RNF148 used its protease-associated domain to bind to the CHAC domain of CHAC2 and target it for degradation. In addition, we identified two phosphorylation and three ubiquitination residues of CHAC2 and identified Y118 and K102 as the critical phosphorylation and ubiquitination residues, respectively. We also identified CHAC2's and RNF148's interacting proteins and discovered their potential interaction network. In conclusion, our current study unveiled the role of RNF148 in CRC and the mechanism of RNF148 in the ubiquitination-mediated degradation of CHAC2, which shed light on providing potential prognostic biomarkers and molecular targets for CRC patients.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"247-261"},"PeriodicalIF":4.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microfibril-associated glycoprotein-1 (MAGP1), a crucial extracellular matrix protein, contributes to the initiation and progression of different cancers. However, the role of MAGP1 in laryngeal cancer is not clear. The purpose of this study was to investigate the clinical significance and biological function of MAGP1 in laryngeal cancer. MAGP1 was upregulated in public databases and laryngeal cancer tissues, and high MAGP1 expression led to a poor prognosis and was identified as an independent prognostic marker. Knocking-down MAGP1 inhibited laryngeal cancer cell growth and metastasis. According to gene set enrichment analysis, high MAGP1 expression revealed enrichment in Wnt/β-catenin signaling and knocking-down MAGP1 in laryngeal cancer cells also caused degradation, de-activation, re-location and loss of stability of β-catenin. Additionally, we observed MAGP1 in laryngeal cancer cells inhibits angiogenesis in an MMP7-dependent way. In conclusion, our study suggests a clinical role of MAGP1 in laryngeal cancer, signifying its potential as a therapeutic target in the future.
{"title":"MAGP1 maintains tumorigenicity and angiogenesis of laryngeal cancer by activating Wnt/β-catenin/MMP7 pathway.","authors":"Fei Lv, Xiaoqi Li, Ying Wang, Liying Hao","doi":"10.1093/carcin/bgad003","DOIUrl":"10.1093/carcin/bgad003","url":null,"abstract":"<p><p>Microfibril-associated glycoprotein-1 (MAGP1), a crucial extracellular matrix protein, contributes to the initiation and progression of different cancers. However, the role of MAGP1 in laryngeal cancer is not clear. The purpose of this study was to investigate the clinical significance and biological function of MAGP1 in laryngeal cancer. MAGP1 was upregulated in public databases and laryngeal cancer tissues, and high MAGP1 expression led to a poor prognosis and was identified as an independent prognostic marker. Knocking-down MAGP1 inhibited laryngeal cancer cell growth and metastasis. According to gene set enrichment analysis, high MAGP1 expression revealed enrichment in Wnt/β-catenin signaling and knocking-down MAGP1 in laryngeal cancer cells also caused degradation, de-activation, re-location and loss of stability of β-catenin. Additionally, we observed MAGP1 in laryngeal cancer cells inhibits angiogenesis in an MMP7-dependent way. In conclusion, our study suggests a clinical role of MAGP1 in laryngeal cancer, signifying its potential as a therapeutic target in the future.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"220-234"},"PeriodicalIF":4.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10585032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Zhang, Ruinan Li, Haibin Zhang, Shanshan Wang, Yuanli Zhao
Glioma is the most common malignant brain tumor in adults with a high mortality and recurrence rate. Integrin alpha 2 (ITGA2) is involved in cell adhesion, stem cell regulation, angiogenesis and immune cell function. The role of ITGA2 in glioma malignant invasion remains unknown. The function and clinical relevance of ITGA2 were analysed by bioinformatics databases. The expression of ITGA2 in parent cells and GSCs was detected by flow cytometry and immunofluorescence double staining. The role of ITGA2 on the malignant phenotype of GSCs and epithelial-mesenchymal transition (EMT) was identified by stem cell function assays and Western blot. The effect of ITGA2 on glioma progression in vivo was determined by the intracranial orthotopic xenograft model. Immunohistochemistry, Spearman correlation and Kaplan-Meier were used to analyse the relationship of ITGA2 with clinical features and glioma prognosis. Biological analysis showed that ITGA2 might be related to cell invasion and migration. ITGA2, enriched in GSCs and co-expressed with SOX2, promoted the invasion and migration of GSCs by activating STAT3 phosphorylation and enhancing EMT. ITGA2 knockout suppressed the intracranial orthotopic xenograft growth and prolonged the survival of xenograft mice. In addition, the expression level of ITGA2 was significantly correlated to the grade of malignancy, N-cadherin and Ki67. High expression of ITGA2 indicated a worse prognosis of glioma patients. As a biomarker for the prediction of prognosis, ITGA2 promotes the malignant invasion of GSCs by activating STAT3 phosphorylation and enhancing EMT, leading to tumor recurrence and poor prognosis.
{"title":"ITGA2 as a prognostic factor of glioma promotes GSCs invasion and EMT by activating STAT3 phosphorylation.","authors":"Jin Zhang, Ruinan Li, Haibin Zhang, Shanshan Wang, Yuanli Zhao","doi":"10.1093/carcin/bgad096","DOIUrl":"10.1093/carcin/bgad096","url":null,"abstract":"<p><p>Glioma is the most common malignant brain tumor in adults with a high mortality and recurrence rate. Integrin alpha 2 (ITGA2) is involved in cell adhesion, stem cell regulation, angiogenesis and immune cell function. The role of ITGA2 in glioma malignant invasion remains unknown. The function and clinical relevance of ITGA2 were analysed by bioinformatics databases. The expression of ITGA2 in parent cells and GSCs was detected by flow cytometry and immunofluorescence double staining. The role of ITGA2 on the malignant phenotype of GSCs and epithelial-mesenchymal transition (EMT) was identified by stem cell function assays and Western blot. The effect of ITGA2 on glioma progression in vivo was determined by the intracranial orthotopic xenograft model. Immunohistochemistry, Spearman correlation and Kaplan-Meier were used to analyse the relationship of ITGA2 with clinical features and glioma prognosis. Biological analysis showed that ITGA2 might be related to cell invasion and migration. ITGA2, enriched in GSCs and co-expressed with SOX2, promoted the invasion and migration of GSCs by activating STAT3 phosphorylation and enhancing EMT. ITGA2 knockout suppressed the intracranial orthotopic xenograft growth and prolonged the survival of xenograft mice. In addition, the expression level of ITGA2 was significantly correlated to the grade of malignancy, N-cadherin and Ki67. High expression of ITGA2 indicated a worse prognosis of glioma patients. As a biomarker for the prediction of prognosis, ITGA2 promotes the malignant invasion of GSCs by activating STAT3 phosphorylation and enhancing EMT, leading to tumor recurrence and poor prognosis.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"235-246"},"PeriodicalIF":4.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Disulfidptosis is a novel form of programmed cell death involved in migration and invasion of cancer cells, but few studies investigated the roles of genetic variants in disulfidptosis-related genes in survival of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We used Cox proportional hazards regression analyses, Kaplan-Meier curves and receiver operating characteristic curves to assess effects of genetic variants in 14 disulfidptosis-related genes on overall survival of 866 HBV-HCC patients. The Bayesian false discovery probability was used for multiple testing corrections. We also investigated biological mechanisms of the significant variants through expression quantitative trait loci analyses using the data from publicly available databases, luciferase reporter assays and differential expression analyses. As a result, we identified two independently functional single nucleotide polymorphisms (SNPs) (INF2 rs4072285 G > A and INF2 rs4444271 A > T) that predicted overall survival of HBV-HCC patients, with adjusted hazard ratios of 1.60 (95% CI = 1.22-2.11, P = 0.001) and 1.50 (95% CI = 1.80-1.90, P < 0.001), respectively, after multiple testing correction. Luciferase reporter assays indicated that both INF2 rs4072285 A and INF2 rs4444271 T alleles increased INF2 mRNA expression levels (P < 0.001) that were also higher in HCC tumor tissues than in adjacent normal tissues (P < 0.001); such elevated INF2 expression levels were associated with a poorer survival of HBV-HCC patients (P < 0.001) in the TCGA database. In summary, this study supported that INF2 rs4072285 and INF2 rs4444271 may be novel biomarkers for survival of HBV-HCC patients.
{"title":"Functional genetic variants of the disulfidptosis-related INF2 gene predict survival of hepatitis B virus-related hepatocellular carcinoma.","authors":"Junjie Wei, Qiuping Wen, Shicheng Zhan, Ji Cao, Yanji Jiang, Jiawei Lian, Yuejiao Mai, Moqin Qiu, Yingchun Liu, Peiqin Chen, Qiuling Lin, Xiaoxia Wei, Yuying Wei, Qiongguang Huang, Ruoxin Zhang, Songqing He, Guandou Yuan, Qingyi Wei, Zihan Zhou, Hongping Yu","doi":"10.1093/carcin/bgae003","DOIUrl":"10.1093/carcin/bgae003","url":null,"abstract":"<p><p>Disulfidptosis is a novel form of programmed cell death involved in migration and invasion of cancer cells, but few studies investigated the roles of genetic variants in disulfidptosis-related genes in survival of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We used Cox proportional hazards regression analyses, Kaplan-Meier curves and receiver operating characteristic curves to assess effects of genetic variants in 14 disulfidptosis-related genes on overall survival of 866 HBV-HCC patients. The Bayesian false discovery probability was used for multiple testing corrections. We also investigated biological mechanisms of the significant variants through expression quantitative trait loci analyses using the data from publicly available databases, luciferase reporter assays and differential expression analyses. As a result, we identified two independently functional single nucleotide polymorphisms (SNPs) (INF2 rs4072285 G > A and INF2 rs4444271 A > T) that predicted overall survival of HBV-HCC patients, with adjusted hazard ratios of 1.60 (95% CI = 1.22-2.11, P = 0.001) and 1.50 (95% CI = 1.80-1.90, P < 0.001), respectively, after multiple testing correction. Luciferase reporter assays indicated that both INF2 rs4072285 A and INF2 rs4444271 T alleles increased INF2 mRNA expression levels (P < 0.001) that were also higher in HCC tumor tissues than in adjacent normal tissues (P < 0.001); such elevated INF2 expression levels were associated with a poorer survival of HBV-HCC patients (P < 0.001) in the TCGA database. In summary, this study supported that INF2 rs4072285 and INF2 rs4444271 may be novel biomarkers for survival of HBV-HCC patients.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"199-209"},"PeriodicalIF":4.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan Sweeney, Ashten N Omstead, John T Fitzpatrick, Ping Zheng, Anastasia Gorbunova, Erin E Grayhack, Arul Goel, Alisha F Khan, Juliann E Kosovec, Patrick L Wagner, Blair A Jobe, Ronan J Kelly, Ali H Zaidi
Esophageal adenocarcinoma (EAC) is a leading cause of cancer-related mortality. Sitravatinib is a novel multi-gene tyrosine kinase inhibitor (TKI) that targets tumor-associated macrophage (TAM) receptors, VEGF, PDGF and c-Kit. Currently, sitravatinib is actively being studied in clinical trials across solid tumors and other TKIs have shown efficacy in combination with immune checkpoint inhibitors (ICI) in cancer models. In this study, we investigated the anti-tumor activity of sitravatinib alone and in combination with PD-1 blockade in an EAC rat model. Treatment response was evaluated by mortality, pre- and post-treatment MRI, gene expression, immunofluorescence and immunohistochemistry. Our results demonstrated adequate safety and significant tumor shrinkage in animals treated with sitravatinib, and more profoundly, sitravatinib and PD-1 inhibitor, AUNP-12 (P < 0.01). Suppression of TAM receptors resulted in increased gene expression of pro-inflammatory cytokines and decreased expression of anti-inflammatory cytokines, enhanced infiltration of CD8+ T cells, and M2 to M1 macrophage phenotype repolarization in the tumor microenvironment of treated animals (P < 0.01). Moreover, endpoint immunohistochemistry staining corroborated the anti-tumor activity by downregulation of Ki67 and upregulation of Caspase-3 in the treated animals. Additionally, pretreatment gene expression of TAM receptors and PD-L1 were significantly higher in major responders compared with the non-responders, in animals that received sitravatinib and AUNP-12 (P < 0.02), confirming that TAM suppression enhances the efficacy of PD-1 blockade. In conclusion, this study proposes a promising immunomodulatory strategy using a multi-gene TKI to overcome developed resistance to an ICI in EAC, establishing rationale for future clinical development.
{"title":"Sitravatinib combined with PD-1 blockade enhances cytotoxic T-cell infiltration by M2 to M1 tumor macrophage repolarization in esophageal adenocarcinoma.","authors":"Ryan Sweeney, Ashten N Omstead, John T Fitzpatrick, Ping Zheng, Anastasia Gorbunova, Erin E Grayhack, Arul Goel, Alisha F Khan, Juliann E Kosovec, Patrick L Wagner, Blair A Jobe, Ronan J Kelly, Ali H Zaidi","doi":"10.1093/carcin/bgad087","DOIUrl":"10.1093/carcin/bgad087","url":null,"abstract":"<p><p>Esophageal adenocarcinoma (EAC) is a leading cause of cancer-related mortality. Sitravatinib is a novel multi-gene tyrosine kinase inhibitor (TKI) that targets tumor-associated macrophage (TAM) receptors, VEGF, PDGF and c-Kit. Currently, sitravatinib is actively being studied in clinical trials across solid tumors and other TKIs have shown efficacy in combination with immune checkpoint inhibitors (ICI) in cancer models. In this study, we investigated the anti-tumor activity of sitravatinib alone and in combination with PD-1 blockade in an EAC rat model. Treatment response was evaluated by mortality, pre- and post-treatment MRI, gene expression, immunofluorescence and immunohistochemistry. Our results demonstrated adequate safety and significant tumor shrinkage in animals treated with sitravatinib, and more profoundly, sitravatinib and PD-1 inhibitor, AUNP-12 (P < 0.01). Suppression of TAM receptors resulted in increased gene expression of pro-inflammatory cytokines and decreased expression of anti-inflammatory cytokines, enhanced infiltration of CD8+ T cells, and M2 to M1 macrophage phenotype repolarization in the tumor microenvironment of treated animals (P < 0.01). Moreover, endpoint immunohistochemistry staining corroborated the anti-tumor activity by downregulation of Ki67 and upregulation of Caspase-3 in the treated animals. Additionally, pretreatment gene expression of TAM receptors and PD-L1 were significantly higher in major responders compared with the non-responders, in animals that received sitravatinib and AUNP-12 (P < 0.02), confirming that TAM suppression enhances the efficacy of PD-1 blockade. In conclusion, this study proposes a promising immunomodulatory strategy using a multi-gene TKI to overcome developed resistance to an ICI in EAC, establishing rationale for future clinical development.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"210-219"},"PeriodicalIF":4.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138457987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Yang, Sha Li, Wan Li, Yihui Yang, Yizhi Zhang, Sen Zhang, Yue Hao, Wanxin Cao, Fang Xu, Hongquan Wang, Guanhua Du, Jinhua Wang
Objectives: There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism.
Methods: TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs.
Results: There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2.
Conclusions: ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.
{"title":"Actinomycin D synergizes with Doxorubicin in triple-negative breast cancer by inducing P53-dependent cell apoptosis.","authors":"Hong Yang, Sha Li, Wan Li, Yihui Yang, Yizhi Zhang, Sen Zhang, Yue Hao, Wanxin Cao, Fang Xu, Hongquan Wang, Guanhua Du, Jinhua Wang","doi":"10.1093/carcin/bgad086","DOIUrl":"10.1093/carcin/bgad086","url":null,"abstract":"<p><strong>Objectives: </strong>There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism.</p><p><strong>Methods: </strong>TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs.</p><p><strong>Results: </strong>There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2.</p><p><strong>Conclusions: </strong>ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"262-273"},"PeriodicalIF":4.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138298480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite significant advances in cancer treatment over the decades, surgical resection remains a prominent management approach for solid neoplasms. Unfortunately, accumulating evidence suggests that surgical stress caused by tumor resection may potentially trigger postoperative metastatic niche formation. Surgical stress not only activates the sympathetic-adrenomedullary axis and hypothalamic-pituitary-adrenocortical axis but also induces hypoxia and hypercoagulable state. These adverse factors can negatively impact the immune system by downregulating immune effector cells and upregulating immune suppressor cells, which contribute to the colonization and progression of postoperative tumor metastatic niche. This review summarizes the effects of surgical stress on four types of immune effector cells (neutrophils, macrophages, natural killer cells and cytotoxic T lymphocytes) and two types of immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), and discusses the immune mechanisms of postoperative tumor relapse and progression. Additionally, relevant therapeutic strategies to minimize the pro-tumorigenic effects of surgical stress are elucidated.
尽管几十年来癌症治疗取得了重大进展,但手术切除仍是实体瘤的主要治疗方法。不幸的是,越来越多的证据表明,肿瘤切除造成的手术应激有可能引发术后转移龛的形成。手术应激不仅会激活交感-肾上腺髓质轴和下丘脑-垂体-肾上腺皮质轴,还会诱发缺氧和高凝状态。这些不利因素会通过下调免疫效应细胞和上调免疫抑制细胞对免疫系统产生负面影响,从而导致术后肿瘤转移龛的定植和进展。本综述总结了手术应激对四种免疫效应细胞(中性粒细胞、巨噬细胞、自然杀伤细胞和细胞毒性 T 淋巴细胞)和两种免疫抑制细胞(调节性 T 细胞和髓源性抑制细胞)的影响,并讨论了术后肿瘤复发和进展的免疫机制。此外,还阐明了相关的治疗策略,以尽量减少手术应激的促肿瘤效应。
{"title":"Surgical stress induced tumor immune suppressive environment.","authors":"Fan Yang, Qing Hua, Xiaoyan Zhu, Pingbo Xu","doi":"10.1093/carcin/bgae012","DOIUrl":"10.1093/carcin/bgae012","url":null,"abstract":"<p><p>Despite significant advances in cancer treatment over the decades, surgical resection remains a prominent management approach for solid neoplasms. Unfortunately, accumulating evidence suggests that surgical stress caused by tumor resection may potentially trigger postoperative metastatic niche formation. Surgical stress not only activates the sympathetic-adrenomedullary axis and hypothalamic-pituitary-adrenocortical axis but also induces hypoxia and hypercoagulable state. These adverse factors can negatively impact the immune system by downregulating immune effector cells and upregulating immune suppressor cells, which contribute to the colonization and progression of postoperative tumor metastatic niche. This review summarizes the effects of surgical stress on four types of immune effector cells (neutrophils, macrophages, natural killer cells and cytotoxic T lymphocytes) and two types of immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), and discusses the immune mechanisms of postoperative tumor relapse and progression. Additionally, relevant therapeutic strategies to minimize the pro-tumorigenic effects of surgical stress are elucidated.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"185-198"},"PeriodicalIF":4.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral and maxillofacial regions with an increasing incidence rate. Circular RNA (circRNA) is a recently discovered long-chain non-coding RNA family member. The objective of this study was to analyze the role of circ_0068162 in OSCC development.
Methods: We downloaded sample data GSE145608 from the Gene Expression Omnibus database. Online databases Starbase, TargetScan and miRDB were used to predict the target microRNAs (miRNAs) and genes. Cell viability and proliferation were assessed using the CCK-8 and EdU assays, respectively. Cell migration and invasion abilities were detected using transwell assay. The double luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the interaction relationship between the identified target molecules. RNase R and actinomycin D treatment were performed to analyze the stability of circ_0068162.
Results: We found that circ_0068162 was overexpressed in the cytoplasm of OSCC cells and clinical OSCC tissues. Knockdown of circ_0068162 inhibited the growth, migration and invasion of OSCC cells. We also identified miR-186 as the target miRNA of circ_0068162, and JAG1 and JAG2 as the target genes of miR-186. The miR-186 inhibitor rescued the effects of sh-circ_0068162 and JAG1/JAG2 overexpression rescued the effects of miR-186 mimic in OSCC cells. Furthermore, ESRP1 promoted the biosynthesis of circ_0068162.
Conclusions: The circ_0068162/miR-186/JAGs/ESRP1 feedback loop is closely related to OSCC development.
{"title":"Splicing factor ESRP1 derived circ_0068162 promotes the progression of oral squamous cell carcinoma via the miR-186/JAG axis.","authors":"Shuai Chen, Yingrui Zong, Zhenzhen Hou, Zhifen Deng, Zongping Xia","doi":"10.1093/carcin/bgad082","DOIUrl":"10.1093/carcin/bgad082","url":null,"abstract":"<p><strong>Objectives: </strong>Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral and maxillofacial regions with an increasing incidence rate. Circular RNA (circRNA) is a recently discovered long-chain non-coding RNA family member. The objective of this study was to analyze the role of circ_0068162 in OSCC development.</p><p><strong>Methods: </strong>We downloaded sample data GSE145608 from the Gene Expression Omnibus database. Online databases Starbase, TargetScan and miRDB were used to predict the target microRNAs (miRNAs) and genes. Cell viability and proliferation were assessed using the CCK-8 and EdU assays, respectively. Cell migration and invasion abilities were detected using transwell assay. The double luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the interaction relationship between the identified target molecules. RNase R and actinomycin D treatment were performed to analyze the stability of circ_0068162.</p><p><strong>Results: </strong>We found that circ_0068162 was overexpressed in the cytoplasm of OSCC cells and clinical OSCC tissues. Knockdown of circ_0068162 inhibited the growth, migration and invasion of OSCC cells. We also identified miR-186 as the target miRNA of circ_0068162, and JAG1 and JAG2 as the target genes of miR-186. The miR-186 inhibitor rescued the effects of sh-circ_0068162 and JAG1/JAG2 overexpression rescued the effects of miR-186 mimic in OSCC cells. Furthermore, ESRP1 promoted the biosynthesis of circ_0068162.</p><p><strong>Conclusions: </strong>The circ_0068162/miR-186/JAGs/ESRP1 feedback loop is closely related to OSCC development.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"107-118"},"PeriodicalIF":4.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107590305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}