Pub Date : 2021-11-19DOI: 10.1080/01614940.2021.1996776
M. Sabri, A. Habibi-Yangjeh, Shima Rahim Pouran, Chundong Wang
ABSTRACT In the last decade, a considerable body of literature has been devoted to advanced oxidation processes encompassed peroxy-sulfur species owing to their capacity to generate highly active radicals. These species fulfill two main objectives in AOPs: act as electron-scavengers and give rise to sulfate radicals, which collectively facilitate the oxidation of organic pollutants. This review provides data on the recent strategies and practices aimed to enhance the photocatalytic performance of TiO2 where persulfate/peroxymonosulfate species are supplemented. The mechanism of persulfate activation, direct and interactive effects on the photoactivity of TiO2 nanostructures, and subsequent degradation efficiencies of agrochemicals, dyes, pharmaceuticals, petrochemicals, and pathogenic microorganisms were studied and thoroughly discussed. The data on several titania-based nanostructures, the best operational conditions, and the removal outputs in the presence of oxidants and electron acceptors, in particular, persulfate ions are summarized, depicted, and tabulated. As per reviewed literature, titania-persulfate integration can effectively address the environmental implications of organic pollutants.
{"title":"Titania-activated persulfate for environmental remediation: the-state-of-the-art","authors":"M. Sabri, A. Habibi-Yangjeh, Shima Rahim Pouran, Chundong Wang","doi":"10.1080/01614940.2021.1996776","DOIUrl":"https://doi.org/10.1080/01614940.2021.1996776","url":null,"abstract":"ABSTRACT In the last decade, a considerable body of literature has been devoted to advanced oxidation processes encompassed peroxy-sulfur species owing to their capacity to generate highly active radicals. These species fulfill two main objectives in AOPs: act as electron-scavengers and give rise to sulfate radicals, which collectively facilitate the oxidation of organic pollutants. This review provides data on the recent strategies and practices aimed to enhance the photocatalytic performance of TiO2 where persulfate/peroxymonosulfate species are supplemented. The mechanism of persulfate activation, direct and interactive effects on the photoactivity of TiO2 nanostructures, and subsequent degradation efficiencies of agrochemicals, dyes, pharmaceuticals, petrochemicals, and pathogenic microorganisms were studied and thoroughly discussed. The data on several titania-based nanostructures, the best operational conditions, and the removal outputs in the presence of oxidants and electron acceptors, in particular, persulfate ions are summarized, depicted, and tabulated. As per reviewed literature, titania-persulfate integration can effectively address the environmental implications of organic pollutants.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"5 1","pages":"118 - 173"},"PeriodicalIF":0.0,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90926541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-31DOI: 10.1080/01614940.2021.1919044
U. J. Etim, P. Bai, Oz M. Gazit, Z. Zhong
ABSTRACT Many natural oxidations are relevant to the origin and running of life but usually proceeded under mild conditions using molecular oxygen (O2) in the air as the sole oxidant and enzymes as the catalysts. In modern society, catalysis plays an essential role in many industries, such as chemical and pharmaceutical industries. However, most heterogeneous catalytic reactions need high operational reaction temperature and pressure. Research interest is redirected to green catalysis in recent years, e.g., running catalytic reactions under mild conditions, employing green solvents and green oxidants such O2, particularly air. One question always exists: can these industrial catalytic processes be ultimately run similar to the natural oxidation processes in efficiency and operation conditions? For many catalytic oxidation reactions, the greatest challenge lies in activating molecular oxygen under mild conditions. Therefore, a molecular-level understanding of the interactions of O2 molecules with catalysts or substrates is necessary and crucial. In this review, we discuss the activation of O2 to different active species (e.g., O2 2− or O2 2−) and their participation in low-temperature (≤300 oC) catalytic oxidation reactions. The challenges, recent progress, and trends in some low-temperature oxidation reactions are discussed and highlighted. The early studies on the activation of oxygen on various catalysts mainly paid attention to the interaction between the molecular oxygen and the oxygen vacancies of metal oxides. In contrast, recent studies try to fully understand the generation, measurement, and catalytic roles of the various active oxygen species. Therefore, the design of catalysts that can facilely activate O2 at low temperatures is of importance. With such catalysts, it is possible to reduce the high energy consumption, improve the selectivity of catalytic oxidations, and ultimately realize the industrial oxidation reactions at conditions as mild as possible to that of many natural oxidation processes. Finally, from the current body of knowledge, we propose future directions that can effectively utilize O2 for solving practical problems at low temperatures and help understand the oxidation catalysis at the molecular level.
{"title":"Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation","authors":"U. J. Etim, P. Bai, Oz M. Gazit, Z. Zhong","doi":"10.1080/01614940.2021.1919044","DOIUrl":"https://doi.org/10.1080/01614940.2021.1919044","url":null,"abstract":"ABSTRACT Many natural oxidations are relevant to the origin and running of life but usually proceeded under mild conditions using molecular oxygen (O2) in the air as the sole oxidant and enzymes as the catalysts. In modern society, catalysis plays an essential role in many industries, such as chemical and pharmaceutical industries. However, most heterogeneous catalytic reactions need high operational reaction temperature and pressure. Research interest is redirected to green catalysis in recent years, e.g., running catalytic reactions under mild conditions, employing green solvents and green oxidants such O2, particularly air. One question always exists: can these industrial catalytic processes be ultimately run similar to the natural oxidation processes in efficiency and operation conditions? For many catalytic oxidation reactions, the greatest challenge lies in activating molecular oxygen under mild conditions. Therefore, a molecular-level understanding of the interactions of O2 molecules with catalysts or substrates is necessary and crucial. In this review, we discuss the activation of O2 to different active species (e.g., O2 2− or O2 2−) and their participation in low-temperature (≤300 oC) catalytic oxidation reactions. The challenges, recent progress, and trends in some low-temperature oxidation reactions are discussed and highlighted. The early studies on the activation of oxygen on various catalysts mainly paid attention to the interaction between the molecular oxygen and the oxygen vacancies of metal oxides. In contrast, recent studies try to fully understand the generation, measurement, and catalytic roles of the various active oxygen species. Therefore, the design of catalysts that can facilely activate O2 at low temperatures is of importance. With such catalysts, it is possible to reduce the high energy consumption, improve the selectivity of catalytic oxidations, and ultimately realize the industrial oxidation reactions at conditions as mild as possible to that of many natural oxidation processes. Finally, from the current body of knowledge, we propose future directions that can effectively utilize O2 for solving practical problems at low temperatures and help understand the oxidation catalysis at the molecular level.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"42 1","pages":"239 - 425"},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87193517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT Fluorescent carbon quantum dots (CQDs), specified by feature sizes of <10 nm, have become a mystic newcomers in the world of nanoscience and attracted much focus of synthetic chemists since the last decade due to their esoteric physico-chemical features. Because of these magical characteristics, carbon dots-based catalytic systems have unlocked the gateway for eco-friendly, benign, and cost-effective next-generation platform for “Nanocatalysis and Photocatalysis” in organic synthesis. The introduction of CQDs in organic synthesis allows the designing new reactions or catalysis in which unique/unprecedented connection/disconnection of chemical bonds has been implemented for the construction of new molecular architectures. This critical review presents a comprehensive study of the catalytic and photocatalytic efficiency of CQDs in organic synthesis which has initiated a more sustainable strategy in to the catalysis field. By systematic summarization and categorization of various organic transformations such as coupling reactions, oxidation reactions, reduction reactions, condensation reactions, ring-opening reactions, epoxidation, C-H activation, etc., a clear picture of all available catalytic and photocatalytic strategies for CQDs are presented and their unique role in various catalytic approaches for specific reactions are discussed in detail. Catalytic aspects of CQDs in heterocyclic synthesis are also been reviewed. Finally, challenges and future aspects associated with the green catalytic efficiency of CQDs in organic synthesis are highlighted. Herein, this review summarizes the current investigations on CQDs for various organic transformations during last 10 years. We experience that the entire potential of CQDs in organic synthesis has yet to be fully explored in organic synthesis. We hope that this review is serving as a humble urge to encourage other organic chemists for further use of CQDs as a sustainable catalyst in organic synthesis. Graphical Abstract
{"title":"Nanocarbons in quantum regime: An emerging sustainable catalytic platform for organic synthesis","authors":"A. Dandia, Pratibha Saini, Mukul Sethi, Krishan Kumar, Surendra Saini, Savita Meena, Swati Meena, Vijay Parewa","doi":"10.1080/01614940.2021.1985866","DOIUrl":"https://doi.org/10.1080/01614940.2021.1985866","url":null,"abstract":"ABSTRACT Fluorescent carbon quantum dots (CQDs), specified by feature sizes of <10 nm, have become a mystic newcomers in the world of nanoscience and attracted much focus of synthetic chemists since the last decade due to their esoteric physico-chemical features. Because of these magical characteristics, carbon dots-based catalytic systems have unlocked the gateway for eco-friendly, benign, and cost-effective next-generation platform for “Nanocatalysis and Photocatalysis” in organic synthesis. The introduction of CQDs in organic synthesis allows the designing new reactions or catalysis in which unique/unprecedented connection/disconnection of chemical bonds has been implemented for the construction of new molecular architectures. This critical review presents a comprehensive study of the catalytic and photocatalytic efficiency of CQDs in organic synthesis which has initiated a more sustainable strategy in to the catalysis field. By systematic summarization and categorization of various organic transformations such as coupling reactions, oxidation reactions, reduction reactions, condensation reactions, ring-opening reactions, epoxidation, C-H activation, etc., a clear picture of all available catalytic and photocatalytic strategies for CQDs are presented and their unique role in various catalytic approaches for specific reactions are discussed in detail. Catalytic aspects of CQDs in heterocyclic synthesis are also been reviewed. Finally, challenges and future aspects associated with the green catalytic efficiency of CQDs in organic synthesis are highlighted. Herein, this review summarizes the current investigations on CQDs for various organic transformations during last 10 years. We experience that the entire potential of CQDs in organic synthesis has yet to be fully explored in organic synthesis. We hope that this review is serving as a humble urge to encourage other organic chemists for further use of CQDs as a sustainable catalyst in organic synthesis. Graphical Abstract","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"33 4 1","pages":"874 - 928"},"PeriodicalIF":0.0,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79812206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06DOI: 10.1080/01614940.2021.1983066
A. H. Navidpour, A. Hosseinzadeh, John L. Zhou, Zhenguo Huang
ABSTRACT Photocatalysis is widely used for the degradation of organic pollutants, with TiO2 and ZnO as the best candidates with unique properties. However, agglomeration and recycling are major challenges in practical photocatalysis applications. Advanced deposition processes can provide nanotubular or hierarchical structures that are more promising than suspended particles. More importantly, higher efficiency of photoelectrocatalysis than photocatalysis for the degradation of persistent organic pollutants including perfluorooctanoic acid (PFOA) necessitates catalyst immobilization. Photoelectrocatalysis exhibited remarkably higher efficiency (56.1%) than direct photolysis (15.1%), electrocatalysis (5.0%) and photocatalysis (18.1%) for PFOA degradation. This paper aims to review the progress in the application of anodizing and thermal spraying as two major industrial surface engineering processes to bridge the gap between laboratorial and practical photocatalysis technology. Overall, thermal spraying is considered as one of the most efficient methods for the deposition of TiO2 and ZnO photocatalytic films. Graphical Abstract
{"title":"Progress in the application of surface engineering methods in immobilizing TiO2 and ZnO coatings for environmental photocatalysis","authors":"A. H. Navidpour, A. Hosseinzadeh, John L. Zhou, Zhenguo Huang","doi":"10.1080/01614940.2021.1983066","DOIUrl":"https://doi.org/10.1080/01614940.2021.1983066","url":null,"abstract":"ABSTRACT Photocatalysis is widely used for the degradation of organic pollutants, with TiO2 and ZnO as the best candidates with unique properties. However, agglomeration and recycling are major challenges in practical photocatalysis applications. Advanced deposition processes can provide nanotubular or hierarchical structures that are more promising than suspended particles. More importantly, higher efficiency of photoelectrocatalysis than photocatalysis for the degradation of persistent organic pollutants including perfluorooctanoic acid (PFOA) necessitates catalyst immobilization. Photoelectrocatalysis exhibited remarkably higher efficiency (56.1%) than direct photolysis (15.1%), electrocatalysis (5.0%) and photocatalysis (18.1%) for PFOA degradation. This paper aims to review the progress in the application of anodizing and thermal spraying as two major industrial surface engineering processes to bridge the gap between laboratorial and practical photocatalysis technology. Overall, thermal spraying is considered as one of the most efficient methods for the deposition of TiO2 and ZnO photocatalytic films. Graphical Abstract","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"120 1","pages":"822 - 873"},"PeriodicalIF":0.0,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87696095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-28DOI: 10.1080/01614940.2021.1977009
Z. Petrusová, Z. Slouka, Lucie Vobecká, Petr Polezhaev, P. Hasal, M. Přibyl, P. Izák
ABSTRACT Microreaction and membrane technologies offer optimal conditions for controlling enantiomer synthesis and purification processes in continuous production, with numerous advantages over batch manufacturing. One of the many forces driving the development of such technologies for the production of single optical isomers is the need for enantiomerically pure pharmaceutical drugs because enantiomers may display opposite therapeutic effects or different treatment efficacies and side effects. Yet, despite advances in asymmetric synthesis and separation techniques, preparing enantiomerically pure compounds remains a challenging task. Here, we review the progress in microfluidics and membrane chiral separation over the last two decades. In addition to describing and critically assessing the state of the art in both disciplines, we provide an overview of their beneficial properties and characteristics for developing technologies toward producing enantiomerically pure compounds. Concomitantly, we evaluate efforts to integrate synthesis and membrane separation into a microfluidic platform and pinpoint the limiting factors that must be overcome before these platforms can be fully deployed in the industry.
{"title":"Microreaction and membrane technologies for continuous single-enantiomer production: A review","authors":"Z. Petrusová, Z. Slouka, Lucie Vobecká, Petr Polezhaev, P. Hasal, M. Přibyl, P. Izák","doi":"10.1080/01614940.2021.1977009","DOIUrl":"https://doi.org/10.1080/01614940.2021.1977009","url":null,"abstract":"ABSTRACT Microreaction and membrane technologies offer optimal conditions for controlling enantiomer synthesis and purification processes in continuous production, with numerous advantages over batch manufacturing. One of the many forces driving the development of such technologies for the production of single optical isomers is the need for enantiomerically pure pharmaceutical drugs because enantiomers may display opposite therapeutic effects or different treatment efficacies and side effects. Yet, despite advances in asymmetric synthesis and separation techniques, preparing enantiomerically pure compounds remains a challenging task. Here, we review the progress in microfluidics and membrane chiral separation over the last two decades. In addition to describing and critically assessing the state of the art in both disciplines, we provide an overview of their beneficial properties and characteristics for developing technologies toward producing enantiomerically pure compounds. Concomitantly, we evaluate efforts to integrate synthesis and membrane separation into a microfluidic platform and pinpoint the limiting factors that must be overcome before these platforms can be fully deployed in the industry.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"34 1","pages":"773 - 821"},"PeriodicalIF":0.0,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74379429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-02DOI: 10.1080/01614940.2021.1968197
I. Sancho‐Sanz, S. Korili, A. Gil
ABSTRACT Terrestrial environmental and biological systems are being threatened by the tremendous amount of human carbon dioxide emissions. Therefore, it is crucial to develop a sustainable energy system based on CO2 as chemical feedstock. In this review, an introduction to the CO2 activation and transformation has been made, together with a more comprehensive study of the catalytical reduction of CO2 to methane, methanol, and formic acid, which are currently contemplated as chemical feedstocks and/or promising energy carriers and alternative fuels.
{"title":"Catalytic valorization of CO2 by hydrogenation: current status and future trends","authors":"I. Sancho‐Sanz, S. Korili, A. Gil","doi":"10.1080/01614940.2021.1968197","DOIUrl":"https://doi.org/10.1080/01614940.2021.1968197","url":null,"abstract":"ABSTRACT Terrestrial environmental and biological systems are being threatened by the tremendous amount of human carbon dioxide emissions. Therefore, it is crucial to develop a sustainable energy system based on CO2 as chemical feedstock. In this review, an introduction to the CO2 activation and transformation has been made, together with a more comprehensive study of the catalytical reduction of CO2 to methane, methanol, and formic acid, which are currently contemplated as chemical feedstocks and/or promising energy carriers and alternative fuels.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"65 1","pages":"698 - 772"},"PeriodicalIF":0.0,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74064524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1080/01614940.2021.1942689
P. Mäki-Arvela, I. Simakova, D. Murzin
ABSTRACT This review summarizes the recent studies on the synthesis of secondary amines by one-pot amination of aldehydes and ketones over heterogeneous catalysts. Amines are widely applied as the key intermediates in chemical industry for the synthesis of various commodities such as agrochemicals, drugs, detergents, lubricants, food-additives and polymers. Direct catalytic reductive amination of carbonyl compounds was considered which generally includes two steps: (i) formation of imines by interactions of aldehydes or ketones with amines, and (ii) subsequent hydrogenation of imines. Synthesis of secondary amines from carbonyl compounds and amines generated in situ under reaction conditions from their progenitors, e.g., respectively, alcohols or nitro-compounds, is also discussed in detail. Recent progress in application of hydrogen sources alternative to gaseous H2, such as formic acid, NaBH4, CO and water, favored development of metal-free catalysts including solid acid catalysts. The review addresses the scope of the amination reaction with aldehydes/ketones and nitro/amine compounds of different structure, the effect of the solvent, reaction conditions and catalyst properties. In addition, catalyst regeneration and reuse, kinetic regularities and kinetic modeling with an emphasis on the continuous mode of one-pot amination have been systematically summarized and discussed. It is suggested that the future work should focus on revealing the role of the catalytically active sites addressing their acid–base properties and the correlation between catalyst properties and the reaction performance, elucidating kinetic parameters and designing feasible reactor system for further industrial implementation.
{"title":"One-pot amination of aldehydes and ketones over heterogeneous catalysts for production of secondary amines","authors":"P. Mäki-Arvela, I. Simakova, D. Murzin","doi":"10.1080/01614940.2021.1942689","DOIUrl":"https://doi.org/10.1080/01614940.2021.1942689","url":null,"abstract":"ABSTRACT This review summarizes the recent studies on the synthesis of secondary amines by one-pot amination of aldehydes and ketones over heterogeneous catalysts. Amines are widely applied as the key intermediates in chemical industry for the synthesis of various commodities such as agrochemicals, drugs, detergents, lubricants, food-additives and polymers. Direct catalytic reductive amination of carbonyl compounds was considered which generally includes two steps: (i) formation of imines by interactions of aldehydes or ketones with amines, and (ii) subsequent hydrogenation of imines. Synthesis of secondary amines from carbonyl compounds and amines generated in situ under reaction conditions from their progenitors, e.g., respectively, alcohols or nitro-compounds, is also discussed in detail. Recent progress in application of hydrogen sources alternative to gaseous H2, such as formic acid, NaBH4, CO and water, favored development of metal-free catalysts including solid acid catalysts. The review addresses the scope of the amination reaction with aldehydes/ketones and nitro/amine compounds of different structure, the effect of the solvent, reaction conditions and catalyst properties. In addition, catalyst regeneration and reuse, kinetic regularities and kinetic modeling with an emphasis on the continuous mode of one-pot amination have been systematically summarized and discussed. It is suggested that the future work should focus on revealing the role of the catalytically active sites addressing their acid–base properties and the correlation between catalyst properties and the reaction performance, elucidating kinetic parameters and designing feasible reactor system for further industrial implementation.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"1 1","pages":"501 - 568"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88636438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-25DOI: 10.1080/01614940.2021.1962493
S. Mohana Roopan, Mohammad Ahmed Khan
ABSTRACT Photocatalytic degradation is an upcoming technique for the removal of organic pollutants from wastewater. This topic attracts increasing interest due to its potential of utilizing “freely” available solar energy for environmental purification. In recent years, MoS2 based photocatalysts have garnered substantial attention for their graphene-like structure and suitable bandgap for visible light photocatalysis, unlike that of TiO2. However, pure MoS2 has many disadvantages like the high recombination rate of its electron-hole pairs as well as narrow bandgap, which affects its efficiency as a photocatalyst. It has been proven that heterojunction photocatalysts of MoS2 have an increased photoactivity when compared to pristine MoS2. The latest advancements in the field of MoS2 based ternary composites are summarized in this review, with a special emphasis on the application part for wastewater treatment. We have compiled relevant information for the degradation of organic pollutants using photocatalysis with the aim to further the research in this field.
{"title":"MoS2 based ternary composites: review on heterogeneous materials as catalyst for photocatalytic degradation","authors":"S. Mohana Roopan, Mohammad Ahmed Khan","doi":"10.1080/01614940.2021.1962493","DOIUrl":"https://doi.org/10.1080/01614940.2021.1962493","url":null,"abstract":"ABSTRACT Photocatalytic degradation is an upcoming technique for the removal of organic pollutants from wastewater. This topic attracts increasing interest due to its potential of utilizing “freely” available solar energy for environmental purification. In recent years, MoS2 based photocatalysts have garnered substantial attention for their graphene-like structure and suitable bandgap for visible light photocatalysis, unlike that of TiO2. However, pure MoS2 has many disadvantages like the high recombination rate of its electron-hole pairs as well as narrow bandgap, which affects its efficiency as a photocatalyst. It has been proven that heterojunction photocatalysts of MoS2 have an increased photoactivity when compared to pristine MoS2. The latest advancements in the field of MoS2 based ternary composites are summarized in this review, with a special emphasis on the application part for wastewater treatment. We have compiled relevant information for the degradation of organic pollutants using photocatalysis with the aim to further the research in this field.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"7 1","pages":"620 - 693"},"PeriodicalIF":0.0,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87900143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-19DOI: 10.1080/01614940.2021.1960009
H. Gu, W. Xie, Ai Du, Duo Pan, Zhanhu Guo
ABSTRACT Abuse of antibiotics in animal husbandry and medicine has led to severe environmental problems especially the risk of bacterial resistance. Different from common organic pollutants, antibiotics in wastewater could not be easily removed by biological treatment because of their poor biodegradability. Electrocatalysis including electrocatalytic oxidation and reduction has gained great attention for the removal of antibiotic contaminants in wastewater due to its advantages of high efficiency, simple operation, and thorough degradation. This review summarizes the common features and synthesis methods as well as research progress of electrode materials used in the electrocatalytic process for the treatment of antibiotics in the last five years. The removal mechanism and transformation pathways of antibiotics in the electrocatalytic oxidation and reduction processes are presented, especially to avoid the second pollution. Cost aspects in the electrocatalytic process are also discussed by considering practical applications and comparison with adsorption and photocatalysis process. Finally, several developing directions of electrocatalysis in the antibiotic wastewater treatment are proposed as a guidance for further research. Graphical Abstract
{"title":"Overview of electrocatalytic treatment of antibiotic pollutants in wastewater","authors":"H. Gu, W. Xie, Ai Du, Duo Pan, Zhanhu Guo","doi":"10.1080/01614940.2021.1960009","DOIUrl":"https://doi.org/10.1080/01614940.2021.1960009","url":null,"abstract":"ABSTRACT Abuse of antibiotics in animal husbandry and medicine has led to severe environmental problems especially the risk of bacterial resistance. Different from common organic pollutants, antibiotics in wastewater could not be easily removed by biological treatment because of their poor biodegradability. Electrocatalysis including electrocatalytic oxidation and reduction has gained great attention for the removal of antibiotic contaminants in wastewater due to its advantages of high efficiency, simple operation, and thorough degradation. This review summarizes the common features and synthesis methods as well as research progress of electrode materials used in the electrocatalytic process for the treatment of antibiotics in the last five years. The removal mechanism and transformation pathways of antibiotics in the electrocatalytic oxidation and reduction processes are presented, especially to avoid the second pollution. Cost aspects in the electrocatalytic process are also discussed by considering practical applications and comparison with adsorption and photocatalysis process. Finally, several developing directions of electrocatalysis in the antibiotic wastewater treatment are proposed as a guidance for further research. Graphical Abstract","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"11 1","pages":"569 - 619"},"PeriodicalIF":0.0,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91297788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-22DOI: 10.1080/01614940.2021.1930490
Priyanka V. Bhongale, S. Joshi, N. Mali
ABSTRACT The alkylation process involves two competitive paths of O- and C-alkylation and achieving better selectivity for desired products is a very challenging problem. The development of new process for synthesis of O-methylated products of phenol and dihydric phenols is a subject of high industrial and academic interest. Alkyl phenyl ethers, especially anisole and 4-methoxyphenol, have captivated significant interest due to their increasing applications in pharmaceutical industries. The main emphasis of the present review is to explore the recent development in two catalytic O-alkylation processes. The first process is O-methylation of phenol into anisole and another is selective mono O-methylation of hydroquinone into 4-methoxyphenol. The present article covers O-alkylation methods with methanol and dimethyl carbonate as alkylating agent over various acidic and basic catalytic systems. The catalyst systems analyzed involves Bronsted and Lewis acidic and basic ionic liquids, conventional acids, metal oxides, solid acid and basic catalysts, hydrotalcites, various zeolites and heteropolyacids. The mechanistic behavior of alkylation reactions in presence of different catalytic system is reviewed critically which is important to design new and/or modified catalyst in order to maximize the yield of desired product. Additionally, an influence of reaction parameters, role of catalyst and their active sites on product distribution is described. The review paper gives useful insight for researchers in the field of catalysis and reaction engineering of alkylation reactions. Understandings of the reaction pathways will help in developing reliable kinetic models necessary for process scale-up to industrial scale reactor system.
{"title":"A comprehensive review on catalytic O-alkylation of phenol and hydroquinone","authors":"Priyanka V. Bhongale, S. Joshi, N. Mali","doi":"10.1080/01614940.2021.1930490","DOIUrl":"https://doi.org/10.1080/01614940.2021.1930490","url":null,"abstract":"ABSTRACT The alkylation process involves two competitive paths of O- and C-alkylation and achieving better selectivity for desired products is a very challenging problem. The development of new process for synthesis of O-methylated products of phenol and dihydric phenols is a subject of high industrial and academic interest. Alkyl phenyl ethers, especially anisole and 4-methoxyphenol, have captivated significant interest due to their increasing applications in pharmaceutical industries. The main emphasis of the present review is to explore the recent development in two catalytic O-alkylation processes. The first process is O-methylation of phenol into anisole and another is selective mono O-methylation of hydroquinone into 4-methoxyphenol. The present article covers O-alkylation methods with methanol and dimethyl carbonate as alkylating agent over various acidic and basic catalytic systems. The catalyst systems analyzed involves Bronsted and Lewis acidic and basic ionic liquids, conventional acids, metal oxides, solid acid and basic catalysts, hydrotalcites, various zeolites and heteropolyacids. The mechanistic behavior of alkylation reactions in presence of different catalytic system is reviewed critically which is important to design new and/or modified catalyst in order to maximize the yield of desired product. Additionally, an influence of reaction parameters, role of catalyst and their active sites on product distribution is described. The review paper gives useful insight for researchers in the field of catalysis and reaction engineering of alkylation reactions. Understandings of the reaction pathways will help in developing reliable kinetic models necessary for process scale-up to industrial scale reactor system.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"2 1","pages":"455 - 500"},"PeriodicalIF":0.0,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80214492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}