Pub Date : 2024-08-08DOI: 10.1038/s41421-024-00717-5
Xiaopan Gao, Kaixiang Zhu, Lin Wang, Kun Shang, Lei Hua, Bo Qin, Hongtao Zhu, Wei Ding, Sheng Cui
{"title":"Structural basis for the interaction between human coronavirus HKU1 spike receptor binding domain and its receptor TMPRSS2.","authors":"Xiaopan Gao, Kaixiang Zhu, Lin Wang, Kun Shang, Lei Hua, Bo Qin, Hongtao Zhu, Wei Ding, Sheng Cui","doi":"10.1038/s41421-024-00717-5","DOIUrl":"10.1038/s41421-024-00717-5","url":null,"abstract":"","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"84"},"PeriodicalIF":13.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The glymphatic-lymphatic system is increasingly recognized as fundamental for the homeostasis of the brain milieu since it defines cerebral spinal fluid flow in the brain parenchyma and eliminates metabolic waste. Animal and human studies have uncovered several important physiological factors regulating the glymphatic system including sleep, aquaporin-4, and hemodynamic factors. Yet, our understanding of the modulation of the glymphatic system is limited, which has hindered the development of glymphatic-based treatment for aging and neurodegenerative disorders. Here, we present the evidence from fluorescence tracing, two-photon recording, and dynamic contrast-enhanced magnetic resonance imaging analyses that 40 Hz light flickering enhanced glymphatic influx and efflux independently of anesthesia and sleep, an effect attributed to increased astrocytic aquaporin-4 polarization and enhanced vasomotion. Adenosine-A2A receptor (A2AR) signaling emerged as the neurochemical underpinning of 40 Hz flickering-induced enhancement of glymphatic flow, based on increased cerebrofluid adenosine levels, the abolishment of enhanced glymphatic flow by pharmacological or genetic inactivation of equilibrative nucleotide transporters-2 or of A2AR, and by the physical and functional A2AR-aquaporin-4 interaction in astrocytes. These findings establish 40 Hz light flickering as a novel non-invasive strategy of enhanced glymphatic flow, with translational potential to relieve brain disorders.
{"title":"40 Hz light flickering facilitates the glymphatic flow via adenosine signaling in mice.","authors":"Xiaoting Sun, Liliana Dias, Chenlei Peng, Ziyi Zhang, Haoting Ge, Zejun Wang, Jiayi Jin, Manli Jia, Tao Xu, Wei Guo, Wu Zheng, Yan He, Youru Wu, Xiaohong Cai, Paula Agostinho, Jia Qu, Rodrigo A Cunha, Xuzhao Zhou, Ruiliang Bai, Jiang-Fan Chen","doi":"10.1038/s41421-024-00701-z","DOIUrl":"10.1038/s41421-024-00701-z","url":null,"abstract":"<p><p>The glymphatic-lymphatic system is increasingly recognized as fundamental for the homeostasis of the brain milieu since it defines cerebral spinal fluid flow in the brain parenchyma and eliminates metabolic waste. Animal and human studies have uncovered several important physiological factors regulating the glymphatic system including sleep, aquaporin-4, and hemodynamic factors. Yet, our understanding of the modulation of the glymphatic system is limited, which has hindered the development of glymphatic-based treatment for aging and neurodegenerative disorders. Here, we present the evidence from fluorescence tracing, two-photon recording, and dynamic contrast-enhanced magnetic resonance imaging analyses that 40 Hz light flickering enhanced glymphatic influx and efflux independently of anesthesia and sleep, an effect attributed to increased astrocytic aquaporin-4 polarization and enhanced vasomotion. Adenosine-A<sub>2A</sub> receptor (A<sub>2A</sub>R) signaling emerged as the neurochemical underpinning of 40 Hz flickering-induced enhancement of glymphatic flow, based on increased cerebrofluid adenosine levels, the abolishment of enhanced glymphatic flow by pharmacological or genetic inactivation of equilibrative nucleotide transporters-2 or of A<sub>2A</sub>R, and by the physical and functional A<sub>2A</sub>R-aquaporin-4 interaction in astrocytes. These findings establish 40 Hz light flickering as a novel non-invasive strategy of enhanced glymphatic flow, with translational potential to relieve brain disorders.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"81"},"PeriodicalIF":13.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endothelins and their receptors, ETA and ETB, play vital roles in maintaining vascular homeostasis. Therapeutically targeting endothelin receptors, particularly through ETA antagonists, has shown efficacy in treating pulmonary arterial hypertension (PAH) and other cardiovascular- and renal-related diseases. Here we present cryo-electron microscopy structures of ETA in complex with two PAH drugs, macitentan and ambrisentan, along with zibotentan, a selective ETA antagonist, respectively. Notably, a specialized anti-ETA antibody facilitated the structural elucidation. These structures, together with the active-state structures of ET-1-bound ETA and ETB, and the agonist BQ3020-bound ETB, in complex with Gq, unveil the molecular basis of agonist/antagonist binding modes in endothelin receptors. Key residues that confer antagonist selectivity to endothelin receptors were identified along with the activation mechanism of ETA. Furthermore, our results suggest that ECL2 in ETA can serve as an epitope for antibody-mediated receptor antagonism. Collectively, these insights establish a robust theoretical framework for the rational design of small-molecule drugs and antibodies with selective activity against endothelin receptors.
内皮素及其受体 ETA 和 ETB 在维持血管稳态方面发挥着重要作用。以内皮素受体为治疗靶点,特别是通过 ETA 拮抗剂,已显示出治疗肺动脉高压(PAH)和其他心血管及肾脏相关疾病的疗效。在这里,我们展示了 ETA 分别与两种 PAH 药物(马基坦坦和安利生坦)以及选择性 ETA 拮抗剂齐博坦复合物的冷冻电镜结构。值得注意的是,专门的抗 ETA 抗体促进了结构的阐明。这些结构,连同 ET-1 结合 ETA 和 ETB 的活性状态结构,以及激动剂 BQ3020 结合 ETB 与 Gq 复合物的结构,揭示了内皮素受体激动剂/拮抗剂结合模式的分子基础。我们确定了赋予内皮素受体拮抗剂选择性的关键残基以及 ETA 的激活机制。此外,我们的研究结果表明,ETA 中的 ECL2 可作为抗体介导的受体拮抗作用的表位。总之,这些见解为合理设计对内皮素受体具有选择性活性的小分子药物和抗体建立了坚实的理论框架。
{"title":"Structural basis of antagonist selectivity in endothelin receptors.","authors":"Junyi Hou, Shenhui Liu, Xiaodan Zhang, Guowei Tu, Lijie Wu, Yijie Zhang, Hao Yang, Xiangcheng Li, Junlin Liu, Longquan Jiang, Qiwen Tan, Fang Bai, Zhijie Liu, Changhong Miao, Tian Hua, Zhe Luo","doi":"10.1038/s41421-024-00705-9","DOIUrl":"10.1038/s41421-024-00705-9","url":null,"abstract":"<p><p>Endothelins and their receptors, ET<sub>A</sub> and ET<sub>B</sub>, play vital roles in maintaining vascular homeostasis. Therapeutically targeting endothelin receptors, particularly through ET<sub>A</sub> antagonists, has shown efficacy in treating pulmonary arterial hypertension (PAH) and other cardiovascular- and renal-related diseases. Here we present cryo-electron microscopy structures of ET<sub>A</sub> in complex with two PAH drugs, macitentan and ambrisentan, along with zibotentan, a selective ET<sub>A</sub> antagonist, respectively. Notably, a specialized anti-ET<sub>A</sub> antibody facilitated the structural elucidation. These structures, together with the active-state structures of ET-1-bound ET<sub>A</sub> and ET<sub>B</sub>, and the agonist BQ3020-bound ET<sub>B</sub>, in complex with G<sub>q</sub>, unveil the molecular basis of agonist/antagonist binding modes in endothelin receptors. Key residues that confer antagonist selectivity to endothelin receptors were identified along with the activation mechanism of ET<sub>A</sub>. Furthermore, our results suggest that ECL2 in ET<sub>A</sub> can serve as an epitope for antibody-mediated receptor antagonism. Collectively, these insights establish a robust theoretical framework for the rational design of small-molecule drugs and antibodies with selective activity against endothelin receptors.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"79"},"PeriodicalIF":13.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanoma is one of the most prevalent skin cancers, with high metastatic rates and poor prognosis. Understanding its molecular pathogenesis is crucial for improving its diagnosis and treatment. Integrated analysis of multi-omics data from 207 treatment-naïve melanomas (primary-cutaneous-melanomas (CM, n = 28), primary-acral-melanomas (AM, n = 81), primary-mucosal-melanomas (MM, n = 28), metastatic-melanomas (n = 27), and nevi (n = 43)) provides insights into melanoma biology. Multivariate analysis reveals that PRKDC amplification is a prognostic molecule for melanomas. Further proteogenomic analysis combined with functional experiments reveals that the cis-effect of PRKDC amplification may lead to tumor proliferation through the activation of DNA repair and folate metabolism pathways. Proteome-based stratification of primary melanomas defines three prognosis-related subtypes, namely, the ECM subtype, angiogenesis subtype (with a high metastasis rate), and cell proliferation subtype, which provides an essential framework for the utilization of specific targeted therapies for particular melanoma subtypes. The immune classification identifies three immune subtypes. Further analysis combined with an independent anti-PD-1 treatment cohort reveals that upregulation of the MAPK7-NFKB signaling pathway may facilitate T-cell recruitment and increase the sensitivity of patients to immunotherapy. In contrast, PRKDC may reduce the sensitivity of melanoma patients to immunotherapy by promoting DNA repair in melanoma cells. These results emphasize the clinical value of multi-omics data and have the potential to improve the understanding of melanoma treatment.
黑色素瘤是最常见的皮肤癌之一,转移率高,预后差。了解其分子发病机制对于改善其诊断和治疗至关重要。对207个治疗无效的黑色素瘤(原发性皮肤黑色素瘤(CM,n = 28)、原发性骶骨黑色素瘤(AM,n = 81)、原发性黏膜黑色素瘤(MM,n = 28)、转移性黑色素瘤(n = 27)和痣(n = 43))的多组学数据进行综合分析,有助于深入了解黑色素瘤的生物学特性。多变量分析显示,PRKDC扩增是黑色素瘤的预后分子。进一步的蛋白质组分析结合功能实验发现,PRKDC扩增的顺式效应可能会通过激活DNA修复和叶酸代谢途径导致肿瘤增殖。基于蛋白质组的原发性黑色素瘤分层定义了三种与预后相关的亚型,即ECM亚型、血管生成亚型(转移率高)和细胞增殖亚型,这为针对特定黑色素瘤亚型使用特定靶向疗法提供了重要框架。免疫分类确定了三种免疫亚型。结合独立的抗 PD-1 治疗队列进行的进一步分析表明,MAPK7-NFKB 信号通路的上调可能会促进 T 细胞的招募,并增加患者对免疫疗法的敏感性。与此相反,PRKDC 可通过促进黑色素瘤细胞的 DNA 修复,降低黑色素瘤患者对免疫疗法的敏感性。这些结果强调了多组学数据的临床价值,并有可能提高人们对黑色素瘤治疗的认识。
{"title":"Proteogenomic insights into the biology and treatment of pan-melanoma.","authors":"Hang Xiang, Rongkui Luo, Yunzhi Wang, Bing Yang, Sha Xu, Wen Huang, Shaoshuai Tang, Rundong Fang, Lingli Chen, Na Zhu, Zixiang Yu, Sujie Akesu, Chuanyuan Wei, Chen Xu, Yuhong Zhou, Jianying Gu, Jianyuan Zhao, Yingyong Hou, Chen Ding","doi":"10.1038/s41421-024-00688-7","DOIUrl":"10.1038/s41421-024-00688-7","url":null,"abstract":"<p><p>Melanoma is one of the most prevalent skin cancers, with high metastatic rates and poor prognosis. Understanding its molecular pathogenesis is crucial for improving its diagnosis and treatment. Integrated analysis of multi-omics data from 207 treatment-naïve melanomas (primary-cutaneous-melanomas (CM, n = 28), primary-acral-melanomas (AM, n = 81), primary-mucosal-melanomas (MM, n = 28), metastatic-melanomas (n = 27), and nevi (n = 43)) provides insights into melanoma biology. Multivariate analysis reveals that PRKDC amplification is a prognostic molecule for melanomas. Further proteogenomic analysis combined with functional experiments reveals that the cis-effect of PRKDC amplification may lead to tumor proliferation through the activation of DNA repair and folate metabolism pathways. Proteome-based stratification of primary melanomas defines three prognosis-related subtypes, namely, the ECM subtype, angiogenesis subtype (with a high metastasis rate), and cell proliferation subtype, which provides an essential framework for the utilization of specific targeted therapies for particular melanoma subtypes. The immune classification identifies three immune subtypes. Further analysis combined with an independent anti-PD-1 treatment cohort reveals that upregulation of the MAPK7-NFKB signaling pathway may facilitate T-cell recruitment and increase the sensitivity of patients to immunotherapy. In contrast, PRKDC may reduce the sensitivity of melanoma patients to immunotherapy by promoting DNA repair in melanoma cells. These results emphasize the clinical value of multi-omics data and have the potential to improve the understanding of melanoma treatment.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"78"},"PeriodicalIF":13.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1038/s41421-024-00696-7
Yundong Peng, Jingjing Du, Rui Li, Stefan Günther, Nina Wettschureck, Stefan Offermanns, Yan Wang, Andre Schneider, Thomas Braun
Multiple processes control quiescence of muscle stem cells (MuSCs), which is instrumental to guarantee long-term replenishment of the stem cell pool. Here, we describe that the G-proteins G12-G13 integrate signals from different G-protein-coupled receptors (GPCRs) to control MuSC quiescence via activation of RhoA. Comprehensive screening of GPCR ligands identified two MuSC-niche-derived factors, endothelin-3 (ET-3) and neurotensin (NT), which activate G12-G13 signaling in MuSCs. Stimulation with ET-3 or NT prevented MuSC activation, whereas pharmacological inhibition of ET-3 or NT attenuated MuSC quiescence. Inactivation of Gna12-Gna13 or Rhoa but not of Gnaq-Gna11 completely abrogated MuSC quiescence, which depleted the MuSC pool and was associated with accelerated sarcopenia during aging. Expression of constitutively active RhoA prevented exit from quiescence in Gna12-Gna13 mutant MuSCs, inhibiting cell cycle entry and differentiation via Rock and formins without affecting Rac1-dependent MuSC projections, a hallmark of quiescent MuSCs. The study uncovers a critical role of G12-G13 and RhoA signaling for active regulation of MuSC quiescence.
{"title":"RhoA-mediated G<sub>12</sub>-G<sub>13</sub> signaling maintains muscle stem cell quiescence and prevents stem cell loss.","authors":"Yundong Peng, Jingjing Du, Rui Li, Stefan Günther, Nina Wettschureck, Stefan Offermanns, Yan Wang, Andre Schneider, Thomas Braun","doi":"10.1038/s41421-024-00696-7","DOIUrl":"10.1038/s41421-024-00696-7","url":null,"abstract":"<p><p>Multiple processes control quiescence of muscle stem cells (MuSCs), which is instrumental to guarantee long-term replenishment of the stem cell pool. Here, we describe that the G-proteins G<sub>12</sub>-G<sub>13</sub> integrate signals from different G-protein-coupled receptors (GPCRs) to control MuSC quiescence via activation of RhoA. Comprehensive screening of GPCR ligands identified two MuSC-niche-derived factors, endothelin-3 (ET-3) and neurotensin (NT), which activate G<sub>12</sub>-G<sub>13</sub> signaling in MuSCs. Stimulation with ET-3 or NT prevented MuSC activation, whereas pharmacological inhibition of ET-3 or NT attenuated MuSC quiescence. Inactivation of Gna12-Gna13 or Rhoa but not of Gnaq-Gna11 completely abrogated MuSC quiescence, which depleted the MuSC pool and was associated with accelerated sarcopenia during aging. Expression of constitutively active RhoA prevented exit from quiescence in Gna12-Gna13 mutant MuSCs, inhibiting cell cycle entry and differentiation via Rock and formins without affecting Rac1-dependent MuSC projections, a hallmark of quiescent MuSCs. The study uncovers a critical role of G<sub>12</sub>-G<sub>13</sub> and RhoA signaling for active regulation of MuSC quiescence.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"76"},"PeriodicalIF":13.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}