Pub Date : 2024-10-26DOI: 10.1007/s10565-024-09933-x
Tianzhu Liu, Longqing Zhang, Wei Mei
Peripheral nerve injury triggers rapid microglial activation, promoting M1 polarization within the spinal cord, which exacerbates the progression of neuropathic pain. C1q/TNF-related protein 9 (CTRP9), an adiponectin homolog, is known to suppress macrophage activation and exhibit anti-inflammatory properties through the activation of adiponectin receptor 1 (AdipoR1) in various disease contexts. Nevertheless, the involvement of CTRP9 in microglial polarization in the context of neuropathic pain is still unclear. Our study aimed to how CTRP9 influences spinal microglial polarization, neuroinflammation, and pain hypersensitivity, as well as the underlying mechanism, using a neuropathic pain model in male mice with spared nerve injury (SNI) of sciatic nerve. Our findings revealed SNI elevated the spinal CTRP9 and AdipoR1 levels in microglia. Furthermore, intrathecal administration of recombinant CTRP9 (rCTRP9) substantially weakened mechanical hypersensitivity and heat-related pain response triggered by SNI. On the other hand, rCTRP9 mediated a phenotypic switch in microglia, from the pro-inflammatory M1 state to the anti-inflammatory M2 state, by influencing the spinal AMPK/NF-κB mechanism in SNI mice. Additionally, treatment with AdipoR1 siRNA or an AMPK-specific antagonist both reversed the effects of CTRP9 on the phenotypic switching of spinal microglia and pain hypersensitivity. Collectively, these results indicate that CTRP9 ameliorates mechanical hypersensitivity and heat-related pain response, shifted the balance of microglia towards the anti-inflammatory M2 state, and suppresses neuroinflammatory responses by modulating the AMPK/NF-κB pathway, mediated by AdipoR1 activation, in mice with SNI.
{"title":"CTRP9 attenuates peripheral nerve injury-induced mechanical allodynia and thermal hyperalgesia through regulating spinal microglial polarization and neuroinflammation mediated by AdipoR1 in male mice.","authors":"Tianzhu Liu, Longqing Zhang, Wei Mei","doi":"10.1007/s10565-024-09933-x","DOIUrl":"10.1007/s10565-024-09933-x","url":null,"abstract":"<p><p>Peripheral nerve injury triggers rapid microglial activation, promoting M1 polarization within the spinal cord, which exacerbates the progression of neuropathic pain. C1q/TNF-related protein 9 (CTRP9), an adiponectin homolog, is known to suppress macrophage activation and exhibit anti-inflammatory properties through the activation of adiponectin receptor 1 (AdipoR1) in various disease contexts. Nevertheless, the involvement of CTRP9 in microglial polarization in the context of neuropathic pain is still unclear. Our study aimed to how CTRP9 influences spinal microglial polarization, neuroinflammation, and pain hypersensitivity, as well as the underlying mechanism, using a neuropathic pain model in male mice with spared nerve injury (SNI) of sciatic nerve. Our findings revealed SNI elevated the spinal CTRP9 and AdipoR1 levels in microglia. Furthermore, intrathecal administration of recombinant CTRP9 (rCTRP9) substantially weakened mechanical hypersensitivity and heat-related pain response triggered by SNI. On the other hand, rCTRP9 mediated a phenotypic switch in microglia, from the pro-inflammatory M1 state to the anti-inflammatory M2 state, by influencing the spinal AMPK/NF-κB mechanism in SNI mice. Additionally, treatment with AdipoR1 siRNA or an AMPK-specific antagonist both reversed the effects of CTRP9 on the phenotypic switching of spinal microglia and pain hypersensitivity. Collectively, these results indicate that CTRP9 ameliorates mechanical hypersensitivity and heat-related pain response, shifted the balance of microglia towards the anti-inflammatory M2 state, and suppresses neuroinflammatory responses by modulating the AMPK/NF-κB pathway, mediated by AdipoR1 activation, in mice with SNI.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"91"},"PeriodicalIF":5.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As an indispensable inflammatory mediator during sepsis, granulocyte colony-stimulating factor (G-CSF) facilitates neutrophil production by activating G-CSFR. However, little is known about the role of intracellular downstream signalling pathways in the induction of inflammation. To explore the functions of molecules in regulating G-CSFR signalling, RNA sequencing and integrated proteomic and phosphoproteomic analyses were conducted to predict the differentially expressed molecules in modulating the inflammatory response after G-CSFR expression was either up- or downregulated, in addition to the confirmation of their biological function by diverse experimental methods. In the integrated bioinformatic analysis, 3190 differentially expressed genes (DEGs) and 1559 differentially expressed proteins (DEPs) were identified in multiple-group comparisons (p < 0.05, FC > ± 1.5) using enrichment analyses, as well as those classic pathways such as the TNF, NFkappaB, IL-17, and TLR signalling pathways. Among them, 201 proteins, especillay intercellular cell adhesion molecule-1 (ICAM1) and PKCa, were identified as potential molecules involved in inflammation according to the protein-protein interaction (PPI) analysis, and the leukocyte transendothelial migration (TEM) pathway was attributed to the intervention of G-CSFR. Compared with the control and TNF-a treatment, the G-CSFR (G-CSFROE)-overexpressing led to an obvious increase in the number of leukocytes with the TEM phenotype. Mechanically, the expression of ICAM1 and PKCa was significantly up- and downregulated by G-CSFROE, which directly led to increased TEM; moreover, PKCa expression was negatively regulated by ICAM1 expression, leading to aberrant leukocyte TEM. Altogether, the ICAM1‒PKCa axis was found a meaningful target in the leukocyte TEM induced by G-CSFR upregulation.
{"title":"G-CSFR-induced leukocyte transendothelial migration during the inflammatory response is regulated by the ICAM1-PKCa axis: based on multiomics integration analysis.","authors":"Zhipeng Zhu, Xiaoyan Ling, Gaojian Wang, Junran Xie","doi":"10.1007/s10565-024-09934-w","DOIUrl":"10.1007/s10565-024-09934-w","url":null,"abstract":"<p><p>As an indispensable inflammatory mediator during sepsis, granulocyte colony-stimulating factor (G-CSF) facilitates neutrophil production by activating G-CSFR. However, little is known about the role of intracellular downstream signalling pathways in the induction of inflammation. To explore the functions of molecules in regulating G-CSFR signalling, RNA sequencing and integrated proteomic and phosphoproteomic analyses were conducted to predict the differentially expressed molecules in modulating the inflammatory response after G-CSFR expression was either up- or downregulated, in addition to the confirmation of their biological function by diverse experimental methods. In the integrated bioinformatic analysis, 3190 differentially expressed genes (DEGs) and 1559 differentially expressed proteins (DEPs) were identified in multiple-group comparisons (p < 0.05, FC > ± 1.5) using enrichment analyses, as well as those classic pathways such as the TNF, NFkappaB, IL-17, and TLR signalling pathways. Among them, 201 proteins, especillay intercellular cell adhesion molecule-1 (ICAM1) and PKCa, were identified as potential molecules involved in inflammation according to the protein-protein interaction (PPI) analysis, and the leukocyte transendothelial migration (TEM) pathway was attributed to the intervention of G-CSFR. Compared with the control and TNF-a treatment, the G-CSFR (G-CSFROE)-overexpressing led to an obvious increase in the number of leukocytes with the TEM phenotype. Mechanically, the expression of ICAM1 and PKCa was significantly up- and downregulated by G-CSFROE, which directly led to increased TEM; moreover, PKCa expression was negatively regulated by ICAM1 expression, leading to aberrant leukocyte TEM. Altogether, the ICAM1‒PKCa axis was found a meaningful target in the leukocyte TEM induced by G-CSFR upregulation.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"90"},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intervertebral disc degeneration (IVDD) is a primary contributor to low back pain and poses a considerable burden to society. However, the molecular mechanisms underlying IVDD remain to be elucidated. PR/SET domain 1 (PRDM1) regulates cell proliferation, apoptosis, and inflammatory responses in various diseases. Despite these regulatory functions, the mechanism of action of PRDM1 in IVDD remains unexplored. In this study, we investigated the role and underlying mechanisms of action of PRDM1 in IVDD progression. The expression of PRDM1 in nucleus pulposus (NP) tissues and NP cells (NPCs) was assessed using western blotting, immunohistochemistry, and immunofluorescence. The effects of PRDM1 on IVDD progression were investigated in vitro and in vivo. Mechanistically, mRNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to confirm that PRDM1 triggered CASP1 transcription. Our study demonstrated for the first time that PRDM1 expression was substantially upregulated in degenerated NP tissues and NPCs. PRDM1 overexpression promoted NPCs pyroptosis by inhibiting mitophagy and exacerbating IVDD progression, whereas PRDM1 silencing exerted the opposite effect. Furthermore, PRDM1 activated CASP1 transcription, thereby promoting NPCs pyroptosis in vitro. Notably, CASP1 silencing reversed the effects of PRDM1 on the NPCs. To the best of our knowledge, this study is the first to demonstrate that PRDM1 silencing inhibits NPCs pyroptosis by repressing CASP1 transcription, which may be a promising new therapeutic target for IVDD.
{"title":"PRDM1 promotes nucleus pulposus cell pyroptosis leading to intervertebral disc degeneration via activating CASP1 transcription.","authors":"Cheng Yu, Jianjun Li, Wenhao Kuang, Songjia Ni, Yanlin Cao, Yang Duan","doi":"10.1007/s10565-024-09932-y","DOIUrl":"10.1007/s10565-024-09932-y","url":null,"abstract":"<p><p>Intervertebral disc degeneration (IVDD) is a primary contributor to low back pain and poses a considerable burden to society. However, the molecular mechanisms underlying IVDD remain to be elucidated. PR/SET domain 1 (PRDM1) regulates cell proliferation, apoptosis, and inflammatory responses in various diseases. Despite these regulatory functions, the mechanism of action of PRDM1 in IVDD remains unexplored. In this study, we investigated the role and underlying mechanisms of action of PRDM1 in IVDD progression. The expression of PRDM1 in nucleus pulposus (NP) tissues and NP cells (NPCs) was assessed using western blotting, immunohistochemistry, and immunofluorescence. The effects of PRDM1 on IVDD progression were investigated in vitro and in vivo. Mechanistically, mRNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to confirm that PRDM1 triggered CASP1 transcription. Our study demonstrated for the first time that PRDM1 expression was substantially upregulated in degenerated NP tissues and NPCs. PRDM1 overexpression promoted NPCs pyroptosis by inhibiting mitophagy and exacerbating IVDD progression, whereas PRDM1 silencing exerted the opposite effect. Furthermore, PRDM1 activated CASP1 transcription, thereby promoting NPCs pyroptosis in vitro. Notably, CASP1 silencing reversed the effects of PRDM1 on the NPCs. To the best of our knowledge, this study is the first to demonstrate that PRDM1 silencing inhibits NPCs pyroptosis by repressing CASP1 transcription, which may be a promising new therapeutic target for IVDD.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"89"},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irinotecan (CPT-11) is a commonly prescribed chemotherapeutic for the treatment of colon cancer. Unfortunately, acute and delayed diarrhea are prominent side effects of CPT-11 use, and this limits its therapeutic potential. The curative effect of Huangqin decoction (HQD) on chemotherapy-induced diarrhea has been proven. This study investigated the efficacy of the components of HQD (baicalein, baicalin, and paeoniflorin) on CPT-11-induced diarrhea and their underlying mechanisms. Baicalein was found to be the most effective component in improving CPT-11-induced enterotoxicity by intestinal permeability test, ELISA, fluorescence co-localization, and IHC. The combination of baicalin, baicalin and paeoniflorin can obtain similar therapeutic effect to that of HQD. Mendelian randomization analysis, 16 s rRNA sequencing, and fluorescence imaging revealed that baicalein and baicalin significantly inhibited β-glucuronidase (β-GUS) activity. Bacterial abundance analysis and scanning electron microscopy showed that baicalein inhibited the proliferation of Escherichia coli by destroying its cell wall. The molecular dynamics and site-directed mutagenesis results revealed the structural basis for the inhibition of β-GUS by baicalein and baicalin. The results above provide a new idea for the development of drug therapy for adjuvant chemotherapy and theoretical guidance for the optimization of molecular structure targeting β-GUS.
{"title":"Three bioactive compounds from Huangqin decoction ameliorate Irinotecan-induced diarrhea via dual-targeting of Escherichia coli and bacterial β-glucuronidase.","authors":"Xiaojun Teng, Bingxin Wu, Zuhui Liang, Lisheng Zhang, Maolin Yang, Zhongqiu Liu, Qi Liang, Caiyan Wang","doi":"10.1007/s10565-024-09922-0","DOIUrl":"10.1007/s10565-024-09922-0","url":null,"abstract":"<p><p>Irinotecan (CPT-11) is a commonly prescribed chemotherapeutic for the treatment of colon cancer. Unfortunately, acute and delayed diarrhea are prominent side effects of CPT-11 use, and this limits its therapeutic potential. The curative effect of Huangqin decoction (HQD) on chemotherapy-induced diarrhea has been proven. This study investigated the efficacy of the components of HQD (baicalein, baicalin, and paeoniflorin) on CPT-11-induced diarrhea and their underlying mechanisms. Baicalein was found to be the most effective component in improving CPT-11-induced enterotoxicity by intestinal permeability test, ELISA, fluorescence co-localization, and IHC. The combination of baicalin, baicalin and paeoniflorin can obtain similar therapeutic effect to that of HQD. Mendelian randomization analysis, 16 s rRNA sequencing, and fluorescence imaging revealed that baicalein and baicalin significantly inhibited β-glucuronidase (β-GUS) activity. Bacterial abundance analysis and scanning electron microscopy showed that baicalein inhibited the proliferation of Escherichia coli by destroying its cell wall. The molecular dynamics and site-directed mutagenesis results revealed the structural basis for the inhibition of β-GUS by baicalein and baicalin. The results above provide a new idea for the development of drug therapy for adjuvant chemotherapy and theoretical guidance for the optimization of molecular structure targeting β-GUS.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"88"},"PeriodicalIF":5.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The high prevalence and detrimental effects on patient outcomes make gastric cancer (GC) a significant health issue that persists internationally. Existing treatment modalities exhibit limited efficacy, prompting the exploration of immune checkpoint inhibitors as a novel therapeutic approach. However, resistance to immunotherapy poses a significant challenge in GC management, necessitating a profound grasp of the intrinsic molecular pathways.
Methods: This study focuses on investigating the immunosuppressive mechanisms of quiescent cancer cells (QCCs) in GC, particularly their resistance to T-cell-mediated immune responses. Utilizing mouse models, gene editing techniques, and transcriptome sequencing, we aim to elucidate the interactions between QCCs, immune cells, and key regulatory factors like HIF1A. Functional enrichment analysis will further underscore the role of glycolysis-related genes in mediating immunosuppression by QCCs.
Results: The cancer cells that survived GC treated with T-cell therapy lost their proliferative ability. QCCs, as the main resistance force to immunotherapy, exhibit stronger resistance to CD8+ T-cell attack and possess higher cancer-initiating potential. Single-cell sequencing analysis revealed that the microenvironment in the QCCs region harbors more M2-type tumor-associated macrophages and fewer T cells. This microenvironment in the QCCs region leads to the downregulation of T-cell immune activation and alters macrophage metabolic function. Transcriptome sequencing of QCCs identified upregulated genes related to chemo-resistance, hypoxia, and glycolysis. In vitro cell experiments illustrated that HIF1A promotes the transcription of glycolysis-related genes, and silencing HIF1A in QCCs enhances T-cell proliferation and activation in co-culture systems, induces apoptosis in QCCs, and increases QCCs' sensitivity to immune checkpoint inhibitors. In vivo, animal experiments showed that silencing HIF1A in QCCs can inhibit GC growth and metastasis.
Conclusion: Unraveling the molecular mechanisms by which QCCs resist T-cell-mediated immune responses through immunosuppression holds promising implications for refining treatment strategies and enhancing patient outcomes in GC. By delineating these intricate interactions, this study contributes crucial insights into precision medicine and improved therapeutic outcomes in GC management.
背景:胃癌(GC)的高发病率和对患者预后的不利影响使其成为国际上持续存在的重大健康问题。现有治疗方法的疗效有限,促使人们探索将免疫检查点抑制剂作为一种新型治疗方法。然而,免疫疗法的抗药性给胃癌治疗带来了巨大挑战,因此需要深入了解其内在的分子途径:本研究主要探讨静止癌细胞(QCCs)在GC中的免疫抑制机制,尤其是它们对T细胞介导的免疫反应的抵抗。利用小鼠模型、基因编辑技术和转录组测序,我们旨在阐明QCCs、免疫细胞和HIF1A等关键调控因子之间的相互作用。功能富集分析将进一步强调糖酵解相关基因在QCCs介导免疫抑制中的作用:结果:经 T 细胞治疗后,在 GC 中存活的癌细胞失去了增殖能力。作为免疫治疗的主要抵抗力量,QCCs 对 CD8+ T 细胞的攻击表现出更强的抵抗力,并具有更高的癌症诱发潜能。单细胞测序分析显示,QCCs区域的微环境中存在较多的M2型肿瘤相关巨噬细胞和较少的T细胞。QCCs区域的这种微环境导致T细胞免疫激活下调,并改变了巨噬细胞的代谢功能。QCCs 的转录组测序发现了与化疗抗性、缺氧和糖酵解有关的上调基因。体外细胞实验表明,HIF1A能促进糖酵解相关基因的转录,沉默QCCs中的HIF1A能增强共培养系统中T细胞的增殖和激活,诱导QCCs细胞凋亡,并增加QCCs对免疫检查点抑制剂的敏感性。在体内,动物实验表明,沉默 QCC 中的 HIF1A 可以抑制 GC 的生长和转移:结论:揭示 QCC 通过免疫抑制抵抗 T 细胞介导的免疫反应的分子机制,对完善治疗策略和提高 GC 患者的预后具有重要意义。通过阐明这些错综复杂的相互作用,本研究为精准医疗和改善 GC 管理中的治疗效果提供了重要见解。
{"title":"Mechanisms of HIF1A-mediated immune evasion in gastric cancer and the impact on therapy resistance.","authors":"Hao Qi, Xiaoyu Ma, Yu Ma, Liuyu Jia, Kuncong Liu, Honghu Wang","doi":"10.1007/s10565-024-09917-x","DOIUrl":"10.1007/s10565-024-09917-x","url":null,"abstract":"<p><strong>Background: </strong>The high prevalence and detrimental effects on patient outcomes make gastric cancer (GC) a significant health issue that persists internationally. Existing treatment modalities exhibit limited efficacy, prompting the exploration of immune checkpoint inhibitors as a novel therapeutic approach. However, resistance to immunotherapy poses a significant challenge in GC management, necessitating a profound grasp of the intrinsic molecular pathways.</p><p><strong>Methods: </strong>This study focuses on investigating the immunosuppressive mechanisms of quiescent cancer cells (QCCs) in GC, particularly their resistance to T-cell-mediated immune responses. Utilizing mouse models, gene editing techniques, and transcriptome sequencing, we aim to elucidate the interactions between QCCs, immune cells, and key regulatory factors like HIF1A. Functional enrichment analysis will further underscore the role of glycolysis-related genes in mediating immunosuppression by QCCs.</p><p><strong>Results: </strong>The cancer cells that survived GC treated with T-cell therapy lost their proliferative ability. QCCs, as the main resistance force to immunotherapy, exhibit stronger resistance to CD8<sup>+</sup> T-cell attack and possess higher cancer-initiating potential. Single-cell sequencing analysis revealed that the microenvironment in the QCCs region harbors more M2-type tumor-associated macrophages and fewer T cells. This microenvironment in the QCCs region leads to the downregulation of T-cell immune activation and alters macrophage metabolic function. Transcriptome sequencing of QCCs identified upregulated genes related to chemo-resistance, hypoxia, and glycolysis. In vitro cell experiments illustrated that HIF1A promotes the transcription of glycolysis-related genes, and silencing HIF1A in QCCs enhances T-cell proliferation and activation in co-culture systems, induces apoptosis in QCCs, and increases QCCs' sensitivity to immune checkpoint inhibitors. In vivo, animal experiments showed that silencing HIF1A in QCCs can inhibit GC growth and metastasis.</p><p><strong>Conclusion: </strong>Unraveling the molecular mechanisms by which QCCs resist T-cell-mediated immune responses through immunosuppression holds promising implications for refining treatment strategies and enhancing patient outcomes in GC. By delineating these intricate interactions, this study contributes crucial insights into precision medicine and improved therapeutic outcomes in GC management.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"87"},"PeriodicalIF":5.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1007/s10565-024-09928-8
Wei Zhang, Chenyu Zhang, Yi Zhang, Xuehua Zhou, Bo Dong, Hong Tan, Hui Su, Xin Sun
Mitochondria are essential organelles within cells, playing various roles in numerous cellular processes, including differentiation, growth, apoptosis, energy conversion, metabolism, and cellular immunity. The phenotypic variation of mitochondria is specific to different tissues and cell types, resulting in significant differences in their function, morphology, and molecular characteristics. Asthma is a chronic, complex, and heterogeneous airway disease influenced by external factors such as environmental pollutants and allergen exposure, as well as internal factors at the tissue, cellular, and genetic levels, including lung and airway structural cells, immune cells, granulocytes, and mast cells. Therefore, a comprehensive understanding of the specific responses of mitochondria to various external environmental stimuli and internal changes are crucial for elucidating the pathogenesis of asthma. Previous research on mitochondrial-targeted therapy for asthma has primarily focused on antioxidants. Consequently, it is necessary to summarize the multifaceted roles of mitochondria in the pathogenesis of asthma to discover additional strategies targeting mitochondria in this context. In this review, our goal is to describe the changes in mitochondrial function in response to various exposure factors across different cell types and other relevant factors in the context of asthma, utilizing a new mitochondrial terminology framework that encompasses cell-dependent mitochondrial characteristics, molecular features, mitochondrial activity, function, and behavior.
{"title":"Multifaceted roles of mitochondria in asthma.","authors":"Wei Zhang, Chenyu Zhang, Yi Zhang, Xuehua Zhou, Bo Dong, Hong Tan, Hui Su, Xin Sun","doi":"10.1007/s10565-024-09928-8","DOIUrl":"10.1007/s10565-024-09928-8","url":null,"abstract":"<p><p>Mitochondria are essential organelles within cells, playing various roles in numerous cellular processes, including differentiation, growth, apoptosis, energy conversion, metabolism, and cellular immunity. The phenotypic variation of mitochondria is specific to different tissues and cell types, resulting in significant differences in their function, morphology, and molecular characteristics. Asthma is a chronic, complex, and heterogeneous airway disease influenced by external factors such as environmental pollutants and allergen exposure, as well as internal factors at the tissue, cellular, and genetic levels, including lung and airway structural cells, immune cells, granulocytes, and mast cells. Therefore, a comprehensive understanding of the specific responses of mitochondria to various external environmental stimuli and internal changes are crucial for elucidating the pathogenesis of asthma. Previous research on mitochondrial-targeted therapy for asthma has primarily focused on antioxidants. Consequently, it is necessary to summarize the multifaceted roles of mitochondria in the pathogenesis of asthma to discover additional strategies targeting mitochondria in this context. In this review, our goal is to describe the changes in mitochondrial function in response to various exposure factors across different cell types and other relevant factors in the context of asthma, utilizing a new mitochondrial terminology framework that encompasses cell-dependent mitochondrial characteristics, molecular features, mitochondrial activity, function, and behavior.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"85"},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1007/s10565-024-09927-9
Xun Zhang, Yan Bian, Qiuxin Li, Chuting Yu, Ye Gao, Bo Tian, Wenqiang Xia, Wei Wang, Lei Xin, Han Lin, Luowei Wang
Esophageal squamous cell carcinoma (ESCC) remains a major clinical challenge due to its poor prognosis and the scarcity effective therapeutic targets. Circular RNAs (circRNAs) are crucial in cancer progression. In this study, high-throughput sequencing was employed to profile ESCC tissues, revealing that hsa_circ_0001165 is notably elevated in both ESCC tumor samples and cell lines, with its expression is positively associated with patients' TNM staging. Knockdown of hsa_circ_0001165 resulted in reduced malignant biological behavior of ESCC cells in vitro and also inhibited tumor growth in vivo. Mechanism experimental analysis found that hsa_circ_0001165 expression is positively enhanced by eukaryotic translation initiation factor 4A3 (EIF4A3). Hsa_circ_0001165 acts as a miRNA sponge for miR-381-3p, increasing the expression of tensin-3 (TNS3) through a series of related mechanism assays include dual-luciferase reporter gene, RNA Immunoprecipitation and RNA-pulldown. The downregulation in miR-381-3p expression was observed in ESCC tissues, and the cell proliferation, invasion, and migration of ESCC were suppressed. The upregulated expression of hsa_circ_0001165 modulates the miR-381-3p/TNS3 axis and promotes aggressive phenotypes of ESCC. Hsa_circ_0001165 is regarded as a encouraging biomarker and potential therapeutic target for ESCC, presenting innovative options for both diagnostic and treatment approaches.
{"title":"EIF4A3-mediated oncogenic circRNA hsa_circ_0001165 advances esophageal squamous cell carcinoma progression through the miR-381-3p/TNS3 pathway.","authors":"Xun Zhang, Yan Bian, Qiuxin Li, Chuting Yu, Ye Gao, Bo Tian, Wenqiang Xia, Wei Wang, Lei Xin, Han Lin, Luowei Wang","doi":"10.1007/s10565-024-09927-9","DOIUrl":"10.1007/s10565-024-09927-9","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) remains a major clinical challenge due to its poor prognosis and the scarcity effective therapeutic targets. Circular RNAs (circRNAs) are crucial in cancer progression. In this study, high-throughput sequencing was employed to profile ESCC tissues, revealing that hsa_circ_0001165 is notably elevated in both ESCC tumor samples and cell lines, with its expression is positively associated with patients' TNM staging. Knockdown of hsa_circ_0001165 resulted in reduced malignant biological behavior of ESCC cells in vitro and also inhibited tumor growth in vivo. Mechanism experimental analysis found that hsa_circ_0001165 expression is positively enhanced by eukaryotic translation initiation factor 4A3 (EIF4A3). Hsa_circ_0001165 acts as a miRNA sponge for miR-381-3p, increasing the expression of tensin-3 (TNS3) through a series of related mechanism assays include dual-luciferase reporter gene, RNA Immunoprecipitation and RNA-pulldown. The downregulation in miR-381-3p expression was observed in ESCC tissues, and the cell proliferation, invasion, and migration of ESCC were suppressed. The upregulated expression of hsa_circ_0001165 modulates the miR-381-3p/TNS3 axis and promotes aggressive phenotypes of ESCC. Hsa_circ_0001165 is regarded as a encouraging biomarker and potential therapeutic target for ESCC, presenting innovative options for both diagnostic and treatment approaches.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"84"},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1007/s10565-024-09929-7
Xuejia Yang, Fan Zheng, Penghua Yan, Xueting Liu, Xuanwen Chen, Xinyu Du, Yin Zhang, Peilei Wang, Chaosheng Chen, Hong Lu, Yongheng Bai
Background: Renal interstitial fibrosis (RIF) is a common feature of chronic kidney diseases (CKD), with epithelial-mesenchymal transition (EMT) being one of its important mechanisms. S100A2 is a protein associated with cell proliferation and differentiation, but its specific functions and molecular mechanisms in RIF remain to be determined.
Methods: S100A2 levels were evaluated in three mouse models, including unilateral ureteral obstruction (UUO), ischemia-reperfusion injury (IRI), and aristolochic acid nephropathy (AAN), as well as in TGF-β1- treated HK-2 cells and in kidney tissue samples. Furthermore, the role of S100A2 and its interaction with FoxO1 was investigated using RT-qPCR, immunoblotting, immunofluorescence staining, co-immunoprecipitation (Co-IP), transcriptome sequencing, and gain- or loss-of-function approaches in vitro.
Results: Elevated expression levels of S100A2 were observed in three mouse models and TGF-β1-treated HK2 cells, as well as in kidney tissue samples. Following siRNA silencing of S100A2, exposure to TGF-β1 in cultured HK-2 cells suppressed EMT process and extracellular matrix (ECM) accumulation. Conversely, Overexpression of S100A2 induced EMT and ECM deposition. Notably, we identified that S100A2-mediated EMT depends on FoxO1. Immunofluorescence staining indicated that S100A2 and FoxO1 colocalized in the nucleus and cytoplasm, and their interaction was verified in Co-IP assay. S100A2 knockdown decreased TGF-β1-induced phosphorylation of FoxO1 and increased its protein expression, whereas S100A2 overexpression hampered FoxO1 activation. Furthermore, pharmacological blockade of FoxO1 rescued the induction of TGF-β1 on EMT and ECM deposition in S100A2 siRNA-treated cells.
Conclusion: S100A2 activation exacerbates interstitial fibrosis in kidneys by facilitating FoxO1-mediated EMT.
{"title":"S100A2 activation promotes interstitial fibrosis in kidneys by FoxO1-mediated epithelial-mesenchymal transition.","authors":"Xuejia Yang, Fan Zheng, Penghua Yan, Xueting Liu, Xuanwen Chen, Xinyu Du, Yin Zhang, Peilei Wang, Chaosheng Chen, Hong Lu, Yongheng Bai","doi":"10.1007/s10565-024-09929-7","DOIUrl":"10.1007/s10565-024-09929-7","url":null,"abstract":"<p><strong>Background: </strong>Renal interstitial fibrosis (RIF) is a common feature of chronic kidney diseases (CKD), with epithelial-mesenchymal transition (EMT) being one of its important mechanisms. S100A2 is a protein associated with cell proliferation and differentiation, but its specific functions and molecular mechanisms in RIF remain to be determined.</p><p><strong>Methods: </strong>S100A2 levels were evaluated in three mouse models, including unilateral ureteral obstruction (UUO), ischemia-reperfusion injury (IRI), and aristolochic acid nephropathy (AAN), as well as in TGF-β1- treated HK-2 cells and in kidney tissue samples. Furthermore, the role of S100A2 and its interaction with FoxO1 was investigated using RT-qPCR, immunoblotting, immunofluorescence staining, co-immunoprecipitation (Co-IP), transcriptome sequencing, and gain- or loss-of-function approaches in vitro.</p><p><strong>Results: </strong>Elevated expression levels of S100A2 were observed in three mouse models and TGF-β1-treated HK2 cells, as well as in kidney tissue samples. Following siRNA silencing of S100A2, exposure to TGF-β1 in cultured HK-2 cells suppressed EMT process and extracellular matrix (ECM) accumulation. Conversely, Overexpression of S100A2 induced EMT and ECM deposition. Notably, we identified that S100A2-mediated EMT depends on FoxO1. Immunofluorescence staining indicated that S100A2 and FoxO1 colocalized in the nucleus and cytoplasm, and their interaction was verified in Co-IP assay. S100A2 knockdown decreased TGF-β1-induced phosphorylation of FoxO1 and increased its protein expression, whereas S100A2 overexpression hampered FoxO1 activation. Furthermore, pharmacological blockade of FoxO1 rescued the induction of TGF-β1 on EMT and ECM deposition in S100A2 siRNA-treated cells.</p><p><strong>Conclusion: </strong>S100A2 activation exacerbates interstitial fibrosis in kidneys by facilitating FoxO1-mediated EMT.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"86"},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exogenous gaseous formaldehyde (FA) is recognized as a significant indoor air pollutant due to its chemical reactivity and documented mutagenic and carcinogenic properties, particularly in its capacity to damage DNA and impact human health. Despite increasing attention on the adverse effects of exogenous FA on human health, the potential detrimental effects of endogenous FA in the brain have been largely neglected in current research. Endogenous FA have been observed to accumulate in the aging brain due to dysregulation in the expression and activity of enzymes involved in FA metabolism. Surprisingly, excessive FA have been implicated in the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancers. Notably, FA has the ability to not only initiate DNA double strand breaks but also induce the formation of crosslinks of DNA-DNA, DNA-RNA, and DNA-protein, which further exacerbate the progression of these brain diseases. However, recent research has identified that FA-resistant gene exonuclease-1 (EXO1) and FA scavengers can potentially mitigate FA toxicity, offering a promising strategy for mitigating or repairing FA-induced DNA damage. The present review offers novel insights into the impact of FA metabolism on brain ageing and the contribution of FA-damaged DNA to the progression of neurological disorders.
外源性气态甲醛(FA)因其化学反应性和有记录的诱变和致癌特性,特别是其损伤 DNA 和影响人体健康的能力,被认为是一种重要的室内空气污染物。尽管外源性 FA 对人体健康的不利影响日益受到关注,但目前的研究在很大程度上忽视了内源性 FA 对大脑的潜在不利影响。据观察,由于参与脂肪酸代谢的酶的表达和活性失调,内源性脂肪酸会在衰老的大脑中积累。令人惊讶的是,过量的脂肪酸与阿尔茨海默病(AD)、帕金森病(PD)和脑癌等神经退行性疾病的发病有关。值得注意的是,脂肪酸不仅能引发DNA双链断裂,还能诱导DNA-DNA、DNA-RNA和DNA-蛋白质交联的形成,从而进一步加剧这些脑部疾病的发展。然而,最近的研究发现,FA 抗性基因外切酶-1(EXO1)和 FA 清除剂有可能减轻 FA 的毒性,从而为减轻或修复 FA 诱导的 DNA 损伤提供了一种前景广阔的策略。本综述就 FA 代谢对大脑老化的影响以及 FA 损伤 DNA 对神经系统疾病进展的作用提供了新的见解。
{"title":"Exogenous and endogenous formaldehyde-induced DNA damage in the aging brain: mechanisms and implications for brain diseases.","authors":"Zixi Tian, Kai Huang, Wanting Yang, Ying Chen, Wanjia Lyv, Beilei Zhu, Xu Yang, Ping Ma, Zhiqian Tong","doi":"10.1007/s10565-024-09926-w","DOIUrl":"10.1007/s10565-024-09926-w","url":null,"abstract":"<p><p>Exogenous gaseous formaldehyde (FA) is recognized as a significant indoor air pollutant due to its chemical reactivity and documented mutagenic and carcinogenic properties, particularly in its capacity to damage DNA and impact human health. Despite increasing attention on the adverse effects of exogenous FA on human health, the potential detrimental effects of endogenous FA in the brain have been largely neglected in current research. Endogenous FA have been observed to accumulate in the aging brain due to dysregulation in the expression and activity of enzymes involved in FA metabolism. Surprisingly, excessive FA have been implicated in the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancers. Notably, FA has the ability to not only initiate DNA double strand breaks but also induce the formation of crosslinks of DNA-DNA, DNA-RNA, and DNA-protein, which further exacerbate the progression of these brain diseases. However, recent research has identified that FA-resistant gene exonuclease-1 (EXO1) and FA scavengers can potentially mitigate FA toxicity, offering a promising strategy for mitigating or repairing FA-induced DNA damage. The present review offers novel insights into the impact of FA metabolism on brain ageing and the contribution of FA-damaged DNA to the progression of neurological disorders.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"83"},"PeriodicalIF":5.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s10565-024-09923-z
Xue Xiao, Jia-Xin Li, Hui-Hua Li, Fei Teng
Angiotensin-converting enzyme 2 (ACE2), a crucial element of the renin-angiotensin system (RAS), metabolizes angiotensin II into Ang (1-7), which then combines with the Mas receptor (MasR) to fulfill its protective role in various diseases. Nevertheless, the involvement of ACE2 in sepsis-induced cardiomyopathy (SIC) is still unexplored. In this study, our results revealed that CLP surgery dramatically impaired cardiac function accompanied with disruption of the balance between ACE2-Ang (1-7) and ACE-Ang II axis in septic heart tissues. Moreover, ACE2 knockin markedly alleviated sepsis induced RAS disorder, cardiac dysfunction and improved survival rate in mice, while ACE2 knockout significantly exacerbates these outcomes. Adoptive transfer of bone marrow cells and in vitro experiments showed the positive role of myeloid ACE2 by mitigating oxidative stress, inflammatory response, macrophage polarization and cardiomyocyte apoptosis by blocking NF-κB and STAT1 signals. However, the beneficial impacts were nullified by MasR antagonist A779. Collectively, these findings showed that ACE2 alleviated SIC by inhibiting M1 macrophage via activating the Ang (1-7)-MasR axis, highlight that ACE2 might be a promising target for the management of sepsis and SIC patients.
血管紧张素转换酶 2(ACE2)是肾素-血管紧张素系统(RAS)的重要组成部分,它将血管紧张素 II 代谢为血管紧张素(1-7),然后与 Mas 受体(MasR)结合,在各种疾病中发挥保护作用。然而,ACE2 在脓毒症诱发的心肌病(SIC)中的参与作用仍未得到探讨。在这项研究中,我们的结果显示,CLP 手术显著损害了心脏功能,同时破坏了脓毒症心脏组织中 ACE2-Ang (1-7) 和 ACE-Ang II 轴之间的平衡。此外,ACE2基因敲除可明显缓解脓毒症诱导的RAS紊乱和心功能障碍,并提高小鼠的存活率,而ACE2基因敲除则会显著加剧这些结果。骨髓细胞的领养转移和体外实验表明,骨髓 ACE2 可通过阻断 NF-κB 和 STAT1 信号,减轻氧化应激、炎症反应、巨噬细胞极化和心肌细胞凋亡,从而发挥积极作用。然而,MasR 拮抗剂 A779 会抵消这些有益影响。总之,这些研究结果表明,ACE2通过激活Ang(1-7)-MasR轴抑制M1巨噬细胞,从而缓解了SIC,突出表明ACE2可能是治疗脓毒症和SIC患者的一个有前途的靶点。
{"title":"ACE2 alleviates sepsis-induced cardiomyopathy through inhibiting M1 macrophage via NF-κB/STAT1 signals.","authors":"Xue Xiao, Jia-Xin Li, Hui-Hua Li, Fei Teng","doi":"10.1007/s10565-024-09923-z","DOIUrl":"https://doi.org/10.1007/s10565-024-09923-z","url":null,"abstract":"<p><p>Angiotensin-converting enzyme 2 (ACE2), a crucial element of the renin-angiotensin system (RAS), metabolizes angiotensin II into Ang (1-7), which then combines with the Mas receptor (MasR) to fulfill its protective role in various diseases. Nevertheless, the involvement of ACE2 in sepsis-induced cardiomyopathy (SIC) is still unexplored. In this study, our results revealed that CLP surgery dramatically impaired cardiac function accompanied with disruption of the balance between ACE2-Ang (1-7) and ACE-Ang II axis in septic heart tissues. Moreover, ACE2 knockin markedly alleviated sepsis induced RAS disorder, cardiac dysfunction and improved survival rate in mice, while ACE2 knockout significantly exacerbates these outcomes. Adoptive transfer of bone marrow cells and in vitro experiments showed the positive role of myeloid ACE2 by mitigating oxidative stress, inflammatory response, macrophage polarization and cardiomyocyte apoptosis by blocking NF-κB and STAT1 signals. However, the beneficial impacts were nullified by MasR antagonist A779. Collectively, these findings showed that ACE2 alleviated SIC by inhibiting M1 macrophage via activating the Ang (1-7)-MasR axis, highlight that ACE2 might be a promising target for the management of sepsis and SIC patients.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"82"},"PeriodicalIF":5.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}