Ruth Reyes-Cortes, Erika Acosta-Smith, R. Mondragón-Flores, K. Nazmi, J. Bolscher, Adrian Canizalez-Román, N. León-Sicairos
Lactoferrin (LF) is a protein with antimicrobial activity, which is conferred in part by 2 regions contained in its N-terminal lobe. These regions have been used to develop the following synthetic peptides: lactoferricin17-30, lactoferrampin265-284, and LF chimera (a fusion of lactoferricin17-30 and lactoferrampin265-284). We have reported that these LF peptides have antibacterial activity against several pathogenic bacteria; however, the exact mechanism of action has not been established. Here, we report the effects of LF peptides on the viability of enteroaggregative Escherichia coli (EAEC) and the ability of these peptides to penetrate into the bacteria cytoplasm. The viability of EAEC treated with LF peptides was determined via enumeration of colony-forming units, and the binding and internalization of the LF peptides was followed via immunogold labeling and electron microscopy. Treatment of EAEC with 20 and 40 μmol/L LF peptides reduced bacterial growth compared with untreated bacteria. Initially the peptides associated with the plasma membrane, but after 5 to 30 min of incubation, the peptides were found in the cytoplasm. Remarkably, bacteria treated with LF chimera developed cytosolic electron-dense structures that contained the antimicrobial peptide. Our results suggest that the antibacterial mechanism of LF peptides on EAEC involves their interaction with and penetration into the bacteria.
{"title":"Antibacterial and cell penetrating effects of LFcin17-30, LFampin265-284, and LF chimera on enteroaggregative Escherichia coli.","authors":"Ruth Reyes-Cortes, Erika Acosta-Smith, R. Mondragón-Flores, K. Nazmi, J. Bolscher, Adrian Canizalez-Román, N. León-Sicairos","doi":"10.1139/bcb-2016-0088","DOIUrl":"https://doi.org/10.1139/bcb-2016-0088","url":null,"abstract":"Lactoferrin (LF) is a protein with antimicrobial activity, which is conferred in part by 2 regions contained in its N-terminal lobe. These regions have been used to develop the following synthetic peptides: lactoferricin17-30, lactoferrampin265-284, and LF chimera (a fusion of lactoferricin17-30 and lactoferrampin265-284). We have reported that these LF peptides have antibacterial activity against several pathogenic bacteria; however, the exact mechanism of action has not been established. Here, we report the effects of LF peptides on the viability of enteroaggregative Escherichia coli (EAEC) and the ability of these peptides to penetrate into the bacteria cytoplasm. The viability of EAEC treated with LF peptides was determined via enumeration of colony-forming units, and the binding and internalization of the LF peptides was followed via immunogold labeling and electron microscopy. Treatment of EAEC with 20 and 40 μmol/L LF peptides reduced bacterial growth compared with untreated bacteria. Initially the peptides associated with the plasma membrane, but after 5 to 30 min of incubation, the peptides were found in the cytoplasm. Remarkably, bacteria treated with LF chimera developed cytosolic electron-dense structures that contained the antimicrobial peptide. Our results suggest that the antibacterial mechanism of LF peptides on EAEC involves their interaction with and penetration into the bacteria.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"38 1","pages":"76-81"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90944477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Sessa, M. Di Pietro, S. Filardo, A. Bressan, L. Rosa, A. Cutone, A. Frioni, F. Berlutti, R. Paesano, P. Valenti
Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated.
{"title":"Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation.","authors":"R. Sessa, M. Di Pietro, S. Filardo, A. Bressan, L. Rosa, A. Cutone, A. Frioni, F. Berlutti, R. Paesano, P. Valenti","doi":"10.1139/bcb-2016-0049","DOIUrl":"https://doi.org/10.1139/bcb-2016-0049","url":null,"abstract":"Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"1 1","pages":"34-40"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86093043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lactoferrin (Lf) is known for its physiologically pleiotropic properties. In this study, we investigated whether Lf affects glycemic regulation, including glucose absorption from the small intestine. Bovine Lf (bLf, 100 mg/kg body mass) was administered to rats by intraperitoneal injection before intravenous (intravenous glucose tolerance test, IVGTT) or oral glucose administration (oral glucose tolerance test, OGTT). With IVGTT, bLf pretreatment had no significant effect on plasma levels of glucose or insulin. With OGTT, the bLf treatment group tended to show lower plasma levels of glucose than the control group at and after the 15 min peak, and decreased levels of plasma glucose at 180 min. The change in plasma levels of insulin from 0 to 30 min was higher in the bLf treatment group than in the control group. Total plasma glucose-dependent insulinotropic polypeptide (GIP) was lowered at 60 min by the bLf treatment, while an immediate increase in total plasma glucagon-like peptide-1 (GLP-1) was observed within the bLf group undergoing OGTT. In addition, bLf was associated with an increase in the amount of glucose absorbed into the everted jejunum sac. These results suggest that Lf could suppress hyperglycemia, accompanied by elevated plasma levels of insulin via transiently accelerating GLP-1 secretion, and that Lf even enhances glucose absorption from the small intestine.
{"title":"Lactoferrin potentially facilitates glucose regulation and enhances the incretin effect.","authors":"Yutaka Maekawa, A. Sugiyama, T. Takeuchi","doi":"10.1139/bcb-2016-0082","DOIUrl":"https://doi.org/10.1139/bcb-2016-0082","url":null,"abstract":"Lactoferrin (Lf) is known for its physiologically pleiotropic properties. In this study, we investigated whether Lf affects glycemic regulation, including glucose absorption from the small intestine. Bovine Lf (bLf, 100 mg/kg body mass) was administered to rats by intraperitoneal injection before intravenous (intravenous glucose tolerance test, IVGTT) or oral glucose administration (oral glucose tolerance test, OGTT). With IVGTT, bLf pretreatment had no significant effect on plasma levels of glucose or insulin. With OGTT, the bLf treatment group tended to show lower plasma levels of glucose than the control group at and after the 15 min peak, and decreased levels of plasma glucose at 180 min. The change in plasma levels of insulin from 0 to 30 min was higher in the bLf treatment group than in the control group. Total plasma glucose-dependent insulinotropic polypeptide (GIP) was lowered at 60 min by the bLf treatment, while an immediate increase in total plasma glucagon-like peptide-1 (GLP-1) was observed within the bLf group undergoing OGTT. In addition, bLf was associated with an increase in the amount of glucose absorbed into the everted jejunum sac. These results suggest that Lf could suppress hyperglycemia, accompanied by elevated plasma levels of insulin via transiently accelerating GLP-1 secretion, and that Lf even enhances glucose absorption from the small intestine.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"342 1","pages":"155-161"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78038953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Arias, Ashley L. Hilchie, Ashley L. Hilchie, Evan F. Haney, J. Bolscher, M. Hyndman, R. Hancock, H. Vogel, H. Vogel
Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.
{"title":"Anticancer activities of bovine and human lactoferricin-derived peptides.","authors":"M. Arias, Ashley L. Hilchie, Ashley L. Hilchie, Evan F. Haney, J. Bolscher, M. Hyndman, R. Hancock, H. Vogel, H. Vogel","doi":"10.1139/bcb-2016-0175","DOIUrl":"https://doi.org/10.1139/bcb-2016-0175","url":null,"abstract":"Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"13 1","pages":"91-98"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85381016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas K H Ostan, A. Morgenthau, A. Morgenthau, R. Yu, S. Gray-Owen, A. Schryvers
Pathogenic bacteria from the families Neisseriaeceae and Moraxellaceae acquire iron from their host using surface receptors that have the ability to hijack iron from the iron-sequestering host proteins transferrin (Tf) and lactoferrin (Lf). The process of acquiring iron from Tf has been well-characterized, including the role of the surface lipoprotein transferrin-binding protein B (TbpB). In contrast, the only well-defined role for the homologue, LbpB, is in its protection against cationic antimicrobial peptides, which is mediated by regions present in some LbpBs that are highly enriched in glutamic or aspartic acid. In this study we compare the Tf-TbpB and the Lf-LbpB interactions and examine the protective effect of LbpB against extracts from human and transgenic mouse neutrophils to gains insights into the physiological roles of LbpB. The results indicate that in contrast to the Tf-TbpB interaction, Lf-LbpB interaction is sensitive to pH and varies between species. In addition, the results with transgenic mouse neutrophils raise the question of whether there is species specificity in the cleavage of Lf to generate cationic antimicrobial peptides or differences in the potency of peptides derived from mouse and human Lf.
{"title":"A comparative, cross-species investigation of the properties and roles of transferrin- and lactoferrin-binding protein B from pathogenic bacteria.","authors":"Nicholas K H Ostan, A. Morgenthau, A. Morgenthau, R. Yu, S. Gray-Owen, A. Schryvers","doi":"10.1139/bcb-2016-0055","DOIUrl":"https://doi.org/10.1139/bcb-2016-0055","url":null,"abstract":"Pathogenic bacteria from the families Neisseriaeceae and Moraxellaceae acquire iron from their host using surface receptors that have the ability to hijack iron from the iron-sequestering host proteins transferrin (Tf) and lactoferrin (Lf). The process of acquiring iron from Tf has been well-characterized, including the role of the surface lipoprotein transferrin-binding protein B (TbpB). In contrast, the only well-defined role for the homologue, LbpB, is in its protection against cationic antimicrobial peptides, which is mediated by regions present in some LbpBs that are highly enriched in glutamic or aspartic acid. In this study we compare the Tf-TbpB and the Lf-LbpB interactions and examine the protective effect of LbpB against extracts from human and transgenic mouse neutrophils to gains insights into the physiological roles of LbpB. The results indicate that in contrast to the Tf-TbpB interaction, Lf-LbpB interaction is sensitive to pH and varies between species. In addition, the results with transgenic mouse neutrophils raise the question of whether there is species specificity in the cleavage of Lf to generate cationic antimicrobial peptides or differences in the potency of peptides derived from mouse and human Lf.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"31 1 1","pages":"5-11"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90973673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse-1. At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)-1·mouse-1) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
{"title":"Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology.","authors":"Shen-An Hwang, M. Kruzel, J. Actor","doi":"10.1139/bcb-2016-0061","DOIUrl":"https://doi.org/10.1139/bcb-2016-0061","url":null,"abstract":"Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse-1. At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)-1·mouse-1) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"12 1","pages":"148-154"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84804520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We previously reported that lactoferrin (LF) could be effective for preventing preterm delivery and intrauterine infections, based on data derived from mice and rabbits. Here we describe 6 women with a history of multiple pregnancy losses or preterm delivery and refractory bacterial vaginosis, who received prebiotic LF therapy and delivered an infant normally. Five of the women were pregnant and one was not at the time of this study. The Ethics Committee at Showa University Hospital and Showa University Koto Toyosu Hospital approved the therapeutic protocol. Vaginal suppositories and oral prebiotic LF were administered to patients who were refractory to conventional treatment for vaginosis and had a history of late miscarriages and very early preterm delivery due to refractory vaginitis and chorioamnionitis. LF significantly improved the vaginal bacterial flora. Lactobacillus, which was detectable in the vaginas of all patients after one month of LF therapy, gradually became dominant. The findings from these 6 patients suggest that administering LF to humans could help prevent refractory vaginitis, cervical inflammation, and preterm delivery.
{"title":"Effects of lactoferrin in 6 patients with refractory bacterial vaginosis.","authors":"K. Otsuki, Noriaki Imai","doi":"10.1139/bcb-2016-0051","DOIUrl":"https://doi.org/10.1139/bcb-2016-0051","url":null,"abstract":"We previously reported that lactoferrin (LF) could be effective for preventing preterm delivery and intrauterine infections, based on data derived from mice and rabbits. Here we describe 6 women with a history of multiple pregnancy losses or preterm delivery and refractory bacterial vaginosis, who received prebiotic LF therapy and delivered an infant normally. Five of the women were pregnant and one was not at the time of this study. The Ethics Committee at Showa University Hospital and Showa University Koto Toyosu Hospital approved the therapeutic protocol. Vaginal suppositories and oral prebiotic LF were administered to patients who were refractory to conventional treatment for vaginosis and had a history of late miscarriages and very early preterm delivery due to refractory vaginitis and chorioamnionitis. LF significantly improved the vaginal bacterial flora. Lactobacillus, which was detectable in the vaginas of all patients after one month of LF therapy, gradually became dominant. The findings from these 6 patients suggest that administering LF to humans could help prevent refractory vaginitis, cervical inflammation, and preterm delivery.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"65 1","pages":"31-33"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76251103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycosaminoglycans (GAGs) are long and unbranched polysaccharides that are abundant in the extracellular matrix and basement membrane of multicellular organisms. These linear polyanionic macromolecules are involved in many physiological functions from cell adhesion to cellular signaling. Interestingly, amyloid fibrils extracted from patients afflicted with protein misfolding diseases are virtually always associated with GAGs. Amyloid fibrils are highly organized nanostructures that have been historically associated with pathological states, such as Alzheimer's disease and systemic amyloidoses. However, recent studies have identified functional amyloids that accomplish crucial physiological roles in almost all living organisms, from bacteria to insects and mammals. Over the last 2 decades, numerous reports have revealed that sulfated GAGs accelerate and (or) promote the self-assembly of a large diversity of proteins, both inherently amyloidogenic and non-aggregation prone. Despite the fact that many studies have investigated the molecular mechanism(s) by which GAGs induce amyloid assembly, the mechanistic elucidation of GAG-mediated amyloidogenesis still remains the subject of active research. In this review, we expose the contribution of GAGs in amyloid assembly, and we discuss the pathophysiological and functional significance of GAG-mediated fibrillization. Finally, we propose mechanistic models of the unique and potent ability of sulfated GAGs to hasten amyloid fibril formation.
{"title":"Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance.","authors":"Noé Quittot, M. Sebastiao, S. Bourgault","doi":"10.1139/bcb-2016-0236","DOIUrl":"https://doi.org/10.1139/bcb-2016-0236","url":null,"abstract":"Glycosaminoglycans (GAGs) are long and unbranched polysaccharides that are abundant in the extracellular matrix and basement membrane of multicellular organisms. These linear polyanionic macromolecules are involved in many physiological functions from cell adhesion to cellular signaling. Interestingly, amyloid fibrils extracted from patients afflicted with protein misfolding diseases are virtually always associated with GAGs. Amyloid fibrils are highly organized nanostructures that have been historically associated with pathological states, such as Alzheimer's disease and systemic amyloidoses. However, recent studies have identified functional amyloids that accomplish crucial physiological roles in almost all living organisms, from bacteria to insects and mammals. Over the last 2 decades, numerous reports have revealed that sulfated GAGs accelerate and (or) promote the self-assembly of a large diversity of proteins, both inherently amyloidogenic and non-aggregation prone. Despite the fact that many studies have investigated the molecular mechanism(s) by which GAGs induce amyloid assembly, the mechanistic elucidation of GAG-mediated amyloidogenesis still remains the subject of active research. In this review, we expose the contribution of GAGs in amyloid assembly, and we discuss the pathophysiological and functional significance of GAG-mediated fibrillization. Finally, we propose mechanistic models of the unique and potent ability of sulfated GAGs to hasten amyloid fibril formation.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"85 1","pages":"329-337"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75041569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kanae Nakamura, S. Morishita, Tomoji Ono, M. Murakoshi, K. Sugiyama, H. Kato, I. Ikeda, H. Nishino
Lactoferrin (LF) is a multifunctional cationic protein (pI 8.2-8.9) in mammalian milk. We previously reported that enteric-LF prevented hypercholesterolemia and atherosclerosis in a diet-induced atherosclerosis model using Microminipig, although the underlying mechanisms remain unclear. Because LF is assumed to electrostatically interact with bile acids to inhibit intestinal cholesterol absorption, LF could promote cholesterol excretion. In this study, we assessed the interaction between LF and taurocholate in vitro, and the effect of LF on cholesterol excretion in rats. The binding rate of taurocholate to LF was significantly higher than that to transferrin (pI 5.2-6.3). When rats were administered a high-cholesterol diet (HCD) containing 5% LF, LF was detected using ELISA in the upper small intestine from 7.5 to 60 min after the administration. Rats were fed one of the following diets: control, HCD, or HCD + 5% LF for 21 days. Fecal neutral steroids and hepatic cholesterol levels in the HCD group were significantly higher than those in the control group. The addition of LF to a HCD significantly increased fecal neutral steroids levels (22% increase, p < 0.05) and reduced hepatic cholesterol levels (17% decrease, p < 0.05). These parameters were inversely correlated (R = -0.63, p < 0.05). These results suggest that LF promotes cholesterol excretion via interactions with bile acids.
{"title":"Lactoferrin interacts with bile acids and increases fecal cholesterol excretion in rats.","authors":"Kanae Nakamura, S. Morishita, Tomoji Ono, M. Murakoshi, K. Sugiyama, H. Kato, I. Ikeda, H. Nishino","doi":"10.1139/bcb-2016-0052","DOIUrl":"https://doi.org/10.1139/bcb-2016-0052","url":null,"abstract":"Lactoferrin (LF) is a multifunctional cationic protein (pI 8.2-8.9) in mammalian milk. We previously reported that enteric-LF prevented hypercholesterolemia and atherosclerosis in a diet-induced atherosclerosis model using Microminipig, although the underlying mechanisms remain unclear. Because LF is assumed to electrostatically interact with bile acids to inhibit intestinal cholesterol absorption, LF could promote cholesterol excretion. In this study, we assessed the interaction between LF and taurocholate in vitro, and the effect of LF on cholesterol excretion in rats. The binding rate of taurocholate to LF was significantly higher than that to transferrin (pI 5.2-6.3). When rats were administered a high-cholesterol diet (HCD) containing 5% LF, LF was detected using ELISA in the upper small intestine from 7.5 to 60 min after the administration. Rats were fed one of the following diets: control, HCD, or HCD + 5% LF for 21 days. Fecal neutral steroids and hepatic cholesterol levels in the HCD group were significantly higher than those in the control group. The addition of LF to a HCD significantly increased fecal neutral steroids levels (22% increase, p < 0.05) and reduced hepatic cholesterol levels (17% decrease, p < 0.05). These parameters were inversely correlated (R = -0.63, p < 0.05). These results suggest that LF promotes cholesterol excretion via interactions with bile acids.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"86 1","pages":"142-147"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79208308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Wang, Xiumin Wang, Ya Hao, D. Teng, Jianhua Wang
Lactoferrin (Lf), a multifunctional glycoprotein, is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. Lactoferricin (Lfcin) is located in the N-terminal region of this protein. In this review, the current state of research into Lf and Lfcin in China is described. Searching with HistCite software in Web Sci located 118 papers published by Chinese researchers from 2011-2015, making China one of the top 3 producers of Lf research and development in the world. The biological functions of Lf and Lfcin are discussed, including antibacterial, antiviral, antifungal, anticarcinogenic, and anti-inflammatory activities; targeted drug delivery, induction of neurocyte, osteoblast, and tenocyte growth, and possible mechanisms of action. The preparation and heterologous expression of Lf in animals, bacteria, and yeast are discussed in detail. Five Lf-related food additive factories and 9 Lf-related health food production companies are certified by the China Food and Drug Administration (CFDA). The latest progress in the generation of transgenic livestock in China, the safety of the use of transgenic animals, and future prospects for the uses of Lf and Lfcin are also covered.
{"title":"Research and development on lactoferrin and its derivatives in China from 2011-2015.","authors":"Xiao Wang, Xiumin Wang, Ya Hao, D. Teng, Jianhua Wang","doi":"10.1139/bcb-2016-0073","DOIUrl":"https://doi.org/10.1139/bcb-2016-0073","url":null,"abstract":"Lactoferrin (Lf), a multifunctional glycoprotein, is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. Lactoferricin (Lfcin) is located in the N-terminal region of this protein. In this review, the current state of research into Lf and Lfcin in China is described. Searching with HistCite software in Web Sci located 118 papers published by Chinese researchers from 2011-2015, making China one of the top 3 producers of Lf research and development in the world. The biological functions of Lf and Lfcin are discussed, including antibacterial, antiviral, antifungal, anticarcinogenic, and anti-inflammatory activities; targeted drug delivery, induction of neurocyte, osteoblast, and tenocyte growth, and possible mechanisms of action. The preparation and heterologous expression of Lf in animals, bacteria, and yeast are discussed in detail. Five Lf-related food additive factories and 9 Lf-related health food production companies are certified by the China Food and Drug Administration (CFDA). The latest progress in the generation of transgenic livestock in China, the safety of the use of transgenic animals, and future prospects for the uses of Lf and Lfcin are also covered.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"13 1","pages":"162-170"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89070138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}