Pub Date : 2025-12-01Epub Date: 2025-08-03DOI: 10.1080/15384047.2025.2541991
Nobendu Mukerjee, Subham Sarkar, Daniel Ejim Uti, Prashant Kumar Sharma
Exosome-based therapies represent a pioneering frontier in cancer treatment, leveraging the natural cellular communication mechanisms encapsulated in exosomes. These nano-sized vesicles serve as carriers of proteins, lipids, and nucleic acids, reflecting the physiological state of their cells of origin, which makes them ideal candidates for targeted cancer therapies and diagnostics. Despite their potential, the path to clinical application is fraught with challenges. This review explores the inherent challenges associated with exosome-based cancer vaccines, focusing on tumor heterogeneity, the technical difficulties in exosome isolation and characterization, the need for standardized protocols, and the scalability of production methods. It also explores the interaction between exosomes and the immune system, a crucial factor in developing effective cancer vaccines. The review explores strategies to improve diagnostic tools, targeted delivery systems, and therapy based on individual tumor profiles, highlighting the need for innovative approaches and collaborative efforts to maximize exosome-based cancer vaccines' therapeutic potential.
{"title":"Advancements in exosome-based cancer diagnosis: from chipsets to nano vaccine.","authors":"Nobendu Mukerjee, Subham Sarkar, Daniel Ejim Uti, Prashant Kumar Sharma","doi":"10.1080/15384047.2025.2541991","DOIUrl":"10.1080/15384047.2025.2541991","url":null,"abstract":"<p><p>Exosome-based therapies represent a pioneering frontier in cancer treatment, leveraging the natural cellular communication mechanisms encapsulated in exosomes. These nano-sized vesicles serve as carriers of proteins, lipids, and nucleic acids, reflecting the physiological state of their cells of origin, which makes them ideal candidates for targeted cancer therapies and diagnostics. Despite their potential, the path to clinical application is fraught with challenges. This review explores the inherent challenges associated with exosome-based cancer vaccines, focusing on tumor heterogeneity, the technical difficulties in exosome isolation and characterization, the need for standardized protocols, and the scalability of production methods. It also explores the interaction between exosomes and the immune system, a crucial factor in developing effective cancer vaccines. The review explores strategies to improve diagnostic tools, targeted delivery systems, and therapy based on individual tumor profiles, highlighting the need for innovative approaches and collaborative efforts to maximize exosome-based cancer vaccines' therapeutic potential.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2541991"},"PeriodicalIF":4.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144774732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-29DOI: 10.1080/15384047.2025.2458773
Zihan Quan, Songqing Fan, Hongmei Zheng, Yue Ning, Yang Yang
Membrane-associated RING-CH8 (MARCH8) is a member of the recently discovered MARCH family of ubiquitin ligases. MARCH8 has been shown to participate in immune responses. However, the role of MARCH8 in prognosis and immunology in human cancers remains largely unknown. The expression of MARCH8 protein was detected via immunohistochemistry in non-small cell lung cancer (NSCLC) and non-cancerous lung tissues. The study investigated the role of MARCH8 in tumor immunity through pan-cancer analysis of multiple databases. MARCH8 genetic alternations and expression were explored with the cBioPortal, GTEx, and TCGA databases. We investigated the role of MARCH8 expression in clinical relevance, prognosis, tumor immune microenvironment, immune checkpoint (ICP) with a series of bioinformatics tools and methods, such as TISIDB database, ESTIMATE, and CIBERSORT method. MARCH8 expression showed cancer-specific dysregulation and was associated with the prognosis of patients in various cancers. MARCH8 was related to the tumor microenvironment and participated in tumor immune regulation. Furthermore, low expression of MARCH8 was associated with poor prognosis and might serve as an independent prognostic biomarker for NSCLC patients. The comprehensive pan-cancer analysis revealed the potential of MARCH8 in tumor-targeted therapy, and suggested MARCH8 as a promising prognostic and immunological pan-cancer biomarker.
{"title":"A pan-cancer analysis of MARCH8: molecular characteristics, clinical relevance, and immuno-oncology features.","authors":"Zihan Quan, Songqing Fan, Hongmei Zheng, Yue Ning, Yang Yang","doi":"10.1080/15384047.2025.2458773","DOIUrl":"10.1080/15384047.2025.2458773","url":null,"abstract":"<p><p>Membrane-associated RING-CH8 (MARCH8) is a member of the recently discovered MARCH family of ubiquitin ligases. MARCH8 has been shown to participate in immune responses. However, the role of MARCH8 in prognosis and immunology in human cancers remains largely unknown. The expression of MARCH8 protein was detected via immunohistochemistry in non-small cell lung cancer (NSCLC) and non-cancerous lung tissues. The study investigated the role of MARCH8 in tumor immunity through pan-cancer analysis of multiple databases. MARCH8 genetic alternations and expression were explored with the cBioPortal, GTEx, and TCGA databases. We investigated the role of MARCH8 expression in clinical relevance, prognosis, tumor immune microenvironment, immune checkpoint (ICP) with a series of bioinformatics tools and methods, such as TISIDB database, ESTIMATE, and CIBERSORT method. MARCH8 expression showed cancer-specific dysregulation and was associated with the prognosis of patients in various cancers. MARCH8 was related to the tumor microenvironment and participated in tumor immune regulation. Furthermore, low expression of MARCH8 was associated with poor prognosis and might serve as an independent prognostic biomarker for NSCLC patients. The comprehensive pan-cancer analysis revealed the potential of MARCH8 in tumor-targeted therapy, and suggested MARCH8 as a promising prognostic and immunological pan-cancer biomarker.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2458773"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration. In this study, we knocked down the CDK9 to investigate its effects on the growth and survival of AML cells. Through RNA-seq analysis, we identified that in U937 cells CDK9 regulates numerous genes involved in proliferation and apoptosis, including mTOR, SREBF1, and Bcl-2. Furthermore, our results demonstrated that both CDK9 and FASN are crucial for the proliferation and survival of Kasumi-1 and U937 cells. Mechanistically, MCL1, c-Myc, and Akt/mTOR/SREBF1 may be critical factors and pathways in the combined therapy of NVP-2 and Orlistat. In summary, our study revealed that CDK9 and FASN are vital for maintaining AML cell survival and proliferation. Treatment with NVP-2 and Orlistat may be a promising clinical candidate for patients with AML.
{"title":"NVP-2, in combination with Orlistat, represents a promising therapeutic strategy for acute myeloid leukemia.","authors":"Qing Zhu, Jia Cheng, Yuqing Gao, Zimu Zhang, Jian Pan, Xin Su, Danhong Fei, Linbo Cai, Juanjuan Yu, Yanling Chen, Wanyan Jiao, Di Wu, Xiaolu Li, Peifang Xiao","doi":"10.1080/15384047.2025.2450859","DOIUrl":"10.1080/15384047.2025.2450859","url":null,"abstract":"<p><p>Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration. In this study, we knocked down the CDK9 to investigate its effects on the growth and survival of AML cells. Through RNA-seq analysis, we identified that in U937 cells CDK9 regulates numerous genes involved in proliferation and apoptosis, including mTOR, SREBF1, and Bcl-2. Furthermore, our results demonstrated that both CDK9 and FASN are crucial for the proliferation and survival of Kasumi-1 and U937 cells. Mechanistically, MCL1, c-Myc, and Akt/mTOR/SREBF1 may be critical factors and pathways in the combined therapy of NVP-2 and Orlistat. In summary, our study revealed that CDK9 and FASN are vital for maintaining AML cell survival and proliferation. Treatment with NVP-2 and Orlistat may be a promising clinical candidate for patients with AML.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2450859"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-09-15DOI: 10.1080/15384047.2025.2558402
Hongsheng Li, Yao Ning, Junjie Yu, Yiju Chen, Qiang He, Juan Jin
Ubiquitin-specific protease 7 (USP7) involves in various human cancers due to its capacity for binding and stabilizing specific target proteins through deubiquitylation, but its roles in clear cell renal cell carcinoma (ccRCC) development remains unknown. This study aimed to determine the role of USP7 in the pyroptosis mechanism in ccRCC, thereby providing novel anti-ccRCC strategies. Bioinformatics analysis was conducted to explore the expression of USP7 and TRIP12 in ccRCC patients and their association with patient overall survival. qRT-PCR, western blotting, and ELISA were used to determine the levels of USP7, TRIP12, pyroptosis-related factors. Cell viability, invasion, pyroptosis, and proliferation were evaluated using CCK-8, Transwell, flow cytometry, and immunohistochemistry assays. The direct interaction between USP7 and TRIP12 was validated by co-immunoprecipitation (CO-IP). We found downregulated USP7 in ccRCC tissues, which was related to the shorter patient overall survival (OS). Significantly, USP7 was also decreased in ccRCC cells. oe-USP7 (USP7 overexpression) inhibited ccRCC cell viability, migration, invasion, and enhanced pyroptosis. The caspase-1 specific inhibitor, VX-765, partially abolished the anti-viability, and pro-pyroptosis effects of oe-USP7, indicating USP7 overexpression prevented the malignant phenotype of ccRCC cells by enhancing caspase-1 dependent pyroptosis. Similarly, the shorter patient OS was indicated to be associated with reduced TRIP12 in ccRCC tissues. Besides, oe-USP7 increased TRIP12 expression in ccRCC cells by deubiquitinating TRIP12, while sh-TRIP12 eliminated the biological functions of oe-USP7. The similar effects of oe-USP7 on ccRCC development were found in ccRCC mice. USP7 mediated TRIP12 deubiquitination inhibited ccRCC progression by enhancing pyroptosis.
{"title":"USP7 overexpression prevents the progression of clear cell renal cell carcinoma by enhancing pyroptosis via TRIP12 deubiquitination.","authors":"Hongsheng Li, Yao Ning, Junjie Yu, Yiju Chen, Qiang He, Juan Jin","doi":"10.1080/15384047.2025.2558402","DOIUrl":"10.1080/15384047.2025.2558402","url":null,"abstract":"<p><p>Ubiquitin-specific protease 7 (USP7) involves in various human cancers due to its capacity for binding and stabilizing specific target proteins through deubiquitylation, but its roles in clear cell renal cell carcinoma (ccRCC) development remains unknown. This study aimed to determine the role of USP7 in the pyroptosis mechanism in ccRCC, thereby providing novel anti-ccRCC strategies. Bioinformatics analysis was conducted to explore the expression of USP7 and TRIP12 in ccRCC patients and their association with patient overall survival. qRT-PCR, western blotting, and ELISA were used to determine the levels of USP7, TRIP12, pyroptosis-related factors. Cell viability, invasion, pyroptosis, and proliferation were evaluated using CCK-8, Transwell, flow cytometry, and immunohistochemistry assays. The direct interaction between USP7 and TRIP12 was validated by co-immunoprecipitation (CO-IP). We found downregulated USP7 in ccRCC tissues, which was related to the shorter patient overall survival (OS). Significantly, USP7 was also decreased in ccRCC cells. oe-USP7 (USP7 overexpression) inhibited ccRCC cell viability, migration, invasion, and enhanced pyroptosis. The caspase-1 specific inhibitor, VX-765, partially abolished the anti-viability, and pro-pyroptosis effects of oe-USP7, indicating USP7 overexpression prevented the malignant phenotype of ccRCC cells by enhancing caspase-1 dependent pyroptosis. Similarly, the shorter patient OS was indicated to be associated with reduced TRIP12 in ccRCC tissues. Besides, oe-USP7 increased TRIP12 expression in ccRCC cells by deubiquitinating TRIP12, while sh-TRIP12 eliminated the biological functions of oe-USP7. The similar effects of oe-USP7 on ccRCC development were found in ccRCC mice. USP7 mediated TRIP12 deubiquitination inhibited ccRCC progression by enhancing pyroptosis.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2558402"},"PeriodicalIF":4.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145063513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PCK2, which encodes mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), is upregulated in various cancers. We demonstrated high expression of PEPCK-M in approximately half of triple-negative breast cancers (TNBCs) previously. TNBC is associated with an aggressive phenotype and a high metastasis rate. In this study, we investigated the role of PCK2 in TNBC. PCK2 knockdown suppressed proliferation and mTOR signaling in TNBC cells. In addition, cell invasion/migration ability and the expression of epithelial-to-mesenchymal transition (EMT) markers were positively correlated with PCK2 expression in TNBC cells via regulation of transforming growth factor-β (TGF-β)/SMAD3 signaling. SMAD3 was positively regulated by PCK2 in TNBC cells. Knockdown of SMAD3 in PCK2-overexpressing TNBC cells reduced the expression levels of EMT markers, Snail and Slug, and suppressed cell invasion/migration. In addition, PCK2 knockdown attenuated the stimulatory effect of TGF-β on SMAD3 phosphorylation in TNBC cells. PEPCK-M promotes the protein and mRNA expression of SMAD3 via competitive binding to tripartite motif-containing 67 (TRIM67), an E3 ubiquitin ligase, to reduce SMAD3 ubiquitination, which leads to promoting nuclear translocation of SMAD3 and autoregulation of SMAD3 transcription. Moreover, high PCK2 mRNA expression was significantly associated with poor survival in TNBC patients. In conclusion, our study revealed for the first time that PCK2 activates TGF-β/SMAD3 signaling by regulating the expression and phosphorylation of SMAD3 by inhibiting TRIM67-mediated SMAD3 ubiquitination and promoting the stimulatory effect of TGF-β to promote TNBC invasion. The regulatory effect of PCK2 on mTOR and TGF-β/SMAD3 signaling suggests that PCK2 is a potential therapeutic target for suppressing TNBC progression.
{"title":"<i>PCK2</i> promotes invasion and epithelial-to-mesenchymal transition in triple-negative breast cancer by promoting TGF-β/SMAD3 signaling through inhibiting TRIM67-mediated SMAD3 ubiquitination.","authors":"Tsung-Ming Chang, Wei-Yu Fang, Hui-Ping Hsu, Pei-Yi Chu, Shih Sheng Jiang, Kuo-Wei Huang, Wen-Chun Hung, Hui-You Lin, Hui-Jen Tsai","doi":"10.1080/15384047.2025.2478670","DOIUrl":"10.1080/15384047.2025.2478670","url":null,"abstract":"<p><p><i>PCK2</i>, which encodes mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), is upregulated in various cancers. We demonstrated high expression of PEPCK-M in approximately half of triple-negative breast cancers (TNBCs) previously. TNBC is associated with an aggressive phenotype and a high metastasis rate. In this study, we investigated the role of <i>PCK2</i> in TNBC. <i>PCK2</i> knockdown suppressed proliferation and mTOR signaling in TNBC cells. In addition, cell invasion/migration ability and the expression of epithelial-to-mesenchymal transition (EMT) markers were positively correlated with <i>PCK2</i> expression in TNBC cells via regulation of transforming growth factor-β (TGF-β)/SMAD3 signaling. <i>SMAD3</i> was positively regulated by <i>PCK2</i> in TNBC cells. Knockdown of <i>SMAD3</i> in <i>PCK2</i>-overexpressing TNBC cells reduced the expression levels of EMT markers, Snail and Slug, and suppressed cell invasion/migration. In addition, <i>PCK2</i> knockdown attenuated the stimulatory effect of TGF-β on SMAD3 phosphorylation in TNBC cells. PEPCK-M promotes the protein and mRNA expression of SMAD3 via competitive binding to tripartite motif-containing 67 (TRIM67), an E3 ubiquitin ligase, to reduce SMAD3 ubiquitination, which leads to promoting nuclear translocation of SMAD3 and autoregulation of SMAD3 transcription. Moreover, high <i>PCK2</i> mRNA expression was significantly associated with poor survival in TNBC patients. In conclusion, our study revealed for the first time that <i>PCK2</i> activates TGF-β/SMAD3 signaling by regulating the expression and phosphorylation of SMAD3 by inhibiting TRIM67-mediated SMAD3 ubiquitination and promoting the stimulatory effect of TGF-β to promote TNBC invasion. The regulatory effect of <i>PCK2</i> on mTOR and TGF-β/SMAD3 signaling suggests that <i>PCK2</i> is a potential therapeutic target for suppressing TNBC progression.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2478670"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143623809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-10DOI: 10.1080/15384047.2025.2452025
Jing Ma, Yanru Yang, Kaijing Wang, Jin Liu, Junyi Feng, Gongcheng Wang, Shuangping Guo, Linni Fan
Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients. Notably, renal cell carcinoma (RCC) is rich in blood vessels; therefore, this study aimed to explore the biological function of RSK4 in ccRCC progression and its specific regulatory mechanism. We analyzed changes in the expression of target genes through transcriptomic and proteomic assessments. We also conducted tube formation assays and VEGF ELISAs to understand the role of RSK4 in angiogenesis. Additionally, we evaluated the regulatory effect of RUNX1 on EPHA2 transcription using a luciferase reporter gene assay and observed that the effect of RUNX1 on activating EPHA2 transcription was negated after the binding site was mutated. Our findings suggested that RSK4 enhanced tube formation by stimulating VEGF secretion. Concurrently, in vivo experiments confirmed that RSK4 expedited RCC metastasis and angiogenesis. This evidence indicates that RSK4 may serve as a new prognostic marker and play a vital role in RCC metastasis.
{"title":"RSK4 promotes the metastasis of clear cell renal cell carcinoma by activating RUNX1-mediated angiogenesis.","authors":"Jing Ma, Yanru Yang, Kaijing Wang, Jin Liu, Junyi Feng, Gongcheng Wang, Shuangping Guo, Linni Fan","doi":"10.1080/15384047.2025.2452025","DOIUrl":"10.1080/15384047.2025.2452025","url":null,"abstract":"<p><p>Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients. Notably, renal cell carcinoma (RCC) is rich in blood vessels; therefore, this study aimed to explore the biological function of RSK4 in ccRCC progression and its specific regulatory mechanism. We analyzed changes in the expression of target genes through transcriptomic and proteomic assessments. We also conducted tube formation assays and VEGF ELISAs to understand the role of RSK4 in angiogenesis. Additionally, we evaluated the regulatory effect of RUNX1 on EPHA2 transcription using a luciferase reporter gene assay and observed that the effect of RUNX1 on activating EPHA2 transcription was negated after the binding site was mutated. Our findings suggested that RSK4 enhanced tube formation by stimulating VEGF secretion. Concurrently, in vivo experiments confirmed that RSK4 expedited RCC metastasis and angiogenesis. This evidence indicates that RSK4 may serve as a new prognostic marker and play a vital role in RCC metastasis.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2452025"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-02-10DOI: 10.1080/15384047.2025.2464966
Fang Fang, Mei Zhao, Jinming Meng, Jiaqi He, Chunlei Yang, Changhong Wang, Jiaxiao Wang, Sheng Xie, Xiaowei Jin, Wei Shi
Metastasis is the predominant culprit of cancer-associated mortality in non-small cell lung cancer (NSCLC). Tweety homolog 3 (TTYH3) reportedly functions vitally in the development of diverse cancers, including NSCLC; nevertheless, its role in NSCLC metastasis remains ambiguous. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were initially employed to detect TTYH3 expression in NSCLC and normal lung epithelial cells. Subsequently, A549 and NCI-H1650 cells were chosen as NSCLC models in vitro and transfected with short hairpin RNAs (sh-TTYH3, sh-LUCAT1, and sh-ALYREF) or overexpression plasmids (oe-ALYREF and oe-TTYH3). Transwell assays were used for migrative and invasive tests. Epithelial mesenchymal transformation (EMT)-related proteins (E-cadherin, N-cadherin, Vimentin, and Snail) were measured by western blot. A mouse lung metastasis model was built to define the function of TTYH3 in NSCLC metastasis, followed by hematoxylin-eosin staining. RNA pull-down, RNA immunoprecipitation, qRT-PCR, western blot, and actinomycin D assays were adopted to determine the relationships among LUCAT1, ALYREF, and TTYH3. TTYH3 was highly expressed in NSCLC cells relative to normal lung cells. Functionally, TTYH3 knockdown restrained NSCLC migration, invasion, EMT, and metastasis. Mechanistic experiments demonstrated that LUCAT1 bound to ALYREF. After LUCAT1 knockdown, TTYH3 expression and mRNA stability were reduced, which was reversed by ALYREF overexpression. Furthermore, ALYREF overexpression counteracted the inhibitory effects of LUCAT1 knockdown on NSCLC cell migration, invasion, and EMT. TTYH3 overexpression eliminated the suppressive functions of ALYREF downregulation in NSCLC progression. LUCAT1 promotes TTYH3 expression via interacting with ALYREF, thereby facilitating NSCLC migration, invasion, and EMT.
{"title":"Upregulation of TTYH3 by lncRNA LUCAT1 through interacting with ALYREF facilitates the metastasis in non-small cell lung cancer.","authors":"Fang Fang, Mei Zhao, Jinming Meng, Jiaqi He, Chunlei Yang, Changhong Wang, Jiaxiao Wang, Sheng Xie, Xiaowei Jin, Wei Shi","doi":"10.1080/15384047.2025.2464966","DOIUrl":"10.1080/15384047.2025.2464966","url":null,"abstract":"<p><p>Metastasis is the predominant culprit of cancer-associated mortality in non-small cell lung cancer (NSCLC). Tweety homolog 3 (TTYH3) reportedly functions vitally in the development of diverse cancers, including NSCLC; nevertheless, its role in NSCLC metastasis remains ambiguous. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were initially employed to detect TTYH3 expression in NSCLC and normal lung epithelial cells. Subsequently, A549 and NCI-H1650 cells were chosen as NSCLC models in vitro and transfected with short hairpin RNAs (sh-TTYH3, sh-LUCAT1, and sh-ALYREF) or overexpression plasmids (oe-ALYREF and oe-TTYH3). Transwell assays were used for migrative and invasive tests. Epithelial mesenchymal transformation (EMT)-related proteins (E-cadherin, N-cadherin, Vimentin, and Snail) were measured by western blot. A mouse lung metastasis model was built to define the function of TTYH3 in NSCLC metastasis, followed by hematoxylin-eosin staining. RNA pull-down, RNA immunoprecipitation, qRT-PCR, western blot, and actinomycin D assays were adopted to determine the relationships among LUCAT1, ALYREF, and TTYH3. TTYH3 was highly expressed in NSCLC cells relative to normal lung cells. Functionally, TTYH3 knockdown restrained NSCLC migration, invasion, EMT, and metastasis. Mechanistic experiments demonstrated that LUCAT1 bound to ALYREF. After LUCAT1 knockdown, TTYH3 expression and mRNA stability were reduced, which was reversed by ALYREF overexpression. Furthermore, ALYREF overexpression counteracted the inhibitory effects of LUCAT1 knockdown on NSCLC cell migration, invasion, and EMT. TTYH3 overexpression eliminated the suppressive functions of ALYREF downregulation in NSCLC progression. LUCAT1 promotes TTYH3 expression via interacting with ALYREF, thereby facilitating NSCLC migration, invasion, and EMT.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2464966"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-01-25DOI: 10.1080/15384047.2025.2457777
Juan Li, Chunmei Ye, Hui Li, Jun Li
Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.
Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter. IKZF1 overexpression and knockdown experiments were performed in T-ALL cell lines. The effects of CX-4945 and venetoclax, alone and in combination, were evaluated in vitro and in vivo T-ALL models.
Results: CUT&Tag sequencing identified IKZF1 binding to the BCL-2 promoter, establishing it as a transcriptional repressor. Functional assays demonstrated that IKZF1 overexpression reduced BCL-2 mRNA levels and increased repressive histone marks at the BCL-2 promoter, while IKZF1 knockdown led to elevated BCL-2 expression. CX-4945, a CK2 inhibitor, could reduced BCL-2 levels in T-ALL cells. Notably, knockdown of IKZF1 partially rescued the CX-4945-induced repression of BCL-2. These results underscore the CK2-IKZF1 signaling axis as a key regulator of BCL-2 expression. In vitro, CX-4945 enhanced the cytotoxicity of venetoclax, with the combination showing significant synergistic effects and increased apoptosis in T-ALL cell lines. In vivo studies with cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models demonstrated that CX-4945 and venetoclax combined therapy provided superior therapeutic efficacy, reducing tumor burden and prolonging survival compared to single-agent treatments.
Conclusions: IKZF1 represses BCL-2 in T-ALL, and targeting the CK2-IKZF1 axis with CX-4945 and venetoclax offers a promising therapeutic strategy, showing enhanced efficacy and potential as a novel treatment approach for T-ALL.
{"title":"Targeting the IKZF1/BCL-2 axis as a novel therapeutic strategy for treating acute T-cell lymphoblastic leukemia.","authors":"Juan Li, Chunmei Ye, Hui Li, Jun Li","doi":"10.1080/15384047.2025.2457777","DOIUrl":"10.1080/15384047.2025.2457777","url":null,"abstract":"<p><strong>Objectives: </strong>Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.</p><p><strong>Methods: </strong>CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter. IKZF1 overexpression and knockdown experiments were performed in T-ALL cell lines. The effects of CX-4945 and venetoclax, alone and in combination, were evaluated in vitro and in vivo T-ALL models.</p><p><strong>Results: </strong>CUT&Tag sequencing identified IKZF1 binding to the BCL-2 promoter, establishing it as a transcriptional repressor. Functional assays demonstrated that IKZF1 overexpression reduced BCL-2 mRNA levels and increased repressive histone marks at the BCL-2 promoter, while IKZF1 knockdown led to elevated BCL-2 expression. CX-4945, a CK2 inhibitor, could reduced BCL-2 levels in T-ALL cells. Notably, knockdown of IKZF1 partially rescued the CX-4945-induced repression of BCL-2. These results underscore the CK2-IKZF1 signaling axis as a key regulator of BCL-2 expression. In vitro, CX-4945 enhanced the cytotoxicity of venetoclax, with the combination showing significant synergistic effects and increased apoptosis in T-ALL cell lines. In vivo studies with cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models demonstrated that CX-4945 and venetoclax combined therapy provided superior therapeutic efficacy, reducing tumor burden and prolonging survival compared to single-agent treatments.</p><p><strong>Conclusions: </strong>IKZF1 represses BCL-2 in T-ALL, and targeting the CK2-IKZF1 axis with CX-4945 and venetoclax offers a promising therapeutic strategy, showing enhanced efficacy and potential as a novel treatment approach for T-ALL.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2457777"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-05-14DOI: 10.1080/15384047.2025.2501780
Cimei Zeng, Denggao Huang, Lei Wang, Haimei Liang, Ximiao Ma
Objective: This study aims to explore the effects of silencing Zic family member 5 (ZIC5) on glucose metabolism and disulfidptosis in lung adenocarcinoma (LUAD) cells.
Methods: Data from The Cancer Genome Atlas (TCGA) was used to analyze ZIC5 expression in LUAD and its association with patient outcomes. ZIC5 was silenced in A549 and H1299 cells using siRNA. The expression of ZIC5 mRNA and protein was assessed by qRT-PCR and Western blot. Cell proliferation was evaluated through CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays, while glucose uptake, lactate production, and ATP levels were measured to assess energy metabolism. Seahorse XF analysis was used to evaluate extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Disulfidptosis was assessed through NADP+/NADPH ratio, glutathione (GSH) content, GSSG/GSH ratio, and immunofluorescence staining.
Results: ZIC5 is highly expressed in LUAD and is associated with poor patient prognosis. Silencing ZIC5 significantly reduced its mRNA and protein levels in A549 and H1299 cells, markedly inhibited cell proliferation, and led to significant decreases in glucose uptake, lactate production, ATP levels, ECAR, and OCR. Additionally, silencing ZIC5 resulted in an increased NADP+/NADPH ratio, decreased GSH levels, and a reduced GSSG/GSH ratio, alongside classic disulfidptosis features.
Conclusion: ZIC5 plays a crucial role in promoting LUAD cell proliferation and energy metabolism while inhibiting disulfidptosis. Silencing ZIC5 markedly suppresses these processes, indicating its potential as a therapeutic target in LUAD.
{"title":"Silencing ZIC5 suppresses glycolysis and promotes disulfidptosis in lung adenocarcinoma cells.","authors":"Cimei Zeng, Denggao Huang, Lei Wang, Haimei Liang, Ximiao Ma","doi":"10.1080/15384047.2025.2501780","DOIUrl":"https://doi.org/10.1080/15384047.2025.2501780","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to explore the effects of silencing Zic family member 5 (ZIC5) on glucose metabolism and disulfidptosis in lung adenocarcinoma (LUAD) cells.</p><p><strong>Methods: </strong>Data from The Cancer Genome Atlas (TCGA) was used to analyze ZIC5 expression in LUAD and its association with patient outcomes. ZIC5 was silenced in A549 and H1299 cells using siRNA. The expression of ZIC5 mRNA and protein was assessed by qRT-PCR and Western blot. Cell proliferation was evaluated through CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays, while glucose uptake, lactate production, and ATP levels were measured to assess energy metabolism. Seahorse XF analysis was used to evaluate extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Disulfidptosis was assessed through NADP<sup>+</sup>/NADPH ratio, glutathione (GSH) content, GSSG/GSH ratio, and immunofluorescence staining.</p><p><strong>Results: </strong>ZIC5 is highly expressed in LUAD and is associated with poor patient prognosis. Silencing ZIC5 significantly reduced its mRNA and protein levels in A549 and H1299 cells, markedly inhibited cell proliferation, and led to significant decreases in glucose uptake, lactate production, ATP levels, ECAR, and OCR. Additionally, silencing ZIC5 resulted in an increased NADP<sup>+</sup>/NADPH ratio, decreased GSH levels, and a reduced GSSG/GSH ratio, alongside classic disulfidptosis features.</p><p><strong>Conclusion: </strong>ZIC5 plays a crucial role in promoting LUAD cell proliferation and energy metabolism while inhibiting disulfidptosis. Silencing ZIC5 markedly suppresses these processes, indicating its potential as a therapeutic target in LUAD.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2501780"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-07-30DOI: 10.1080/15384047.2025.2535824
Wei Fang, Yuuka Kozai, Diana S Acevedo, Rebecca Brodine, Haasini S Gorrepati, Nizhoni Arviso, Paige Cote, Alala Thompson, Zachary Gerdes, Ashley Espinoza, Nick Bergeron, Audrey Brownfield, Nikki Cheng
With over 60,000 cases diagnosed in women annually, ductal carcinoma in situ (DCIS) is the most common form of pre-invasive breast cancer in the US. Despite standardized therapy, under-treatment and over-treatment are prevailing concerns. By understanding the mechanisms regulating DCIS progression, we may develop tailored strategies to improve treatment. CCL2/CCR2 and HGF/MET signaling pathways are upregulated in breast cancers. Our studies indicate that these pathways cooperate to promote DCIS progression and metabolism. DCIS and IDC tissues were immunostained for CCL2 and HGF expression. DCIS.com and HCC1937 cells were analyzed for cell proliferation through PCNA immunostaining, apoptosis through cleaved caspase-3 immunostaining, and invasion through Matrigel transwell assays. AKT, AMPK, p42/44MAPK and PKC activities were analyzed in vitro through immunoblot and pharmacologic inhibition. CCL2 and HGF-mediated metabolism were analyzed by LC-MS. Glucose uptake and lactate production were measured biochemically. CCR2 and MET were targeted in breast xenografts through CCR2 knockout and treatment with Merestinib. Significant associations between CCL2 and HGF were detected in DCIS and IDC tissues. CCL2 and HGF co-treatment enhanced breast cancer cell growth, survival, and invasiveness over individual CCL2 or HGF treatment. These CCL2/HGF-mediated phenotypes were associated with metabolic changes including glycolysis and increased AKT, AMPK, p42/44MAPK and PKC signaling. CCL2/HGF-mediated glycolysis was reduced with AKT, AMPK and p42/44MAPK inhibition. CCR2 knockout combined with Merestinib treatment inhibited growth, survival, and stromal reactivity of breast xenografts more than CCR2 or MET targeting alone. CCL2/CCR2 and HGF/MET cooperate to enhance breast cancer progression and metabolic reprogramming.
{"title":"Cooperative CCL2/CCR2 and HGF/MET signaling enhances breast cancer growth and invasion associated with metabolic reprogramming.","authors":"Wei Fang, Yuuka Kozai, Diana S Acevedo, Rebecca Brodine, Haasini S Gorrepati, Nizhoni Arviso, Paige Cote, Alala Thompson, Zachary Gerdes, Ashley Espinoza, Nick Bergeron, Audrey Brownfield, Nikki Cheng","doi":"10.1080/15384047.2025.2535824","DOIUrl":"10.1080/15384047.2025.2535824","url":null,"abstract":"<p><p>With over 60,000 cases diagnosed in women annually, ductal carcinoma in situ (DCIS) is the most common form of pre-invasive breast cancer in the US. Despite standardized therapy, under-treatment and over-treatment are prevailing concerns. By understanding the mechanisms regulating DCIS progression, we may develop tailored strategies to improve treatment. CCL2/CCR2 and HGF/MET signaling pathways are upregulated in breast cancers. Our studies indicate that these pathways cooperate to promote DCIS progression and metabolism. DCIS and IDC tissues were immunostained for CCL2 and HGF expression. DCIS.com and HCC1937 cells were analyzed for cell proliferation through PCNA immunostaining, apoptosis through cleaved caspase-3 immunostaining, and invasion through Matrigel transwell assays. AKT, AMPK, p42/44MAPK and PKC activities were analyzed in vitro through immunoblot and pharmacologic inhibition. CCL2 and HGF-mediated metabolism were analyzed by LC-MS. Glucose uptake and lactate production were measured biochemically. CCR2 and MET were targeted in breast xenografts through CCR2 knockout and treatment with Merestinib. Significant associations between CCL2 and HGF were detected in DCIS and IDC tissues. CCL2 and HGF co-treatment enhanced breast cancer cell growth, survival, and invasiveness over individual CCL2 or HGF treatment. These CCL2/HGF-mediated phenotypes were associated with metabolic changes including glycolysis and increased AKT, AMPK, p42/44MAPK and PKC signaling. CCL2/HGF-mediated glycolysis was reduced with AKT, AMPK and p42/44MAPK inhibition. CCR2 knockout combined with Merestinib treatment inhibited growth, survival, and stromal reactivity of breast xenografts more than CCR2 or MET targeting alone. CCL2/CCR2 and HGF/MET cooperate to enhance breast cancer progression and metabolic reprogramming.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2535824"},"PeriodicalIF":4.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144741286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}