HOIP, an RBR-type E3 ligase and the catalytic subunit of the linear ubiquitin chain assembly complex (LUBAC), plays crucial roles in various cellular processes, including the NF-κB signaling pathway. The E3 activity of HOIP can be inhibited by the kinase STK4-mediated phosphorylation, although the mechanism is poorly understood. In this study, using biochemical, mass spectrometry and structural approaches, we systemically characterize the association of STK4 with HOIP, and unveil that STK4 can directly bind to the RING2-LDD module of HOIP through its kinase domain. The determined crystal structure of STK4 in complex with HOIP RING2-LDD not only elucidates the detailed binding mechanism of STK4 with HOIP, but also uncovers, for the first time, a unique binding mode of STK4 with its substrate. Moreover, we reveal that STK4 can directly phosphorylate the T786 residue of HOIP that is located in the allosteric ubiquitin-binding site of HOIP. Importantly, the phosphorylation of HOIP T786 mediated by STK4 can block the binding of ubiquitin to the allosteric site of HOIP, thereby attenuating the E3 activity of HOIP. In all, our findings provide mechanistic insights into the interaction between STK4 and HOIP as well as the negative regulation of HOIP's E3 activity by STK4-mediated phosphorylation, which are valuable for further understanding the regulatory modes of RBR-type E3 ligases.
{"title":"STK4 inhibits the E3 activity of HOIP by phosphorylating its allosteric ubiquitin-binding site.","authors":"Yaru Wang, Xindi Zhou, Zhiqiao Lin, Yichao Huang, Yuchao Zhang, Haobo Liu, Yuqian Zhou, Jianping Liu, Lifeng Pan","doi":"10.1038/s41421-025-00824-x","DOIUrl":"10.1038/s41421-025-00824-x","url":null,"abstract":"<p><p>HOIP, an RBR-type E3 ligase and the catalytic subunit of the linear ubiquitin chain assembly complex (LUBAC), plays crucial roles in various cellular processes, including the NF-κB signaling pathway. The E3 activity of HOIP can be inhibited by the kinase STK4-mediated phosphorylation, although the mechanism is poorly understood. In this study, using biochemical, mass spectrometry and structural approaches, we systemically characterize the association of STK4 with HOIP, and unveil that STK4 can directly bind to the RING2-LDD module of HOIP through its kinase domain. The determined crystal structure of STK4 in complex with HOIP RING2-LDD not only elucidates the detailed binding mechanism of STK4 with HOIP, but also uncovers, for the first time, a unique binding mode of STK4 with its substrate. Moreover, we reveal that STK4 can directly phosphorylate the T786 residue of HOIP that is located in the allosteric ubiquitin-binding site of HOIP. Importantly, the phosphorylation of HOIP T786 mediated by STK4 can block the binding of ubiquitin to the allosteric site of HOIP, thereby attenuating the E3 activity of HOIP. In all, our findings provide mechanistic insights into the interaction between STK4 and HOIP as well as the negative regulation of HOIP's E3 activity by STK4-mediated phosphorylation, which are valuable for further understanding the regulatory modes of RBR-type E3 ligases.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"75"},"PeriodicalIF":12.5,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145074400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adverse intrauterine environments, such as hyperglycemia, impair sexual reproduction and species continuity, yet the underlying mechanisms remain poorly understood. In this study, we demonstrated that intrauterine hyperglycemia significantly disrupted primordial germ cell (PGC) development, especially in female offspring, thus reducing fertility. Using Oct4-EGFP transgenic mice with intrauterine hyperglycemia exposure, we revealed that hyperglycemia compromised sexually specific chromatin accessibility and DNA methylation reprogramming during PGC development. Particularly, in female PGCs, hyperglycemia leads to the aberrant retention of chromatin accessibility at pluripotency gene promoters such as Nanog and Tfap2c, inhibiting proper gene silencing and blocking the initiation of meiosis, which ultimately hinders oocyte maturation. Conversely, male PGCs exhibit less severe changes in chromatin accessibility and gene transcription. Intriguingly, the global DNA methylation reconstruction is impaired in male PGCs, particularly in key imprinted gene regions, suggesting potential developmental ramifications for later stages and even subsequent generations. Particularly, our findings indicate that intrauterine hyperglycemia adversely affects sex differentiation in PGCs by disrupting the expression of critical sex-determining transcription factors. Collectively, these findings highlight how intrauterine hyperglycemia interferes with sex-specific epigenetic reprogramming during PGC development, leading to abnormal germ cell development, reduced fertility, and adverse intergenerational effects.
{"title":"Intrauterine hyperglycemia impairs mouse primordial germ cell development and fertility by sex-specific epigenetic reprogramming interference.","authors":"Jiangshan Cong, Qing Li, Yangyang Li, Minghao Li, Yan Shi, Peiran Hu, Xidi Yin, Qianyun Zhang, Jianzhong Sheng, Jinsong Li, Guolian Ding, Yu Zhang, Hefeng Huang","doi":"10.1038/s41421-025-00821-0","DOIUrl":"10.1038/s41421-025-00821-0","url":null,"abstract":"<p><p>Adverse intrauterine environments, such as hyperglycemia, impair sexual reproduction and species continuity, yet the underlying mechanisms remain poorly understood. In this study, we demonstrated that intrauterine hyperglycemia significantly disrupted primordial germ cell (PGC) development, especially in female offspring, thus reducing fertility. Using Oct4-EGFP transgenic mice with intrauterine hyperglycemia exposure, we revealed that hyperglycemia compromised sexually specific chromatin accessibility and DNA methylation reprogramming during PGC development. Particularly, in female PGCs, hyperglycemia leads to the aberrant retention of chromatin accessibility at pluripotency gene promoters such as Nanog and Tfap2c, inhibiting proper gene silencing and blocking the initiation of meiosis, which ultimately hinders oocyte maturation. Conversely, male PGCs exhibit less severe changes in chromatin accessibility and gene transcription. Intriguingly, the global DNA methylation reconstruction is impaired in male PGCs, particularly in key imprinted gene regions, suggesting potential developmental ramifications for later stages and even subsequent generations. Particularly, our findings indicate that intrauterine hyperglycemia adversely affects sex differentiation in PGCs by disrupting the expression of critical sex-determining transcription factors. Collectively, these findings highlight how intrauterine hyperglycemia interferes with sex-specific epigenetic reprogramming during PGC development, leading to abnormal germ cell development, reduced fertility, and adverse intergenerational effects.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"74"},"PeriodicalIF":12.5,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the evolutionary arms race between bacteria and viruses, retrons have emerged as distinctive antiphage defense systems. Here, we elucidate the structure and function of Retron-Eco2, which comprises a non-coding RNA (ncRNA) that encodes multicopy single-stranded DNA (msDNA, a DNA‒RNA hybrid) and a fusion protein containing a reverse transcriptase (RT) domain and a topoisomerase-primase-like (Toprim) effector domain. The Eco2 msDNA and RT-Toprim fusion protein form a 1:1 stoichiometric nucleoprotein complex that further assembles into a trimer (msDNA:RT-Toprim ratio of 3:3) with a distinctive triangular configuration. The RNA portion of the msDNA in one protomer closely intertwines around the RT domain of an adjacent protomer, mediating the formation of this self-inhibitory assembly. Upon activation, the Toprim effector domain exhibits RNase activity, degrading RNA to arrest phage replication. We further reveal that phage mutants evading Eco2-mediated defense harbor mutations in the endonuclease IV-like protein DenB, underscoring DenB's critical role in triggering the activation of this system. Together, these findings provide key structural and functional insights into Retron-Eco2, laying the groundwork for harnessing its potential in biotechnology and synthetic biology applications.
在细菌和病毒之间的进化军备竞赛中,逆转录酶作为独特的噬菌体防御系统出现。在这里,我们阐明了Retron-Eco2的结构和功能,它包括一个编码多拷贝单链DNA (msDNA, DNA - RNA杂交)的非编码RNA (ncRNA)和一个包含逆转录酶(RT)结构域和拓扑异构酶样引物(Toprim)效应域的融合蛋白。Eco2 msDNA和RT-Toprim融合蛋白形成1:1的化学计量核蛋白复合物,进一步组装成具有独特三角形结构的三聚体(msDNA:RT-Toprim比例为3:3)。一个原聚体中msDNA的RNA部分紧密缠绕在相邻原聚体的RT结构域周围,介导这种自抑制组装的形成。激活后,Toprim效应域表现出RNA酶活性,降解RNA以阻止噬菌体复制。我们进一步揭示了噬菌体突变体逃避eco2介导的防御,在内切酶iv样蛋白DenB中发生突变,强调了DenB在触发该系统激活中的关键作用。总之,这些发现提供了对Retron-Eco2的关键结构和功能的见解,为利用其在生物技术和合成生物学中的应用潜力奠定了基础。
{"title":"Structural basis of the RNA-mediated Retron-Eco2 oligomerization.","authors":"Yanjing Wang, Chen Wang, Yongqi Yin, Yongqing Cui, Zhikang Dai, Chang Liu, Yanke Chen, Zeyuan Guan, Tingting Zou","doi":"10.1038/s41421-025-00823-y","DOIUrl":"10.1038/s41421-025-00823-y","url":null,"abstract":"<p><p>In the evolutionary arms race between bacteria and viruses, retrons have emerged as distinctive antiphage defense systems. Here, we elucidate the structure and function of Retron-Eco2, which comprises a non-coding RNA (ncRNA) that encodes multicopy single-stranded DNA (msDNA, a DNA‒RNA hybrid) and a fusion protein containing a reverse transcriptase (RT) domain and a topoisomerase-primase-like (Toprim) effector domain. The Eco2 msDNA and RT-Toprim fusion protein form a 1:1 stoichiometric nucleoprotein complex that further assembles into a trimer (msDNA:RT-Toprim ratio of 3:3) with a distinctive triangular configuration. The RNA portion of the msDNA in one protomer closely intertwines around the RT domain of an adjacent protomer, mediating the formation of this self-inhibitory assembly. Upon activation, the Toprim effector domain exhibits RNase activity, degrading RNA to arrest phage replication. We further reveal that phage mutants evading Eco2-mediated defense harbor mutations in the endonuclease IV-like protein DenB, underscoring DenB's critical role in triggering the activation of this system. Together, these findings provide key structural and functional insights into Retron-Eco2, laying the groundwork for harnessing its potential in biotechnology and synthetic biology applications.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"73"},"PeriodicalIF":12.5,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144944266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-29DOI: 10.1038/s41421-025-00828-7
Cheng Zhou, Shenbing Shan, Lei Wen, Da Liu, Changguo Shan, Xin Jin, Zhaoming Zhou, Hainan Li, Juan Li, Luyue Wang, Junguo Bu, Bin Li, Weishan Huang, Junhao Hu, Hongbo Guo, Wu Wei
Brain parenchymal metastases (BM) and leptomeningeal metastases (LM) represent distinct subtypes of central nervous system metastases (CNSm) from lung cancer, posing significant clinical challenges. The local immune landscape of LM remains elusive. Herein, we utilized single-cell RNA sequencing to build a cell atlas of LM, and systematically examine the immune profiling and cell heterogeneity between BM and LM. Our analysis reveals that BM has more CXCL9+ macrophages, CXCL13+CD4+ T cells and B cells than LM, exhibiting the presence of tertiary lymphoid (TLS) structures, which is associated with a favorable response to tyrosine kinase inhibitors (TKI). Conversely, a remarkably immunosuppressive tumor microenvironment (TME) is detected in LM, characterized by lymphocyte depletion and a concurrent enrichment of SPP1+ macrophages, compared to BM. Furthermore, we identified significant blood-brain barrier (BBB) cell discrepancies between BM and LM, and substantial phenotypic reprogramming of BBB cells in CNSm. This reprogramming encompassed alterations in transporter gene expression, extracellular matrix production and dysregulated cell-cell interactions, potentially contributing to the metastatic process. In summary, this study highlights the divergent cellular and molecular landscapes of BM vs LM, offering critical insights into potential therapeutic targets and informing the development of improved treatment strategies for non-small cell lung cancer patients with CSNm.
{"title":"Immunological and pathological characteristics of brain parenchymal and leptomeningeal metastases from non-small cell lung cancer.","authors":"Cheng Zhou, Shenbing Shan, Lei Wen, Da Liu, Changguo Shan, Xin Jin, Zhaoming Zhou, Hainan Li, Juan Li, Luyue Wang, Junguo Bu, Bin Li, Weishan Huang, Junhao Hu, Hongbo Guo, Wu Wei","doi":"10.1038/s41421-025-00828-7","DOIUrl":"10.1038/s41421-025-00828-7","url":null,"abstract":"<p><p>Brain parenchymal metastases (BM) and leptomeningeal metastases (LM) represent distinct subtypes of central nervous system metastases (CNSm) from lung cancer, posing significant clinical challenges. The local immune landscape of LM remains elusive. Herein, we utilized single-cell RNA sequencing to build a cell atlas of LM, and systematically examine the immune profiling and cell heterogeneity between BM and LM. Our analysis reveals that BM has more CXCL9<sup>+</sup> macrophages, CXCL13<sup>+</sup>CD4<sup>+</sup> T cells and B cells than LM, exhibiting the presence of tertiary lymphoid (TLS) structures, which is associated with a favorable response to tyrosine kinase inhibitors (TKI). Conversely, a remarkably immunosuppressive tumor microenvironment (TME) is detected in LM, characterized by lymphocyte depletion and a concurrent enrichment of SPP1<sup>+</sup> macrophages, compared to BM. Furthermore, we identified significant blood-brain barrier (BBB) cell discrepancies between BM and LM, and substantial phenotypic reprogramming of BBB cells in CNSm. This reprogramming encompassed alterations in transporter gene expression, extracellular matrix production and dysregulated cell-cell interactions, potentially contributing to the metastatic process. In summary, this study highlights the divergent cellular and molecular landscapes of BM vs LM, offering critical insights into potential therapeutic targets and informing the development of improved treatment strategies for non-small cell lung cancer patients with CSNm.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"72"},"PeriodicalIF":12.5,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144944222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-26DOI: 10.1038/s41421-025-00822-z
Jiao Li, Ding Ma, Chunxue Zhang, Xueling Zheng, Ruihan Hao, Bin Zuo, Fei Xiao, Yang Li, Yuhang Liu, Zhouyi Duan, Yao Xiong, Orion R Fan, Wenmin Zhu, Liming Dai, Bingjun Zhang, Yi Eve Sun, Xiaoling Zhang
Disuse-induced bone loss occurs in long-term bed-ridden patients and in astronauts during spaceflight. The underlying mechanisms are poorly understood. In a rodent model of disuse-induced bone loss (called hindlimb unloading (HU)), we observed that decreased numbers of leptin receptor (LepR) positive mesenchymal stem cells (MSCs) in adult bone marrow, contribute to bone loss. MicroRNA-337-3p (miR-337) was upregulated in MSCs upon HU and inhibited MSC proliferation by directly targeting IRS-1 to suppress the PI3kinase-Akt-mTOR pathway. Piezo1 was the upstream receptor for sensing mechanical stress and regulated miR-337 through the Hippo-YAP signaling pathway. Remarkably, the knockout of miR-337 significantly attenuated HU-induced, but not ovariectomy-induced, bone loss by increasing MSC proliferation and osteogenesis. Finally, the transplantation of miR-337-/- MSCs into wild-type HU mice was sufficient to mitigate bone loss. These findings reveal the cellular and molecular mechanisms underlying disuse-induced bone loss and highlight a feasible therapeutic strategy to prevent disuse- or microgravity-induced bone loss on Earth and during spaceflight.
{"title":"Targeting miR-337 mitigates disuse-induced bone loss.","authors":"Jiao Li, Ding Ma, Chunxue Zhang, Xueling Zheng, Ruihan Hao, Bin Zuo, Fei Xiao, Yang Li, Yuhang Liu, Zhouyi Duan, Yao Xiong, Orion R Fan, Wenmin Zhu, Liming Dai, Bingjun Zhang, Yi Eve Sun, Xiaoling Zhang","doi":"10.1038/s41421-025-00822-z","DOIUrl":"10.1038/s41421-025-00822-z","url":null,"abstract":"<p><p>Disuse-induced bone loss occurs in long-term bed-ridden patients and in astronauts during spaceflight. The underlying mechanisms are poorly understood. In a rodent model of disuse-induced bone loss (called hindlimb unloading (HU)), we observed that decreased numbers of leptin receptor (LepR) positive mesenchymal stem cells (MSCs) in adult bone marrow, contribute to bone loss. MicroRNA-337-3p (miR-337) was upregulated in MSCs upon HU and inhibited MSC proliferation by directly targeting IRS-1 to suppress the PI3kinase-Akt-mTOR pathway. Piezo1 was the upstream receptor for sensing mechanical stress and regulated miR-337 through the Hippo-YAP signaling pathway. Remarkably, the knockout of miR-337 significantly attenuated HU-induced, but not ovariectomy-induced, bone loss by increasing MSC proliferation and osteogenesis. Finally, the transplantation of miR-337<sup>-/-</sup> MSCs into wild-type HU mice was sufficient to mitigate bone loss. These findings reveal the cellular and molecular mechanisms underlying disuse-induced bone loss and highlight a feasible therapeutic strategy to prevent disuse- or microgravity-induced bone loss on Earth and during spaceflight.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"71"},"PeriodicalIF":12.5,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144944235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-19DOI: 10.1038/s41421-025-00820-1
Haozheng Li, Yuanming Zheng, Chunlei Yuan, Jiayi Wang, Xiaying Zhao, Ming Yang, Defei Xiong, Yenan Yang, Yunpeng Dai, Yiming Gao, Yuqi Wang, Lei Xue, Gang Wang
A hallmark of aging is chronic systemic inflammation, which is exacerbated by the hypersecretory aging phenotype known as the senescence-associated secretory phenotype (SASP). How the SASP is initiated to accelerate tissue inflammation and aging is an outstanding question in aging biology. Here, we showed that phosphorylation of the Mediator subunit MED15 at T603 is able to control the SASP and aging. Transforming growth factor-β selectively induces CDK1-mediated MED15 T603 phosphorylation to control SASP gene expression. The MED15 T603 dephosphorylated mutant (T603A) inhibits the SASP and cell senescence, whereas the T603 phosphorylation-mimicking mutant (T603D) has the opposite effect. Mechanistically, forkhead box protein A1 preferentially binds to unphosphorylated but not phosphorylated MED15 at T603 to suppress SASP gene expression. Notably, aging mice harboring dephosphorylated mutation in this phosphosite exhibit improved learning and memory through the attenuation of the SASP across tissues. Overall, our study indicates that MED15 T603 phosphorylation serves as a control switch for SASP production, which underlies tissue aging and cognitive decline and provides a novel target for age-related pathogenesis.
{"title":"A phosphorylation switch in the Mediator MED15 controls cellular senescence and cognitive decline.","authors":"Haozheng Li, Yuanming Zheng, Chunlei Yuan, Jiayi Wang, Xiaying Zhao, Ming Yang, Defei Xiong, Yenan Yang, Yunpeng Dai, Yiming Gao, Yuqi Wang, Lei Xue, Gang Wang","doi":"10.1038/s41421-025-00820-1","DOIUrl":"10.1038/s41421-025-00820-1","url":null,"abstract":"<p><p>A hallmark of aging is chronic systemic inflammation, which is exacerbated by the hypersecretory aging phenotype known as the senescence-associated secretory phenotype (SASP). How the SASP is initiated to accelerate tissue inflammation and aging is an outstanding question in aging biology. Here, we showed that phosphorylation of the Mediator subunit MED15 at T603 is able to control the SASP and aging. Transforming growth factor-β selectively induces CDK1-mediated MED15 T603 phosphorylation to control SASP gene expression. The MED15 T603 dephosphorylated mutant (T603A) inhibits the SASP and cell senescence, whereas the T603 phosphorylation-mimicking mutant (T603D) has the opposite effect. Mechanistically, forkhead box protein A1 preferentially binds to unphosphorylated but not phosphorylated MED15 at T603 to suppress SASP gene expression. Notably, aging mice harboring dephosphorylated mutation in this phosphosite exhibit improved learning and memory through the attenuation of the SASP across tissues. Overall, our study indicates that MED15 T603 phosphorylation serves as a control switch for SASP production, which underlies tissue aging and cognitive decline and provides a novel target for age-related pathogenesis.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"69"},"PeriodicalIF":12.5,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144871675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The liver is a major target organ for breast cancer metastasis, while the regulatory mechanism of liver colonization by breast cancer remains largely unclear. Neutrophils are known to play important roles in metastatic colonization of cancer cells by the formation of neutrophil extracellular traps (NETs). Here we show the role and mechanism of a subpopulation of Kupffer cells (KCs), the liver resident macrophages, in mediating tumoral induction of NETs and liver metastasis. NETs are activated more abundantly in liver metastases of breast cancer, as compared to metastases to other organs and primary tumors. Liver-tropic tumor cells induce CD62L-expressing KCs by a secretory protein DMBT1, and CD62L+ KCs activate neutrophils for NETosis via the chemokine CCL8. Inhibition of CCL8 or its receptor on neutrophils, CCR1, impairs NETosis and metastasis. In addition, we identified a KC membrane protein MUC1 that binds to DMBT1 and subsequently activates NF-κB signaling in KCs, leading to CCL8 and CD62L expression. KCs with MUC1 inhibition effectively suppress liver metastasis. Furthermore, a DMBT1 neutralizing antibody was developed with the promise to inhibit tumor-KC interaction and treat metastatic cancer. In conclusion, our work reveals a KC subset that accounts for the liver tropism of breast cancer cells and NETs, and provides potential strategies in metastasis treatment.
{"title":"Breast cancer induces CD62L<sup>+</sup> Kupffer cells via DMBT1 to promote neutrophil extracellular trap formation and liver metastasis.","authors":"Pu Tian, Qiuyao Wu, Dasa He, Wenjing Zhao, Lichao Luo, Zhenchang Jia, Wenqian Luo, Xianzhe Lv, Yanan Liu, Yuan Wang, Qian Wang, Peiyuan Zhang, Yajun Liang, Qifeng Yang, Guohong Hu","doi":"10.1038/s41421-025-00819-8","DOIUrl":"10.1038/s41421-025-00819-8","url":null,"abstract":"<p><p>The liver is a major target organ for breast cancer metastasis, while the regulatory mechanism of liver colonization by breast cancer remains largely unclear. Neutrophils are known to play important roles in metastatic colonization of cancer cells by the formation of neutrophil extracellular traps (NETs). Here we show the role and mechanism of a subpopulation of Kupffer cells (KCs), the liver resident macrophages, in mediating tumoral induction of NETs and liver metastasis. NETs are activated more abundantly in liver metastases of breast cancer, as compared to metastases to other organs and primary tumors. Liver-tropic tumor cells induce CD62L-expressing KCs by a secretory protein DMBT1, and CD62L<sup>+</sup> KCs activate neutrophils for NETosis via the chemokine CCL8. Inhibition of CCL8 or its receptor on neutrophils, CCR1, impairs NETosis and metastasis. In addition, we identified a KC membrane protein MUC1 that binds to DMBT1 and subsequently activates NF-κB signaling in KCs, leading to CCL8 and CD62L expression. KCs with MUC1 inhibition effectively suppress liver metastasis. Furthermore, a DMBT1 neutralizing antibody was developed with the promise to inhibit tumor-KC interaction and treat metastatic cancer. In conclusion, our work reveals a KC subset that accounts for the liver tropism of breast cancer cells and NETs, and provides potential strategies in metastasis treatment.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"68"},"PeriodicalIF":12.5,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144834086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-05DOI: 10.1038/s41421-025-00817-w
Sangsang Li, Yifan Zhang, Maoxing Luo, Weiwei Zhou, Yitong Chen, Dinglan Wu, Qiang Wei, Yan Chang, Hailiang Hu
Cancer cells can be induced to dormancy initially by specific cancer therapies, but can be reactivated for subsequent relapse as therapy-resistant cancer cells. Although the treatment-induced dormancy-to-reactivation switch is an important process in tumour spread and recurrence, little is known about the underlying molecular mechanisms, particularly the metabolic underpinnings. In this study, we demonstrated that the tryptophan catabolism-related tryptophan 2,3-dioxygenase (TDO2) -kynurenine (Kyn) -aryl hydrocarbon receptor (AhR) signalling axis was responsible for both sustaining the survival of dormant prostate cancer cells induced by androgen deprivation therapy (ADT) and promoting the reactivation of dormant cells and their recurrent outgrowth, which facilitated the development of therapeutic resistance by allowing the dormancy-to-reactivation switch. Mechanistically, we found that ADT upregulated the expression of TDO2 to produce Kyn, which activated AhR and maintained the survival of ADT-induced dormant cells. Interestingly, the switch of transcription factors from the androgen receptor (AR) to the glucocorticoid receptor (GR) modulated the persistent expression of TDO2 and promoted the reactivation of dormant cells through the same TDO2-Kyn-AhR signalling axis. Additionally, tumour recurrence following ADT was delayed by pharmacological suppression of TDO2-Kyn-AhR signalling with a TDO2 inhibitor or an AhR inhibitor. In summary, we describe a signalling circuit mediated by tryptophan metabolism for regulating tumour cell dormancy and recurrence and propose TDO2 as a new target for the treatment of androgen-sensitive prostate cancer patients in combination with ADT.
通过特定的癌症治疗,癌细胞可以被诱导到最初的休眠状态,但在随后的复发中,癌细胞可以作为治疗抵抗性的癌细胞被重新激活。尽管治疗诱导的休眠-再激活开关是肿瘤扩散和复发的重要过程,但对其潜在的分子机制,特别是代谢基础知之甚少。在这项研究中,我们证明了色氨酸分解代谢相关的色氨酸2,3-双加氧酶(TDO2) -犬尿氨酸(Kyn) -芳烃受体(AhR)信号轴既负责维持雄激素剥夺治疗(ADT)诱导的休眠前列腺癌细胞的存活,又促进休眠细胞的再激活及其复发生长,从而通过允许休眠-再激活开关促进治疗抗性的发展。在机制上,我们发现ADT上调TDO2的表达,产生Kyn,激活AhR,维持ADT诱导的休眠细胞的存活。有趣的是,从雄激素受体(AR)到糖皮质激素受体(GR)的转录因子转换调节了TDO2的持续表达,并通过相同的TDO2- kyn - ahr信号轴促进休眠细胞的再激活。此外,ADT后的肿瘤复发可以通过TDO2抑制剂或AhR抑制剂抑制TDO2- kyn -AhR信号传导而延迟。综上所述,我们描述了一个由色氨酸代谢介导的信号通路,调节肿瘤细胞的休眠和复发,并提出TDO2作为雄激素敏感前列腺癌患者联合ADT治疗的新靶点。
{"title":"AR to GR switch modulates differential TDO2-Kyn-AhR signalling to promote the survival and recurrence of treatment-induced dormant cells in prostate cancer.","authors":"Sangsang Li, Yifan Zhang, Maoxing Luo, Weiwei Zhou, Yitong Chen, Dinglan Wu, Qiang Wei, Yan Chang, Hailiang Hu","doi":"10.1038/s41421-025-00817-w","DOIUrl":"10.1038/s41421-025-00817-w","url":null,"abstract":"<p><p>Cancer cells can be induced to dormancy initially by specific cancer therapies, but can be reactivated for subsequent relapse as therapy-resistant cancer cells. Although the treatment-induced dormancy-to-reactivation switch is an important process in tumour spread and recurrence, little is known about the underlying molecular mechanisms, particularly the metabolic underpinnings. In this study, we demonstrated that the tryptophan catabolism-related tryptophan 2,3-dioxygenase (TDO2) -kynurenine (Kyn) -aryl hydrocarbon receptor (AhR) signalling axis was responsible for both sustaining the survival of dormant prostate cancer cells induced by androgen deprivation therapy (ADT) and promoting the reactivation of dormant cells and their recurrent outgrowth, which facilitated the development of therapeutic resistance by allowing the dormancy-to-reactivation switch. Mechanistically, we found that ADT upregulated the expression of TDO2 to produce Kyn, which activated AhR and maintained the survival of ADT-induced dormant cells. Interestingly, the switch of transcription factors from the androgen receptor (AR) to the glucocorticoid receptor (GR) modulated the persistent expression of TDO2 and promoted the reactivation of dormant cells through the same TDO2-Kyn-AhR signalling axis. Additionally, tumour recurrence following ADT was delayed by pharmacological suppression of TDO2-Kyn-AhR signalling with a TDO2 inhibitor or an AhR inhibitor. In summary, we describe a signalling circuit mediated by tryptophan metabolism for regulating tumour cell dormancy and recurrence and propose TDO2 as a new target for the treatment of androgen-sensitive prostate cancer patients in combination with ADT.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"67"},"PeriodicalIF":12.5,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144783602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}