R. Tesser, R. Vitiello, G. Carotenuto, C. García Sancho, A. Vergara, P. Maireles Torres, Changzhu Li, M. Di Serio
Abstract The activity and stability of niobia supported on silica catalyst have been tested in continuous micro-pilot reactors, for biodiesel production starting from acid vegetable oils. A catalyst was prepared by the impregnation of silica pellets with a loading of 12% of Nb and was extensively characterized. The activity of this catalyst in both esterification and transesterification was tested in a continuous micro-pilot laboratory plant in which acid oil was fed (FFA 10% w/w) at a temperature of 220°C and at a pressure of 60 bar. The niobia based catalyst resulted in a very active catalyst in both esterification (FFA conversion = 95-90%) and transesterification reactions (FAME yield = 80-90%), and the activity remained quite constant for more than 100 h on stream. Notwithstanding this stability, a non-negligible leaching phenomena has been detected, in the case of long-time continuous runs, as the Nb concentration on the spent catalyst resulted lower than that on the fresh one. The obtained result confirms that the leaching of the active specie is one of the most strong problem in heterogeneous catalysis for biodiesel production.
{"title":"Niobia supported on silica as a catalyst for Biodiesel production from waste oil","authors":"R. Tesser, R. Vitiello, G. Carotenuto, C. García Sancho, A. Vergara, P. Maireles Torres, Changzhu Li, M. Di Serio","doi":"10.1515/cse-2015-0002","DOIUrl":"https://doi.org/10.1515/cse-2015-0002","url":null,"abstract":"Abstract The activity and stability of niobia supported on silica catalyst have been tested in continuous micro-pilot reactors, for biodiesel production starting from acid vegetable oils. A catalyst was prepared by the impregnation of silica pellets with a loading of 12% of Nb and was extensively characterized. The activity of this catalyst in both esterification and transesterification was tested in a continuous micro-pilot laboratory plant in which acid oil was fed (FFA 10% w/w) at a temperature of 220°C and at a pressure of 60 bar. The niobia based catalyst resulted in a very active catalyst in both esterification (FFA conversion = 95-90%) and transesterification reactions (FAME yield = 80-90%), and the activity remained quite constant for more than 100 h on stream. Notwithstanding this stability, a non-negligible leaching phenomena has been detected, in the case of long-time continuous runs, as the Nb concentration on the spent catalyst resulted lower than that on the fresh one. The obtained result confirms that the leaching of the active specie is one of the most strong problem in heterogeneous catalysis for biodiesel production.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"108 1","pages":"33 - 42"},"PeriodicalIF":0.0,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87014082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Mammadova, N. Hasankhanova, Kh.Sh. Teyubov, E. N. Askerova, T. Latifova, V. Abbasov
Abstract The process of obtaining low molecular weight C2-C4 olefins, as a result of thermal and thermocatalytic conversion of cottonseed oil was investigated. The total content of olefin gases obtained by the thermal conversion of cottonseed oil in the temperature range of 700-800°C is 57.2-65.2 wt. %. Thermocatalytic conversion of cottonseed oil on the natural halloysite nanotubes as a catalyst in the temperature range of 500-800 ° provides the total content of olefins 10.8-69.2 wt. with increased yield of propylene and butenes.
{"title":"Use of Natural Nanotubes of Halloysite Clay for Thermochemical Conversion of Cottonseed Oil","authors":"T. Mammadova, N. Hasankhanova, Kh.Sh. Teyubov, E. N. Askerova, T. Latifova, V. Abbasov","doi":"10.1515/cse-2015-0001","DOIUrl":"https://doi.org/10.1515/cse-2015-0001","url":null,"abstract":"Abstract The process of obtaining low molecular weight C2-C4 olefins, as a result of thermal and thermocatalytic conversion of cottonseed oil was investigated. The total content of olefin gases obtained by the thermal conversion of cottonseed oil in the temperature range of 700-800°C is 57.2-65.2 wt. %. Thermocatalytic conversion of cottonseed oil on the natural halloysite nanotubes as a catalyst in the temperature range of 500-800 ° provides the total content of olefins 10.8-69.2 wt. with increased yield of propylene and butenes.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"121 1","pages":"28 - 32"},"PeriodicalIF":0.0,"publicationDate":"2015-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90735402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Shelepova, A. A. Vedyagin, I. Mishakov, A. Noskov
Abstract The modeling of ethylbenzene dehydrogenation in a catalytic membrane reactor has been carried out for porous membrane by means of two-dimensional, non-isothermal stationary mathematical model. A mathematical model of the catalytic membrane reactor was applied, in order to study the effects of transport properties of the porous membrane on process performance. The performed modeling of the heat and mass transfer processes within the porous membrane, allowed us to estimate the efficiency of its use in membrane reactors, in comparison with a dense membrane (with additional oxidation of the hydrogen in shell side). The use of a porous ceramic membrane was found to cause an increase of the ethylbenzene conversion at 600°C, up to 93 %, while the conversion in the case of conventional reactor was 67%. In this work, we defined the key parameter values of porous membrane (pore diameter and thickness) for ethylbenzene dehydrogenation in catalytic membrane reactor, at which the highest conversion of ethylbenzene and styrene selectivity can be reached.
{"title":"Modeling of ethylbenzene dehydrogenation in catalytic membrane reactor with porous membrane","authors":"E. Shelepova, A. A. Vedyagin, I. Mishakov, A. Noskov","doi":"10.2478/cse-2014-0001","DOIUrl":"https://doi.org/10.2478/cse-2014-0001","url":null,"abstract":"Abstract The modeling of ethylbenzene dehydrogenation in a catalytic membrane reactor has been carried out for porous membrane by means of two-dimensional, non-isothermal stationary mathematical model. A mathematical model of the catalytic membrane reactor was applied, in order to study the effects of transport properties of the porous membrane on process performance. The performed modeling of the heat and mass transfer processes within the porous membrane, allowed us to estimate the efficiency of its use in membrane reactors, in comparison with a dense membrane (with additional oxidation of the hydrogen in shell side). The use of a porous ceramic membrane was found to cause an increase of the ethylbenzene conversion at 600°C, up to 93 %, while the conversion in the case of conventional reactor was 67%. In this work, we defined the key parameter values of porous membrane (pore diameter and thickness) for ethylbenzene dehydrogenation in catalytic membrane reactor, at which the highest conversion of ethylbenzene and styrene selectivity can be reached.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"79 1","pages":"1 - 9"},"PeriodicalIF":0.0,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73439159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Arapova, S. Pavlova, V. Rogov, T. Krieger, A. Ishchenko, A. Roger
Abstract For two series of catalysts based on praseodymium ferrite, their structural and redox properties as well as performance in ethanol steam reforming have been studied. The first series was PrFe1-xNi(Co)xO3 (x=0.3-0.4) perovskites prepared by modified Pechini route, and the second one was 5%wt.Ni(Co)/PrFeO3 of different dispersion prepared by impregnation of PrFeO3, including samples modified by 5%wt. Mo. At temperatures above 700°C, for all catalysts, the main products were hydrogen and CO. At temperatures below 700°C, initial ethanol conversion and hydrogen yield were higher for supported catalysts as compared with ones derived from Ni(Co)-containing perovskites. While Ni-based catalysts derived from perovskite were more active as compared with Co-based samples, Co-supported PrFeO3 perovskite has shown a higher initial activity as compared with Ni-supported one. The long-term tests in the realistic feed and TEM studies of spent catalysts revealed that perovskite-derived catalysts have a higher coking stability than perovskite-supported ones due to formation of highly dispersed Ni-Fe alloy particles strongly interacting with disordered perovskite–like matrix. The method of Mo supporting only slightly affects the initial activity of Ni/PrFeO3–based catalysts but noticeably modifies their coking stability: 5%Mo/5%Ni/PrFeO3 catalyst prepared by successive impregnation possesses the highest stability among perovskite-supported catalysts.
摘要研究了两种铁酸镨系催化剂的结构、氧化还原性能及其在乙醇蒸汽重整中的性能。第一个系列是通过改性Pechini路线制备的PrFe1-xNi(Co)xO3 (x=0.3-0.4)钙钛矿,第二个系列是通过浸渍PrFeO3制备的不同分散度的5%wt. ni (Co)/PrFeO3,包括5%wt改性的样品。在700℃以上的温度下,所有催化剂的主要产物都是氢和CO。在700℃以下的温度下,负载型催化剂的初始乙醇转化率和产氢率都高于含Ni(CO)钙钛矿催化剂。由钙钛矿衍生的ni基催化剂比co基催化剂更有活性,而co负载的PrFeO3钙钛矿的初始活性比ni负载的更高。对废催化剂的长期实验和TEM研究表明,钙钛矿衍生催化剂比钙钛矿负载催化剂具有更高的结焦稳定性,这是由于形成了高度分散的Ni-Fe合金颗粒,与无序的钙钛矿样基质强烈相互作用。Mo负载方式对Ni/PrFeO3基催化剂的初始活性影响较小,但明显改变了其结焦稳定性,连续浸渍法制备的5%Mo/5%Ni/PrFeO3基催化剂的稳定性在钙钛矿负载催化剂中最高。
{"title":"Ni(Co)-containing catalysts based on perovskite-like ferrites for steam reforming of ethanol","authors":"M. Arapova, S. Pavlova, V. Rogov, T. Krieger, A. Ishchenko, A. Roger","doi":"10.2478/cse-2014-0002","DOIUrl":"https://doi.org/10.2478/cse-2014-0002","url":null,"abstract":"Abstract For two series of catalysts based on praseodymium ferrite, their structural and redox properties as well as performance in ethanol steam reforming have been studied. The first series was PrFe1-xNi(Co)xO3 (x=0.3-0.4) perovskites prepared by modified Pechini route, and the second one was 5%wt.Ni(Co)/PrFeO3 of different dispersion prepared by impregnation of PrFeO3, including samples modified by 5%wt. Mo. At temperatures above 700°C, for all catalysts, the main products were hydrogen and CO. At temperatures below 700°C, initial ethanol conversion and hydrogen yield were higher for supported catalysts as compared with ones derived from Ni(Co)-containing perovskites. While Ni-based catalysts derived from perovskite were more active as compared with Co-based samples, Co-supported PrFeO3 perovskite has shown a higher initial activity as compared with Ni-supported one. The long-term tests in the realistic feed and TEM studies of spent catalysts revealed that perovskite-derived catalysts have a higher coking stability than perovskite-supported ones due to formation of highly dispersed Ni-Fe alloy particles strongly interacting with disordered perovskite–like matrix. The method of Mo supporting only slightly affects the initial activity of Ni/PrFeO3–based catalysts but noticeably modifies their coking stability: 5%Mo/5%Ni/PrFeO3 catalyst prepared by successive impregnation possesses the highest stability among perovskite-supported catalysts.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"33 1","pages":"10 - 20"},"PeriodicalIF":0.0,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76900482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The analysis of the chemical nature of wood waste processing by fungus and bacteria was the starting point for innovative production of a new, relatively simple, colloidal catalytic system based on iron (III) oxides, combined with environmentally friendly oxidants - hydrogen peroxide and/or atmospheric oxygen. Colloidal iron(III) oxides, obtained by hydrolysis of Fe(III) salts in water in the presence of surfactants, catalyze the oxidative destruction of lignocellulosic biomass under atmospheric pressure, at a mild temperature range of 60-70oC, under the influence of H2O2 and O2. The oxidative destruction of biomass (wood sawdust, peat, olive press cake, oat straw) results in formation of light organic acids, esters and other low molecular oxidation products derived from lignin, hemicelluloses, cellulose, lipoproteins and sugars; the solid product constitutes mainly of cellulose and its derivatives. The yield of solid residue depends on biomass nature, reagents concentration ratio (biomass, catalyst, hydrogen peroxide), and oxidation process duration. Water solution of organic acids and esters can be used in agriculture for fodder processing.
{"title":"Colloidal catalysts on the base of iron(3+) oxides for oxidative treatment of biomass","authors":"O. Kasaikina, V. I. Lesin, L. M. Pisarenko","doi":"10.2478/cse-2014-0003","DOIUrl":"https://doi.org/10.2478/cse-2014-0003","url":null,"abstract":"Abstract The analysis of the chemical nature of wood waste processing by fungus and bacteria was the starting point for innovative production of a new, relatively simple, colloidal catalytic system based on iron (III) oxides, combined with environmentally friendly oxidants - hydrogen peroxide and/or atmospheric oxygen. Colloidal iron(III) oxides, obtained by hydrolysis of Fe(III) salts in water in the presence of surfactants, catalyze the oxidative destruction of lignocellulosic biomass under atmospheric pressure, at a mild temperature range of 60-70oC, under the influence of H2O2 and O2. The oxidative destruction of biomass (wood sawdust, peat, olive press cake, oat straw) results in formation of light organic acids, esters and other low molecular oxidation products derived from lignin, hemicelluloses, cellulose, lipoproteins and sugars; the solid product constitutes mainly of cellulose and its derivatives. The yield of solid residue depends on biomass nature, reagents concentration ratio (biomass, catalyst, hydrogen peroxide), and oxidation process duration. Water solution of organic acids and esters can be used in agriculture for fodder processing.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"28 1","pages":"21 - 27"},"PeriodicalIF":0.0,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75109340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}