首页 > 最新文献

Cancer Biology & Therapy最新文献

英文 中文
The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress. 聚合氟嘧啶 CF10 通过增加复制应激克服了 5-FU 在胰腺导管腺癌细胞中的局限性。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-11-08 DOI: 10.1080/15384047.2024.2421584
Jennifer M Finan, Roberto Di Niro, Soon Young Park, Kang Jin Jeong, Madeline D Hedberg, Alexander Smith, Grace A McCarthy, Alex O Haber, John Muschler, Rosalie C Sears, Gordon B Mills, William H Gmeiner, Jonathan R Brody

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.

胰腺导管腺癌(PDAC)是一种致命疾病,很快将成为美国癌症死亡的第二大原因。除手术治疗外,目前的疗法临床疗效不佳,且有全身毒性。FOLFIRINOX是目前的标准疗法,其中一种成分是5-氟尿嘧啶(5-FU),它会导致严重的胃肠道和造血毒性,而且容易产生耐药机制。最近,我们开发了聚合氟嘧啶(F10、CF10),与 5-FU 不同的是,这种药物原则上可完全转化为胸腺嘧啶合成酶抑制性代谢物 FdUMP,而不会产生明显的核糖核苷酸,从而导致全身毒性,同时显示出更强的抗癌活性。在此,我们证实了 CF10 的效力,并研究了通过与针对 PDAC 细胞特征--复制应激的体外抑制剂联合使用来增强其疗效的方法。CF10 的单药效力是 5-FU 的 308 倍,在原发性患者衍生模型中的效力在 nM 范围内。此外,我们还发现 CF10(而非 5-FU)与调节 S 和 G2 DNA 损伤检查点的 ATR 和 Wee1 抑制剂联合使用后,其活性会得到增强,并且可以通过添加 dNTPs 而逆转,这表明 CF10 至少部分是通过诱导复制应激发挥作用的。我们的研究结果表明,CF10 有可能取代 5-FU 在 PDAC 治疗中的既有疗效,并指出了新的联合用药方法,这些方法应在体内进行验证,并可能有益于包括 5-FU 在内的既有治疗方案。
{"title":"The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress.","authors":"Jennifer M Finan, Roberto Di Niro, Soon Young Park, Kang Jin Jeong, Madeline D Hedberg, Alexander Smith, Grace A McCarthy, Alex O Haber, John Muschler, Rosalie C Sears, Gordon B Mills, William H Gmeiner, Jonathan R Brody","doi":"10.1080/15384047.2024.2421584","DOIUrl":"10.1080/15384047.2024.2421584","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2421584"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-05-15 DOI: 10.1080/15384047.2024.2352926
{"title":"Correction.","authors":"","doi":"10.1080/15384047.2024.2352926","DOIUrl":"10.1080/15384047.2024.2352926","url":null,"abstract":"","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2352926"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cdk inhibitor dinaciclib as a promising anti-tumorigenic agent in biliary tract cancer. Cdk抑制剂dinaciclib作为一种有前途的抗胆道肿瘤药物。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-12-12 DOI: 10.1080/15384047.2024.2439057
Celina Ablinger, Daniel Neureiter, Theresa Mähr, Christian Mayr, Tobias Kiesslich, Nicole Maeding, Irina Valenta, Maximilian Ardelt, Fabian Wilhelm, Elen Neureiter, Markus Ritter, Johanna Pachmayr, Petra Huber-Cantonati

Biliary tract cancer (BTC) is a rare malignancy with rising incidence. The therapeutic options are limited and the overall survival remains poor. Cyclin-dependent kinases, drivers of cell cycle and transcription have numerous biological functions and are known to be dysregulated in numerous tumor entities. Dinaciclib is a selective Cdk1/2/5/9 inhibitor with anti-tumor activity. In the present study, the efficacy of dinaciclib was tested on a comprehensive BTC cell-line model. The results indicate a heterogeneous expression pattern of Cdk1/2/5/9, as well as various differentiation tumor markers in BTC cells. We demonstrated that dinaciclib reduces cell viability, ATP levels, and proliferation rates. Moreover, dinaciclib induces apoptosis via increased caspase 3/7 activity and reduced expression levels of the anti-apoptotic protein Mcl-1 in a concentration- and cell line -dependent manner. 3D cell culture confirms the cytotoxic impact of dinaciclib under more physiologic tumor conditions. Additionally, dinaciclib affects different cell growth regulators like EGFR and STAT3 on gene and protein level, thus decreasing tumor growth. In summary, our study indicates that dinaciclib acts as a promising anti-tumorigenic agent in 2D and 3D in vitro BTC models and thus encourages further investigation.

胆道癌(BTC)是一种罕见的恶性肿瘤,发病率呈上升趋势。治疗方案有限,总体生存率仍然很低。细胞周期蛋白依赖性激酶是细胞周期和转录的驱动因子,具有多种生物学功能,已知在多种肿瘤实体中存在失调。Dinaciclib是一种具有抗肿瘤活性的选择性Cdk1/2/5/9抑制剂。本研究在一个综合性 BTC 细胞系模型上测试了地那西利布的疗效。结果表明,Cdk1/2/5/9以及各种分化肿瘤标志物在BTC细胞中有不同的表达模式。我们证实,地那西利布能降低细胞活力、ATP水平和增殖率。此外,dinaciclib 还能通过增加 caspase 3/7 活性和降低抗凋亡蛋白 Mcl-1 的表达水平来诱导细胞凋亡,其作用与浓度和细胞系有关。三维细胞培养证实了地那西利在更符合肿瘤生理的条件下产生的细胞毒性影响。此外,dinaciclib 还在基因和蛋白水平上影响表皮生长因子受体(EGFR)和 STAT3 等不同的细胞生长调节因子,从而降低肿瘤生长。总之,我们的研究表明,在二维和三维体外 BTC 模型中,dinaciclib 是一种很有前景的抗肿瘤药物,因此值得进一步研究。
{"title":"The Cdk inhibitor dinaciclib as a promising anti-tumorigenic agent in biliary tract cancer.","authors":"Celina Ablinger, Daniel Neureiter, Theresa Mähr, Christian Mayr, Tobias Kiesslich, Nicole Maeding, Irina Valenta, Maximilian Ardelt, Fabian Wilhelm, Elen Neureiter, Markus Ritter, Johanna Pachmayr, Petra Huber-Cantonati","doi":"10.1080/15384047.2024.2439057","DOIUrl":"10.1080/15384047.2024.2439057","url":null,"abstract":"<p><p>Biliary tract cancer (BTC) is a rare malignancy with rising incidence. The therapeutic options are limited and the overall survival remains poor. Cyclin-dependent kinases, drivers of cell cycle and transcription have numerous biological functions and are known to be dysregulated in numerous tumor entities. Dinaciclib is a selective Cdk1/2/5/9 inhibitor with anti-tumor activity. In the present study, the efficacy of dinaciclib was tested on a comprehensive BTC cell-line model. The results indicate a heterogeneous expression pattern of Cdk1/2/5/9, as well as various differentiation tumor markers in BTC cells. We demonstrated that dinaciclib reduces cell viability, ATP levels, and proliferation rates. Moreover, dinaciclib induces apoptosis via increased caspase 3/7 activity and reduced expression levels of the anti-apoptotic protein Mcl-1 in a concentration- and cell line -dependent manner. 3D cell culture confirms the cytotoxic impact of dinaciclib under more physiologic tumor conditions. Additionally, dinaciclib affects different cell growth regulators like EGFR and STAT3 on gene and protein level, thus decreasing tumor growth. In summary, our study indicates that dinaciclib acts as a promising anti-tumorigenic agent in 2D and 3D <i>in vitro</i> BTC models and thus encourages further investigation.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2439057"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-10b-5p promotes tumor growth by regulating cell metabolism in liver cancer via targeting SLC38A2. miR-10b-5p 通过靶向 SLC38A2 调节肝癌细胞代谢促进肿瘤生长
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-02-23 DOI: 10.1080/15384047.2024.2315651
Mingzhi Xia, Jie Chen, Yingyun Hu, Bin Qu, Qianqian Bu, Haoming Shen

Metabolic reprogramming plays a critical role in hepatocarcinogenesis. However, the mechanisms regulating metabolic reprogramming in primary liver cancer (PLC) are unknown. Differentially expressed miRNAs between PLC and normal tissues were identified using bioinformatic analysis. RT-qPCR was used to determine miR-10b-5p and SCL38A2 expression levels. IHC, WB, and TUNEL assays were used to assess the proliferation and apoptosis of the tissues. The proliferation, migration, invasion, and apoptosis of PLC cells were determined using the CCK-8 assay, Transwell assay, and flow cytometry. The interaction between miR-10b-5p and SLC38A2 was determined using dual-luciferase reporter assay. A PLC xenograft model in BALB/c nude mice was established, and tumorigenicity and SLC38A2 expression were estimated. Finally, liquid chromatography - mass spectrometry (LC-MS) untargeted metabolomics was used to analyze the metabolic profiles of xenograft PLC tissues in nude mice. miR-10b-5p was a key molecule in the regulation of PLC. Compared with para-carcinoma tissues, miR-10b-5p expression was increased in tumor tissues. miR-10b-5p facilitated proliferation, migration, and invasion of PLC cells. Mechanistically, miR-10b-5p targeted SLC38A2 to promote PLC tumor growth. Additionally, miR-10b-5p altered the metabolic features of PLC in vivo. Overexpression of miR-10b-5p resulted in remarkably higher amounts of lumichrome, folic acid, octanoylcarnitine, and Beta-Nicotinamide adenine dinucleotide, but lower levels of 2-methylpropanal, glycyl-leucine, and 2-hydroxycaproic acid. miR-10b-5p facilitates the metabolic reprogramming of PLC by targeting SLC38A2, which ultimately boosts the proliferation, migration, and invasion of PLC cells. Therefore, miR-10b-5p and SLC38A2 are potential targets for PLC diagnosis and treatment.

代谢重编程在肝癌发生过程中起着至关重要的作用。然而,原发性肝癌(PLC)代谢重编程的调控机制尚不清楚。通过生物信息学分析确定了原发性肝癌和正常组织中表达不同的 miRNA。采用 RT-qPCR 确定 miR-10b-5p 和 SCL38A2 的表达水平。采用 IHC、WB 和 TUNEL 检测法评估组织的增殖和凋亡。利用 CCK-8 试验、Transwell 试验和流式细胞术测定了 PLC 细胞的增殖、迁移、侵袭和凋亡。使用双荧光素酶报告实验测定了 miR-10b-5p 与 SLC38A2 之间的相互作用。在 BALB/c 裸鼠中建立了 PLC 异种移植模型,并对其致瘤性和 SLC38A2 表达进行了评估。最后,利用液相色谱-质谱(LC-MS)非靶向代谢组学分析了裸鼠异种移植 PLC 组织的代谢谱。与癌旁组织相比,miR-10b-5p在肿瘤组织中的表达增加。从机制上看,miR-10b-5p靶向SLC38A2,促进了PLC肿瘤的生长。此外,miR-10b-5p 还改变了 PLC 在体内的代谢特征。通过靶向 SLC38A2,miR-10b-5p 促进了 PLC 的代谢重编程,最终促进了 PLC 细胞的增殖、迁移和侵袭。因此,miR-10b-5p 和 SLC38A2 是诊断和治疗 PLC 的潜在靶点。
{"title":"miR-10b-5p promotes tumor growth by regulating cell metabolism in liver cancer via targeting SLC38A2.","authors":"Mingzhi Xia, Jie Chen, Yingyun Hu, Bin Qu, Qianqian Bu, Haoming Shen","doi":"10.1080/15384047.2024.2315651","DOIUrl":"10.1080/15384047.2024.2315651","url":null,"abstract":"<p><p>Metabolic reprogramming plays a critical role in hepatocarcinogenesis. However, the mechanisms regulating metabolic reprogramming in primary liver cancer (PLC) are unknown. Differentially expressed miRNAs between PLC and normal tissues were identified using bioinformatic analysis. RT-qPCR was used to determine miR-10b-5p and SCL38A2 expression levels. IHC, WB, and TUNEL assays were used to assess the proliferation and apoptosis of the tissues. The proliferation, migration, invasion, and apoptosis of PLC cells were determined using the CCK-8 assay, Transwell assay, and flow cytometry. The interaction between miR-10b-5p and SLC38A2 was determined using dual-luciferase reporter assay. A PLC xenograft model in BALB/c nude mice was established, and tumorigenicity and SLC38A2 expression were estimated. Finally, liquid chromatography - mass spectrometry (LC-MS) untargeted metabolomics was used to analyze the metabolic profiles of xenograft PLC tissues in nude mice. miR-10b-5p was a key molecule in the regulation of PLC. Compared with para-carcinoma tissues, miR-10b-5p expression was increased in tumor tissues. miR-10b-5p facilitated proliferation, migration, and invasion of PLC cells. Mechanistically, miR-10b-5p targeted SLC38A2 to promote PLC tumor growth. Additionally, miR-10b-5p altered the metabolic features of PLC <i>in vivo</i>. Overexpression of miR-10b-5p resulted in remarkably higher amounts of lumichrome, folic acid, octanoylcarnitine, and Beta-Nicotinamide adenine dinucleotide, but lower levels of 2-methylpropanal, glycyl-leucine, and 2-hydroxycaproic acid. miR-10b-5p facilitates the metabolic reprogramming of PLC by targeting SLC38A2, which ultimately boosts the proliferation, migration, and invasion of PLC cells. Therefore, miR-10b-5p and SLC38A2 are potential targets for PLC diagnosis and treatment.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2315651"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-378a-5p exerts a radiosensitizing effect on CRC through LRP8/β-catenin axis. MiR-378a-5p通过LRP8/β-catenin轴对CRC产生放射增敏作用。
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-02-22 DOI: 10.1080/15384047.2024.2308165
Guolin Hu, Pengbiao Che, Ling Deng, Lei Liu, Jia Liao, Qi Liu

Background: MiRNAs are closely related to tumor radiosensitivity. MiR-378a-5p level is down-regulated in colorectal cancer (CRC). Therefore, this study intends to explore the role of miR-378a-5p in CRC, especially radiosensitivity.

Methods: The expression of miR-378a-5p was analyzed in CRC samples. CRC cell lines were treated with different doses of X-rays. Bioinformatics analysis, dual-luciferase reporter assay and RT-qPCR were used to detect the expressions and binding relationship of miR-378a-5p and low-density lipoprotein receptor-related protein 8 (LRP8). MiR-378a-5p inhibitor or/and siLRP8 were transfected into CRC cells with or without irradiation. Subsequently, clonogenic assay, flow cytometry and in vivo experiments including tumorigenesis assay, immunohistochemistry, RT-qPCR and Western blot were performed to clarify the role of miR-378a-5p/LRP8 axis in the radiosensitivity of CRC.

Results: The down-regulated expression of miR-378a-5p in CRC is related to histological differentiation and tumor-node-metastasis (TNM) stage. After irradiation, the survival fraction of CRC cells was decreased, while the apoptotic rate and the level of miR-378a-5p were increased. Restrained miR-378a-5p repressed apoptosis and apoptosis-related protein expressions, yet promoted the proliferation and the radioresistance of cells by regulating β-catenin in CRC cells. LRP8 was highly expressed in CRC, and targeted by miR-378a-5p. SiLRP8 improved radiosensitivity and reversed the effect of miR-378a-5p down-regulation on CRC cells. Overexpressed miR-378a-5p and irradiation enhanced the level of miR-378a-5p, yet suppressed the expressions of Ki67 and LRP8 as well as tumorigenesis.

Conclusion: MiR-378a-5p may exert a radiosensitizing effect on CRC through the LRP8/β-catenin axis, which may be a new therapeutic target for CRC radioresistance.

背景MiRNA与肿瘤放射敏感性密切相关。MiR-378a-5p水平在结直肠癌(CRC)中下调。因此,本研究旨在探讨 miR-378a-5p 在 CRC 中的作用,尤其是放射敏感性:方法:分析 CRC 样本中 miR-378a-5p 的表达。方法:分析 miR-378a-5p 在 CRC 样本中的表达。生物信息学分析、双荧光素酶报告分析和 RT-qPCR 检测了 miR-378a-5p 和低密度脂蛋白受体相关蛋白 8(LRP8)的表达及结合关系。将 MiR-378a-5p 抑制剂或/和 siLRP8 转染至接受或不接受辐照的 CRC 细胞。随后,进行了克隆生成试验、流式细胞术和体内实验,包括肿瘤发生试验、免疫组化、RT-qPCR和Western印迹,以明确miR-378a-5p/LRP8轴在CRC放射敏感性中的作用:结果:miR-378a-5p在CRC中的下调表达与组织学分化和肿瘤-结节-转移(TNM)分期有关。辐照后,CRC 细胞的存活率下降,而凋亡率和 miR-378a-5p 水平上升。受抑制的miR-378a-5p抑制了CRC细胞的凋亡和凋亡相关蛋白的表达,但通过调节β-catenin促进了细胞的增殖和放射抗性。LRP8在CRC中高表达,并被miR-378a-5p靶向。SiLRP8能改善CRC细胞的放射敏感性,并逆转miR-378a-5p下调对CRC细胞的影响。过表达的miR-378a-5p和辐照提高了miR-378a-5p的水平,但却抑制了Ki67和LRP8的表达以及肿瘤的发生:MiR-378a-5p可能通过LRP8/β-catenin轴对CRC产生放射增敏作用,这可能是治疗CRC放射耐药的新靶点。
{"title":"MiR-378a-5p exerts a radiosensitizing effect on CRC through LRP8/β-catenin axis.","authors":"Guolin Hu, Pengbiao Che, Ling Deng, Lei Liu, Jia Liao, Qi Liu","doi":"10.1080/15384047.2024.2308165","DOIUrl":"10.1080/15384047.2024.2308165","url":null,"abstract":"<p><strong>Background: </strong>MiRNAs are closely related to tumor radiosensitivity. MiR-378a-5p level is down-regulated in colorectal cancer (CRC). Therefore, this study intends to explore the role of miR-378a-5p in CRC, especially radiosensitivity.</p><p><strong>Methods: </strong>The expression of miR-378a-5p was analyzed in CRC samples. CRC cell lines were treated with different doses of X-rays. Bioinformatics analysis, dual-luciferase reporter assay and RT-qPCR were used to detect the expressions and binding relationship of miR-378a-5p and low-density lipoprotein receptor-related protein 8 (LRP8). MiR-378a-5p inhibitor or/and siLRP8 were transfected into CRC cells with or without irradiation. Subsequently, clonogenic assay, flow cytometry and <i>in vivo</i> experiments including tumorigenesis assay, immunohistochemistry, RT-qPCR and Western blot were performed to clarify the role of miR-378a-5p/LRP8 axis in the radiosensitivity of CRC.</p><p><strong>Results: </strong>The down-regulated expression of miR-378a-5p in CRC is related to histological differentiation and tumor-node-metastasis (TNM) stage. After irradiation, the survival fraction of CRC cells was decreased, while the apoptotic rate and the level of miR-378a-5p were increased. Restrained miR-378a-5p repressed apoptosis and apoptosis-related protein expressions, yet promoted the proliferation and the radioresistance of cells by regulating β-catenin in CRC cells. LRP8 was highly expressed in CRC, and targeted by miR-378a-5p. SiLRP8 improved radiosensitivity and reversed the effect of miR-378a-5p down-regulation on CRC cells. Overexpressed miR-378a-5p and irradiation enhanced the level of miR-378a-5p, yet suppressed the expressions of Ki67 and LRP8 as well as tumorigenesis.</p><p><strong>Conclusion: </strong>MiR-378a-5p may exert a radiosensitizing effect on CRC through the LRP8/β-catenin axis, which may be a new therapeutic target for CRC radioresistance.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2308165"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A positive feedback loop of SRSF9/USP22/ZEB1 promotes the progression of ovarian cancer. SRSF9/USP22/ZEB1的正反馈回路促进了卵巢癌的进展。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-11-12 DOI: 10.1080/15384047.2024.2427415
Jing Wang, Ming Hu, Jie Min, Xin Li

Ovarian cancer (OC) is recognized as the most lethal type of gynecological malignancy, making treatment options challenging. Discovering novel therapeutic targets will benefit OC patients. This study aimed to reveal the mechanism by which SRSF9 regulates OC progression. Cell proliferation was determined via CCK-8 assays, whereas cell migration and invasion were monitored via Transwell assays. Western blotting and qPCR assays were used to detect protein and mRNA alterations. RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were performed to investigate the relationships between SRSF9 and USP22. Co-IP was used to validate the interaction between USP22 and ZEB1. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were used to verify the regulatory effect of ZEB1 on the transcription of SRSF9. Subcutaneous xenograft models were established to evaluate the impact of SRSF9 on tumor development. Knockdown of SRSF9 significantly suppressed the proliferation, invasion, migration, tumorigenicity, and epithelial‒mesenchymal transition (EMT) of OC cells. SRSF9 can bind to USP22 mRNA, increasing its stability. Moreover, the overexpression of USP22 reversed the impact of SRSF9 silencing on malignant phenotypes. USP22 can mediate the deubiquitination of ZEB1, thereby enhancing the progression of OC. Furthermore, ZEB1 upregulated SRSF9 expression through transcriptional activation, thus establishing a positive feedback loop. SRSF9 enhanced the malignant characteristics of OC through a positive feedback loop of SRSF9/USP22/ZEB1. This functional circuit may help in the development of novel therapeutic approaches for treating OC.

卵巢癌(OC)是公认的致死率最高的妇科恶性肿瘤,因此治疗方案充满挑战。发现新的治疗靶点将使卵巢癌患者受益。本研究旨在揭示SRSF9调控OC进展的机制。细胞增殖通过CCK-8检测法确定,而细胞迁移和侵袭则通过Transwell检测法监测。采用 Western 印迹和 qPCR 方法检测蛋白质和 mRNA 的变化。为了研究 SRSF9 和 USP22 之间的关系,进行了 RNA 拉取、RNA 免疫沉淀(RIP)和放线菌素 D 实验。Co-IP 用于验证 USP22 和 ZEB1 之间的相互作用。染色质免疫沉淀(ChIP)和双荧光素酶报告实验用于验证 ZEB1 对 SRSF9 转录的调控作用。建立皮下异种移植模型以评估SRSF9对肿瘤发生的影响。敲除SRSF9能显著抑制OC细胞的增殖、侵袭、迁移、致瘤性和上皮-间质转化(EMT)。SRSF9能与USP22 mRNA结合,增加其稳定性。此外,USP22的过表达逆转了SRSF9沉默对恶性表型的影响。USP22 可以介导 ZEB1 的去泛素化,从而促进 OC 的进展。此外,ZEB1通过转录激活上调SRSF9的表达,从而建立了一个正反馈回路。SRSF9通过SRSF9/USP22/ZEB1的正反馈回路增强了OC的恶性特征。这一功能回路可能有助于开发治疗OC的新型疗法。
{"title":"A positive feedback loop of SRSF9/USP22/ZEB1 promotes the progression of ovarian cancer.","authors":"Jing Wang, Ming Hu, Jie Min, Xin Li","doi":"10.1080/15384047.2024.2427415","DOIUrl":"10.1080/15384047.2024.2427415","url":null,"abstract":"<p><p>Ovarian cancer (OC) is recognized as the most lethal type of gynecological malignancy, making treatment options challenging. Discovering novel therapeutic targets will benefit OC patients. This study aimed to reveal the mechanism by which SRSF9 regulates OC progression. Cell proliferation was determined via CCK-8 assays, whereas cell migration and invasion were monitored via Transwell assays. Western blotting and qPCR assays were used to detect protein and mRNA alterations. RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were performed to investigate the relationships between SRSF9 and USP22. Co-IP was used to validate the interaction between USP22 and ZEB1. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were used to verify the regulatory effect of ZEB1 on the transcription of SRSF9. Subcutaneous xenograft models were established to evaluate the impact of SRSF9 on tumor development. Knockdown of SRSF9 significantly suppressed the proliferation, invasion, migration, tumorigenicity, and epithelial‒mesenchymal transition (EMT) of OC cells. SRSF9 can bind to USP22 mRNA, increasing its stability. Moreover, the overexpression of USP22 reversed the impact of SRSF9 silencing on malignant phenotypes. USP22 can mediate the deubiquitination of ZEB1, thereby enhancing the progression of OC. Furthermore, ZEB1 upregulated SRSF9 expression through transcriptional activation, thus establishing a positive feedback loop. SRSF9 enhanced the malignant characteristics of OC through a positive feedback loop of SRSF9/USP22/ZEB1. This functional circuit may help in the development of novel therapeutic approaches for treating OC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2427415"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic evolution of bone marrow adipocyte in B cell acute lymphoblastic leukemia: insights from diagnosis to post-chemotherapy. 骨髓脂肪细胞在 B 细胞急性淋巴细胞白血病中的动态演变:从诊断到化疗后的启示。
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-03-11 DOI: 10.1080/15384047.2024.2323765
Xi Jia, Naying Liao, Yunqian Yao, Xutao Guo, Kai Chen, Pengcheng Shi

Adipocyte is a unique and versatile component of bone marrow microenvironment (BMM). However, the dynamic evolution of Bone Marrow (BM) adipocytes from the diagnosis of B cell Acute Lymphoblastic Leukemia (B-ALL) to the post-treatment state, and how they affect the progression of leukemia, remains inadequately explicated. Primary patient-derived xenograft models (PDXs) and stromal cell co-culture system are employed in this study. We show that the dynamic evolution of BM adipocytes from initial diagnosis of B-ALL to the post-chemotherapy phase, transitioning from cellular depletion in the initial leukemia niche to a fully restored state upon remission. Increased BM adipocytes retards engraftment of B-ALL cells in PDX models and inhibits cells growth of B-ALL in vitro. Mechanistically, the proliferation arrest of B-ALL cells in the context of adipocytes-enrichment niche, might attribute to the presence of adiponectin secreted by adipocytes themselves and the absence of cytokines secreted by mesenchymal stem cell (MSCs). In summary, our findings offer a novel perspective for further in-depth understanding of the dynamic balance between BMM and B-ALL.

脂肪细胞是骨髓微环境(BMM)中独特而多变的组成部分。然而,骨髓(BM)脂肪细胞从诊断为 B 细胞急性淋巴细胞白血病(B-ALL)到治疗后状态的动态演变,以及它们如何影响白血病的进展,仍未得到充分阐述。本研究采用了原代患者异种移植模型(PDX)和基质细胞共培养系统。我们发现,从 B-ALL 最初诊断到化疗后阶段,BM 脂肪细胞发生了动态演变,从最初白血病龛中的细胞耗竭过渡到缓解后的完全恢复状态。BM 脂肪细胞的增加会延缓 B-ALL 细胞在 PDX 模型中的移植,并抑制 B-ALL 细胞在体外的生长。从机理上讲,B-ALL 细胞在脂肪细胞富集的龛位中增殖受阻,可能是由于脂肪细胞本身分泌脂肪连素,而间充质干细胞(MSCs)不分泌细胞因子。总之,我们的发现为进一步深入了解BMM与B-ALL之间的动态平衡提供了一个新的视角。
{"title":"Dynamic evolution of bone marrow adipocyte in B cell acute lymphoblastic leukemia: insights from diagnosis to post-chemotherapy.","authors":"Xi Jia, Naying Liao, Yunqian Yao, Xutao Guo, Kai Chen, Pengcheng Shi","doi":"10.1080/15384047.2024.2323765","DOIUrl":"10.1080/15384047.2024.2323765","url":null,"abstract":"<p><p>Adipocyte is a unique and versatile component of bone marrow microenvironment (BMM). However, the dynamic evolution of Bone Marrow (BM) adipocytes from the diagnosis of B cell Acute Lymphoblastic Leukemia (B-ALL) to the post-treatment state, and how they affect the progression of leukemia, remains inadequately explicated. Primary patient-derived xenograft models (PDXs) and stromal cell co-culture system are employed in this study. We show that the dynamic evolution of BM adipocytes from initial diagnosis of B-ALL to the post-chemotherapy phase, transitioning from cellular depletion in the initial leukemia niche to a fully restored state upon remission. Increased BM adipocytes retards engraftment of B-ALL cells in PDX models and inhibits cells growth of B-ALL in vitro. Mechanistically, the proliferation arrest of B-ALL cells in the context of adipocytes-enrichment niche, might attribute to the presence of adiponectin secreted by adipocytes themselves and the absence of cytokines secreted by mesenchymal stem cell (MSCs). In summary, our findings offer a novel perspective for further in-depth understanding of the dynamic balance between BMM and B-ALL.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2323765"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD46 and CD59 inhibitors enhance complement-dependent cytotoxicity of anti-CD38 monoclonal antibodies daratumumab and isatuximab in multiple myeloma and other B-cell malignancy cells. CD46和CD59抑制剂能增强抗CD38单克隆抗体daratumumab和isatuximab对多发性骨髓瘤和其他B细胞恶性肿瘤细胞的补体依赖性细胞毒性。
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-02-15 DOI: 10.1080/15384047.2024.2314322
Hongjie Wang, Theo Koob, Jonathan R Fromm, Ajay Gopal, Darrick Carter, André Lieber

Multiple myeloma (MM) is an incurable malignancy of the B-cell lineage. Remarkable progress has been made in the treatment of MM with anti-CD38 monoclonal antibodies such as daratumumab and isatuximab, which can kill MM cells by inducing complement-dependent cytotoxicity (CDC). We showed that the CDC efficacy of daratumumab and isatuximab is limited by membrane complement inhibitors, including CD46 and CD59, which are upregulated in MM cells. We recently developed a small recombinant protein, Ad35K++, which is capable of transiently removing CD46 from the cell surface. We also produced a peptide inhibitor of CD59 (rILYd4). In this study, we tested Ad35K++ and rILYd4 in combination with daratumumab and isatuximab in MM cells as well as in cells from two other B-cell malignancies. We showed that Ad35K++ and rILYd4 increased CDC triggered by daratumumab and isatuximab. The combination of both inhibitors had an additive effect in vitro in primary MM cells as well as in vivo in a mouse xenograft model of MM. Daratumumab and isatuximab treatment of MM lines (without Ad35K++ or rILYd4) resulted in the upregulation of CD46/CD59 and/or survival of CD46high/CD59high MM cells that escaped the second round of daratumumab and isatuximab treatment. The escape in the second treatment cycle was prevented by the pretreatment of cells with Ad35K++. Overall, our data demonstrate that Ad35K++ and rILYd4 are efficient co-therapeutics of daratumumab and isatuximab, specifically in multi-cycle treatment regimens, and could be used to improve treatment of multiple myeloma.

多发性骨髓瘤(MM)是一种无法治愈的B细胞系恶性肿瘤。达拉土单抗和伊沙妥昔单抗等抗CD38单克隆抗体可通过诱导补体依赖性细胞毒性(CDC)杀死骨髓瘤细胞,在治疗骨髓瘤方面取得了显著进展。我们的研究表明,达拉土单抗和伊沙妥昔单抗的补体依赖性细胞毒性(CDC)疗效受到膜补体抑制剂的限制,包括在 MM 细胞中上调的 CD46 和 CD59。我们最近开发了一种小型重组蛋白 Ad35K++,它能够瞬时清除细胞表面的 CD46。我们还生产了一种 CD59 多肽抑制剂(rILYd4)。在这项研究中,我们测试了 Ad35K++ 和 rILYd4 与达拉单抗和伊沙妥昔单抗在 MM 细胞以及其他两种 B 细胞恶性肿瘤细胞中的联合应用。我们发现,Ad35K++ 和 rILYd4 增加了达拉土单抗和伊沙妥昔单抗引发的 CDC。在体外原发性 MM 细胞以及体内小鼠异种移植 MM 模型中,这两种抑制剂的组合具有叠加效应。达拉土单抗和伊沙妥昔单抗治疗 MM 株系(不含 Ad35K++ 或 rILYd4)会导致 CD46/CD59 上调和/或 CD46 高/CD59 高的 MM 细胞存活,这些细胞逃脱了第二轮达拉土单抗和伊沙妥昔单抗的治疗。用 Ad35K++ 对细胞进行预处理可防止细胞在第二轮治疗中逃逸。总之,我们的数据表明,Ad35K++和rILYd4是达拉单抗和伊沙妥昔单抗的高效协同治疗药物,特别是在多周期治疗方案中,可用于改善多发性骨髓瘤的治疗。
{"title":"CD46 and CD59 inhibitors enhance complement-dependent cytotoxicity of anti-CD38 monoclonal antibodies daratumumab and isatuximab in multiple myeloma and other B-cell malignancy cells.","authors":"Hongjie Wang, Theo Koob, Jonathan R Fromm, Ajay Gopal, Darrick Carter, André Lieber","doi":"10.1080/15384047.2024.2314322","DOIUrl":"10.1080/15384047.2024.2314322","url":null,"abstract":"<p><p>Multiple myeloma (MM) is an incurable malignancy of the B-cell lineage. Remarkable progress has been made in the treatment of MM with anti-CD38 monoclonal antibodies such as daratumumab and isatuximab, which can kill MM cells by inducing complement-dependent cytotoxicity (CDC). We showed that the CDC efficacy of daratumumab and isatuximab is limited by membrane complement inhibitors, including CD46 and CD59, which are upregulated in MM cells. We recently developed a small recombinant protein, Ad35K++, which is capable of transiently removing CD46 from the cell surface. We also produced a peptide inhibitor of CD59 (rILYd4). In this study, we tested Ad35K++ and rILYd4 in combination with daratumumab and isatuximab in MM cells as well as in cells from two other B-cell malignancies. We showed that Ad35K++ and rILYd4 increased CDC triggered by daratumumab and isatuximab. The combination of both inhibitors had an additive effect <i>in vitro</i> in primary MM cells as well as <i>in vivo</i> in a mouse xenograft model of MM. Daratumumab and isatuximab treatment of MM lines (without Ad35K++ or rILYd4) resulted in the upregulation of CD46/CD59 and/or survival of CD46<sup>high</sup>/CD59<sup>high</sup> MM cells that escaped the second round of daratumumab and isatuximab treatment. The escape in the second treatment cycle was prevented by the pretreatment of cells with Ad35K++. Overall, our data demonstrate that Ad35K++ and rILYd4 are efficient co-therapeutics of daratumumab and isatuximab, specifically in multi-cycle treatment regimens, and could be used to improve treatment of multiple myeloma.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2314322"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eIf3a mediates malignant biological behaviors in colorectal cancer through the PI3K/AKT signaling pathway. eIf3a 通过 PI3K/AKT 信号通路介导结直肠癌的恶性生物学行为。
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-05-23 DOI: 10.1080/15384047.2024.2355703
Chao Huo, Disheng Wu, Xiaodan Li, Yan Zhang, Baoguang Hu, Taoming Zhang, Jianwei Ren, Tianbao Wang, Yi Liu

Colorectal cancer (CRC) is among the most common gastrointestinal malignancies worldwide. eIF3a is highly expressed in a variety of cancer types, yet its role in CRC remains unclear. We introduced ectopic eIF3a expression in CRC cells to investigate its relevance to various malignant behaviors. Further, we silenced eIF3a to explore its effect on tumor growth in a nude mouse tumor xenograft model. Finally, the molecular mechanisms through which eIF3a regulates malignancy in CRC cells were explored through bioinformatics analysis combined with the use of a specific PI3K inhibitor (LY294002). eIF3a was highly expressed in the peripheral blood and cancer tissue of CRC patients. Malignancy and tumor growth were significantly inhibited by silencing eIF3a, while overexpression promoted malignant behaviors, with a positive correlation between PI3K/AKT activation and eIF3a expression. Taken together, eIF3a plays an oncogenic role in CRC by regulating PI3K/AKT signaling and is a potential biomarker for CRC diagnosis and prognostic monitoring.

大肠癌(CRC)是全球最常见的胃肠道恶性肿瘤之一。eIF3a在多种癌症类型中高度表达,但它在CRC中的作用仍不清楚。我们在 CRC 细胞中引入了 eIF3a 的异位表达,以研究它与各种恶性行为的相关性。此外,我们还在裸鼠肿瘤异种移植模型中沉默了 eIF3a,以探讨其对肿瘤生长的影响。最后,我们通过生物信息学分析,结合使用特异性 PI3K 抑制剂(LY294002),探讨了 eIF3a 调节 CRC 细胞恶性程度的分子机制。沉默eIF3a能显著抑制恶性肿瘤的发生和生长,而过表达则会促进恶性行为,PI3K/AKT的激活与eIF3a的表达呈正相关。综上所述,eIF3a通过调控PI3K/AKT信号在CRC中发挥致癌作用,是CRC诊断和预后监测的潜在生物标志物。
{"title":"eIf3a mediates malignant biological behaviors in colorectal cancer through the PI3K/AKT signaling pathway.","authors":"Chao Huo, Disheng Wu, Xiaodan Li, Yan Zhang, Baoguang Hu, Taoming Zhang, Jianwei Ren, Tianbao Wang, Yi Liu","doi":"10.1080/15384047.2024.2355703","DOIUrl":"10.1080/15384047.2024.2355703","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is among the most common gastrointestinal malignancies worldwide. eIF3a is highly expressed in a variety of cancer types, yet its role in CRC remains unclear. We introduced ectopic eIF3a expression in CRC cells to investigate its relevance to various malignant behaviors. Further, we silenced eIF3a to explore its effect on tumor growth in a nude mouse tumor xenograft model. Finally, the molecular mechanisms through which eIF3a regulates malignancy in CRC cells were explored through bioinformatics analysis combined with the use of a specific PI3K inhibitor (LY294002). eIF3a was highly expressed in the peripheral blood and cancer tissue of CRC patients. Malignancy and tumor growth were significantly inhibited by silencing eIF3a, while overexpression promoted malignant behaviors, with a positive correlation between PI3K/AKT activation and eIF3a expression. Taken together, eIF3a plays an oncogenic role in CRC by regulating PI3K/AKT signaling and is a potential biomarker for CRC diagnosis and prognostic monitoring.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2355703"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circ_RPPH1 facilitates progression of breast cancer via miR-1296-5p/TRIM14 axis. Circ_RPPH1 通过 miR-1296-5p/TRIM14 轴促进乳腺癌的进展。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-05-30 DOI: 10.1080/15384047.2024.2360768
Jing Jiang, Shenghong Shi, Wei Zhang, Chao Li, Long Sun, Qidong Ge, Xujun Li

Circular RNA Ribonuclease P RNA Component H1 (circ_RPPH1) and microRNA (miRNA) miR-1296-5p play a crucial role in breast cancer (BC), but the molecular mechanism is vague. Evidence showed that miR-1296-5p can activate tripartite motif-containing 14 (TRIM14). Clinical indications of eighty BC patients were collected and the circ_RPPH1 expression was detected using real-time quantitative PCR. MCF-7 and MDA-MB-231 cells were transfected with overexpression or knockdown of circ_RPPH1, miR-1296-5p, or TRIM14. Cell counting kit-8, cell cloning formation, wound healing, Transwell, and flow cytometry assays were performed to investigate the malignant phenotype of BC. The dual-luciferase reporter gene analyses were applied to reveal the interaction between these target genes. Subcutaneous tumorigenic model mice were established with circ_RPPH1 overexpression MDA-MB-231 cells in vivo; the tumor weight and volume, levels of miR-1296-5 and TRIM14 mRNA were measured. Western blot and immunohistochemistry were used to detect TRIM14 in cells and mice. Circ_RPPH1 levels were notably higher in BC patients and have been found to promote cell proliferation, invasion, and migration of BC cells. Circ_RPPH1 altered cell cycle and hindered apoptosis. Circ_RPPH1 knockdown or miR-1296-5p overexpression inhibited the malignant phenotype of BC. Furthermore, miR-1296-5p knockdown reversed circ_RPPH1's promotion effects on BC. Interestingly, TRIM14 overexpression counteracts the inhibitory effects of miR-1296-5p overexpression and circ_RPPH1 silencing on BC. Moreover, in BC tumor-bearing mice, circ_RPPH1 overexpression led to increased TRIM14 expression and facilitated tumor growth. Circ_RPPH1 enhanced BC progression through miR-1296-5p/TRIM14 axis, indicating its potential as a biomarker and therapeutic target in BC.

环状 RNA 核糖核酸酶 P RNA 成分 H1(circ_RPPH1)和 microRNA(miRNA)miR-1296-5p 在乳腺癌(BC)中起着至关重要的作用,但其分子机制尚不清楚。有证据表明,miR-1296-5p 能激活含三方基序 14(TRIM14)。研究人员收集了 80 例 BC 患者的临床指征,并使用实时定量 PCR 检测了 circ_RPPH1 的表达。用过表达或敲除 circ_RPPH1、miR-1296-5p 或 TRIM14 的方法转染 MCF-7 和 MDA-MB-231 细胞。进行了细胞计数试剂盒-8、细胞克隆形成、伤口愈合、Transwell 和流式细胞术检测,以研究 BC 的恶性表型。应用双荧光素酶报告基因分析揭示了这些靶基因之间的相互作用。用circ_RPPH1过表达的MDA-MB-231细胞建立皮下肿瘤模型小鼠,测量肿瘤的重量和体积、miR-1296-5和TRIM14 mRNA的水平。采用 Western 印迹和免疫组织化学方法检测细胞和小鼠中的 TRIM14。BC患者的Circ_RPPH1水平明显较高,研究发现它能促进BC细胞的增殖、侵袭和迁移。Circ_RPPH1会改变细胞周期并阻碍细胞凋亡。Circ_RPPH1敲除或miR-1296-5p过表达可抑制BC的恶性表型。此外,miR-1296-5p 的敲除逆转了 circ_RPPH1 对 BC 的促进作用。有趣的是,TRIM14 的过表达抵消了 miR-1296-5p 过表达和 circ_RPPH1 沉默对 BC 的抑制作用。此外,在BC肿瘤小鼠中,circ_RPPH1过表达会导致TRIM14表达增加,并促进肿瘤生长。circ_RPPH1通过miR-1296-5p/TRIM14轴促进了BC的进展,表明它有可能成为BC的生物标记物和治疗靶点。
{"title":"Circ_RPPH1 facilitates progression of breast cancer via miR-1296-5p/TRIM14 axis.","authors":"Jing Jiang, Shenghong Shi, Wei Zhang, Chao Li, Long Sun, Qidong Ge, Xujun Li","doi":"10.1080/15384047.2024.2360768","DOIUrl":"10.1080/15384047.2024.2360768","url":null,"abstract":"<p><p><i>Circular RNA Ribonuclease P</i> <i>RNA Component H1</i> (<i>circ_RPPH1</i>) and microRNA (miRNA) <i>miR-1296-5p</i> play a crucial role in breast cancer (BC), but the molecular mechanism is vague. Evidence showed that <i>miR-1296-5p</i> can activate <i>tripartite motif-containing 14</i> (<i>TRIM14</i>). Clinical indications of eighty BC patients were collected and the <i>circ_RPPH1</i> expression was detected using real-time quantitative PCR. MCF-7 and MDA-MB-231 cells were transfected with overexpression or knockdown of <i>circ_RPPH1</i>, <i>miR-1296-5p</i>, or <i>TRIM14</i>. Cell counting kit-8, cell cloning formation, wound healing, Transwell, and flow cytometry assays were performed to investigate the malignant phenotype of BC. The dual-luciferase reporter gene analyses were applied to reveal the interaction between these target genes. Subcutaneous tumorigenic model mice were established with <i>circ_RPPH1</i> overexpression MDA-MB-231 cells in vivo; the tumor weight and volume, levels of <i>miR-1296-5</i> and <i>TRIM14</i> mRNA were measured. Western blot and immunohistochemistry were used to detect TRIM14 in cells and mice. <i>Circ_RPPH1</i> levels were notably higher in BC patients and have been found to promote cell proliferation, invasion, and migration of BC cells. <i>Circ_RPPH1</i> altered cell cycle and hindered apoptosis. <i>Circ_RPPH1</i> knockdown or <i>miR-1296-5p</i> overexpression inhibited the malignant phenotype of BC. Furthermore, <i>miR-1296-5p</i> knockdown reversed <i>circ_RPPH1</i>'s promotion effects on BC. Interestingly, <i>TRIM14</i> overexpression counteracts the inhibitory effects of <i>miR-1296-5p</i> overexpression and <i>circ_RPPH1</i> silencing on BC. Moreover, in BC tumor-bearing mice, <i>circ_RPPH1</i> overexpression led to increased TRIM14 expression and facilitated tumor growth. <i>Circ_RPPH1</i> enhanced BC progression through <i>miR-1296-5p</i>/<i>TRIM14</i> axis, indicating its potential as a biomarker and therapeutic target in BC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2360768"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer Biology & Therapy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1