Background: This study aimed to evaluate atherosclerosis as comorbidity by measuring the carotid (bulb and common carotid artery) Carotid intima-media thickness in COPD-diagnosed patients and to evaluate the relationship of atherosclerosis with the prevalence of COPD, hypoxemia and hypercapnia.
Methods: This study was conducted out between January 2019-December 2019 consisting of a total of 140 participants (70 COPD-diagnosed patients-70 healthy individuals). The COPD-diagnosed patients have been planned according to the selection and diagnosis criteria as per the GOLD 2019 guide. It is planned to evaluate as per prospective matching case-control study of the carotid thickness, radial gas analysis, spirometric and demographic characteristics of COPD diagnosed patients and healthy individuals.
Results: The average Carotid intima-media thickness in COPD patients was 0.8746±0.161 (p<0.05), and the thickness of the carotid bulb was 1.04±0.150 (p<0.05). In the control group, the average CCA intima-media thickness was 0.6650±0.139 (p<0.05), and the thickness of the carotid bulb was 0.8250±0.15(p<0.05) For the carotid thickness that has increased in COPD diagnosed patients a significant relationship is determined between hypoxemia (p<0.05) and hypercapnia(p<0.05). A significant relationship determined between CIMT and severity of COPD (p<0.05) The CIMT was high in COPD patients with hypoxemia and hypercapnia(p<0.05).
Conclusion: Significant difference was determined between the severity (grades) of COPD (mild, moderate, severe, very severe) in carotid thickness. Also, CIMT was found to be high in patients who is in the early phases of the prevalence of COPD. In COPD-diagnosed patients, it was determined that severity of COPD, hypoxemia, hypercapnia and age were determining factors of atherosclerosis.
Purpose: Intra-cardiac echocardiography (ICE) has become an important tool for catheter ablation. Adoption of ICE imaging is still limited because of its prohibitively high cost. Our aim was to study the safety and feasibility of ICE catheters reprocessing and its environmental and financial impact.
Methods: This was a single center retrospective analysis of all consecutive electrophysiology procedures in which ICE catheters were used from 2015 to 2022. In total, 1128 patients were studied (70.6% male, mean age was 57.9 ± 13.2 years). The majority of procedures were related to atrial fibrillation ablation (84.6%).
Results: For the whole cohort, 57 new ICE catheters were used. Consequently one catheter could be used for 19.8 procedures. New catheters were only used when the image obtained by reused probes was not satisfactory. There were no cases of ICE probe steering mechanism malfunction, no procedure related infections and no allergic reactions that could be attributed to the resterilization process. In total, there was 8.6% of complications not related to ICE imaging. Financially, ICE probe reprocessing resulted with 90% cost reduction (> 2 millions of Euros savings for the studied period) and 95% waste reduction (639.5 kg less, mostly non degradable waste was produced).
Conclusion: Our data suggests that ICE catheter reprocessing is feasible and safe. It seems that risk of infection is not increased. Significant economic and environmental savings could be achieved by ICE catheters reprocessing. Furthermore, ICE reprocessing could allow more extensive ICE usage resulting in safer procedures with a potential reduction of serious complications.
Background: Measurement of the left ventricular outflow tract diameter (LVOTd) in echocardiography is a common source of error when used to calculate the stroke volume. The aim of this study is to assess whether a deep learning (DL) model, trained on a clinical echocardiographic dataset, can perform automatic LVOTd measurements on par with expert cardiologists.
Methods: Data consisted of 649 consecutive transthoracic echocardiographic examinations of patients with coronary artery disease admitted to a university hospital. 1304 LVOTd measurements in the parasternal long axis (PLAX) and zoomed parasternal long axis views (ZPLAX) were collected, with each patient having 1-6 measurements per examination. Data quality control was performed by an expert cardiologist, and spatial geometry data was preserved for each LVOTd measurement to convert DL predictions into metric units. A convolutional neural network based on the U-Net was used as the DL model.
Results: The mean absolute LVOTd error was 1.04 (95% confidence interval [CI] 0.90-1.19) mm for DL predictions on the test set. The mean relative LVOTd errors across all data subgroups ranged from 3.8 to 5.1% for the test set. Generally, the DL model had superior performance on the ZPLAX view compared to the PLAX view. DL model precision for patients with repeated LVOTd measurements had a mean coefficient of variation of 2.2 (95% CI 1.6-2.7) %, which was comparable to the clinicians for the test set.
Conclusion: DL for automatic LVOTd measurements in PLAX and ZPLAX views is feasible when trained on a limited clinical dataset. While the DL predicted LVOTd measurements were within the expected range of clinical inter-observer variability, the robustness of the DL model requires validation on independent datasets. Future experiments using temporal information and anatomical constraints could improve valvular identification and reduce outliers, which are challenges that must be addressed before clinical utilization.
Background: Carcinoid heart disease (CHD) caused by neuroendocrine tumours (NET) is associated with an increased morbidity and mortality due to valvular dysfunction and right sided heart failure. The present study aimed to assess the prevalence and one-year-incidence of CHD in NET patients. Tumour characteristics, laboratory measurements, and echocardiographic findings were evaluated to identify predictors of CHD manifestation.
Methods: The study was an investigator-initiated, monocentric, prospective trial. Patients with NET without previously diagnosed CHD were included and underwent comprehensive gastroenterological and oncological diagnostics. Echocardiographic examinations were performed at baseline and after one year.
Results: Forty-seven NET patients were enrolled into the study, 64% of them showed clinical features of a carcinoid syndrome (CS). Three patients presented with CHD at baseline and three patients developed cardiac involvement during the follow-up period corresponding to a prevalence of 6% at baseline and an incidence of 6.8% within one year. Hydroxyindoleacetic acid (5-HIAA) was identified to predict the occurrence of CHD (OR, 1.004; 95% CI, 1.001-1.006 for increase of 5-HIAA), while chromogranin A (CgA), and Kiel antigen 67 (Ki 67%) had no predictive value. Six patients with CHD at twelve-month follow-up revealed a tendency for larger right heart diameters and increased values of myocardial performance index (MPEI) at baseline compared to NET patients.
Conclusion: The prevalence at baseline and one-year-incidence of CHD was 6-7%. 5-HIAA was identified as the only marker which predict the development of CHD.
Background: Accurate sizing of the tricuspid valve annulus is essential for determining the optimal timing of tricuspid valve (TV) intervention. Two-dimensional (2D) echocardiography has limitations for comprehensive TV analysis. Three-dimensional (3D) imaging of the valve provides a better understanding of its spatial anatomy and enables more accurate measurements of TV structures.
Objectives: The study aimed to analyze tricuspid annulus (TA) parameters in normal heart and in different grades of functional tricuspid regurgitation (TR); to compare TA measurements obtained by 2D and 3D echocardiography.
Methods: One hundred fifty-five patients (median age 65 years, 57% women) with normal TV and different functional TR grades underwent 2D and 3D transthoracic echocardiography. The severity of TR was estimated using multiparametric assessment according to the guidelines. Mid-systolic 3D TA parameters were calculated using TV dedicated software. The conventional 2D systolic TA measurements in a standard four-chamber view were performed.
Results: In mid-systole, the normal TA area was 9.2 ± 2.0 cm2 for men and 7.4 ± 1.6 cm2 for women. When indexed to body surface area (BSA), there were no significant differences in the 3D parameters between genders. The 2D TA diameters were smaller than those measured in 3D. The ROC curve analysis identified that all 3D TA parameters can accurately differentiate between different functional TR grades. Additionally, the optimal cut-off values were identified for each TA parameter.
Conclusions: Gender, body size, and age have an impact on the TA parameters in healthy subjects. 2D measurements are smaller than 3D parameters. The reference values for 3D metrics according to TR severity can help in identifying TA dilation and distinguishing between different functional TR grades.
Background: Although indexing effective orifice area (EOA) by body surface area (BSA) is recommended, this method has several disadvantages, since it corrects by acquired fatty tissue. Our aim was to analyze the value of EOA normalized by height for predicting cardiovascular outcome in patients with aortic stenosis (AS).
Methods: Patients with AS (peak velocity > 2 m/s) evaluated in our echocardiography laboratory between January 2015 and June 2018 were prospectively enrolled. EOA was indexed by BSA and height. A composite primary endpoint was defined as cardiac death or aortic valve replacement. A receiver operating characteristic curve was plotted to determine the best cutoff value of EOA/height for predicting cardiovascular events.
Results: Four-hundred and fifteen patients were included (52% women, mean age 74.8 ± 11.6 years). Area under the curve was similar for EOA/BSA (AUC 0.75, p < 0.001) and EOA/height (AUC 0.75, p < 0.001). A cutoff value of 0.60 cm2/m for EOA/height had a sensitivity of 84%, specificity of 61%, positive predictive value of 60% and negative predictive value of 84%. One-year survival from primary endpoint was significantly lower in patients with EOA/height ≤ 0.60 cm2/m (48 ± 5% vs 91 ± 4%, log-rank p < 0.001) than EOA/height > 0.60 cm2/m. The excess of risk of cardiovascular events seen in univariate analysis persists even after adjustment for other demonstrated adverse prognostic variables (HR 5.91, 95% CI 3.21-10.88, p < 0.001). In obese patients, there was an excess of risk in patients with EOA/height < 0.60 cm2/m (HR 10.2, 95% CI 3.5-29.5, p < 0.001), but not in EOA/BSA < 0.60 cm2/m2 (HR 0.14, 95% CI 0.14-1.4, p = 0.23).
Conclusions: We could identify a subgroup of patients with AS at high risk of cardiovascular events. Consequently, we recommend using EOA/height as a method of indexation in AS, especially in obese patients, with a cutoff of 0.60 cm2/m for identifying patients with higher cardiovascular risk.
Background: In addition to proatherogenic properties, lipoprotein (a) (Lp(a)) has also pro-inflammatory, antifibrinolytic and prothrombogenic features. The aim of the current study was to identify the predictors of functional and morphological properties of the arterial wall in patients after myocardial infarction and increased Lp(a) levels at the beginning and after treatment with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors.
Methods: Seventy-six post-myocardial infarction patients with high Lp(a) levels were included in the study. Ultrasound measurements of flow-mediated dilation of brachial artery (FMD), carotid intima-media thickness (c-IMT) and pulse wave velocity (PWV) were performed initially and after 6 months of treatment. At the same time points lipids, Lp(a), inflammatory and hemostasis markers were measured in blood samples.
Results: In linear regression model FMD significantly correlated with age at first myocardial infarction (β = 0.689; p = 0.022), high-sensitivity C-reactive protein (β = -1.200; p = 0.009), vascular cell adhesion protein 1 (VCAM-1) (β = -0.992; p = 0.006), overall coagulation potential (β = 1.428; p = 0.014) and overall hemostasis potential (β = -1.473; p = 0.008). c-IMT significantly correlated with age at first myocardial infarction (β = 0.574; p = 0.033) and Lp(a) (β = 0.524; p = 0.040). PWV significantly correlated with systolic blood pressure (β = 0.332; p = 0.002), tumor necrosis factor alpha (β = 0.406; p = 0.002), interleukin-8 (β = -0.315; p = 0.015) and plasminogen activator inhibitor 1 (β = 0.229; p = 0.031). After treatment FMD reached statistical significance only in univariant analysis with systolic blood pressure (r = -0.286; p = 0.004) and VCAM-1 (r = -0.229; p = 0.024). PWV and c-IMT correlated with age (r = 0.334; p = 0.001 and r = 0.486; p < 0.0001, respectively) and systolic blood pressure (r = 0.556; p < 0.0001 and r = 0.233; p = 0.021, respectively).
Conclusions: Our results suggest that age, systolic blood pressure, Lp(a) levels and other biochemical markers associated with Lp(a) are predictors of functional and morphological properties of the arterial vessel wall in post-myocardial patients with high Lp(a) levels initially. However, after 6 months of treatment with PCSK9 inhibitors only age and systolic blood pressure seem to be predictors of these properties.
Trial registration: The protocol for this study was registered with clinicaltrials.gov on November, 3 2020 under registration number NCT04613167.

