Pub Date : 2024-02-26DOI: 10.1038/s41421-024-00660-5
Hanwen Zhu, Patricia Hixson, Wen Ma, Ji Sun
{"title":"Author Correction: Pharmacology of LRRK2 with type I and II kinase inhibitors revealed by cryo-EM.","authors":"Hanwen Zhu, Patricia Hixson, Wen Ma, Ji Sun","doi":"10.1038/s41421-024-00660-5","DOIUrl":"10.1038/s41421-024-00660-5","url":null,"abstract":"","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"23"},"PeriodicalIF":33.5,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human cerebellum encompasses numerous neurons, exhibiting a distinct developmental paradigm from cerebrum. Here we conducted scRNA-seq, scATAC-seq and spatial transcriptomic analyses of fetal samples from gestational week (GW) 13 to 18 to explore the emergence of cellular diversity and developmental programs in the developing human cerebellum. We identified transitory granule cell progenitors that are conserved across species. Special patterns in both granule cells and Purkinje cells were dissected multidimensionally. Species-specific gene expression patterns of cerebellar lobes were characterized and we found that PARM1 exhibited inconsistent distribution in human and mouse granule cells. A novel cluster of potential neuroepithelium at the rhombic lip was identified. We also resolved various subtypes of Purkinje cells and unipolar brush cells and revealed gene regulatory networks controlling their diversification. Therefore, our study offers a valuable multi-omics landscape of human fetal cerebellum and advances our understanding of development and spatial organization of human cerebellum.
{"title":"Single-cell multi-omics analysis of lineage development and spatial organization in the human fetal cerebellum.","authors":"Fuqiang Yang, Ziqi Zhao, Dan Zhang, Yu Xiong, Xinran Dong, Yuchen Wang, Min Yang, Taotao Pan, Chuanyu Liu, Kaiyi Liu, Yifeng Lin, Yongjie Liu, Qiang Tu, Yashan Dang, Mingyang Xia, Da Mi, Wenhao Zhou, Zhiheng Xu","doi":"10.1038/s41421-024-00656-1","DOIUrl":"10.1038/s41421-024-00656-1","url":null,"abstract":"<p><p>Human cerebellum encompasses numerous neurons, exhibiting a distinct developmental paradigm from cerebrum. Here we conducted scRNA-seq, scATAC-seq and spatial transcriptomic analyses of fetal samples from gestational week (GW) 13 to 18 to explore the emergence of cellular diversity and developmental programs in the developing human cerebellum. We identified transitory granule cell progenitors that are conserved across species. Special patterns in both granule cells and Purkinje cells were dissected multidimensionally. Species-specific gene expression patterns of cerebellar lobes were characterized and we found that PARM1 exhibited inconsistent distribution in human and mouse granule cells. A novel cluster of potential neuroepithelium at the rhombic lip was identified. We also resolved various subtypes of Purkinje cells and unipolar brush cells and revealed gene regulatory networks controlling their diversification. Therefore, our study offers a valuable multi-omics landscape of human fetal cerebellum and advances our understanding of development and spatial organization of human cerebellum.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"22"},"PeriodicalIF":33.5,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adenine base editors (ABEs) and cytosine base editors (CBEs) enable the single nucleotide editing of targeted DNA sites avoiding generation of double strand breaks, however, the genomic features that influence the outcomes of base editing in vivo still remain to be characterized. High-throughput datasets from lentiviral integrated libraries were used to investigate the sequence features affecting base editing outcomes, but the effects of endogenous factors beyond the DNA sequences are still largely unknown. Here the base editing outcomes of ABE and CBE were evaluated in mammalian cells for 5012 endogenous genomic sites and 11,868 genome-integrated target sequences, with 4654 genomic sites sharing the same target sequences. The comparative analyses revealed that the editing outcomes of ABE and CBE at endogenous sites were substantially different from those obtained using genome-integrated sequences. We found that the base editing efficiency at endogenous target sites of both ABE and CBE was influenced by endogenous factors, including epigenetic modifications and transcriptional activity. A deep-learning algorithm referred as BE_Endo, was developed based on the endogenous factors and sequence information from our genomic datasets, and it yielded unprecedented accuracy in predicting the base editing outcomes. These findings along with the developed computational algorithms may facilitate future application of BEs for scientific research and clinical gene therapy.
{"title":"Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes.","authors":"Tanglong Yuan, Leilei Wu, Shiyan Li, Jitan Zheng, Nana Li, Xiao Xiao, Haihang Zhang, Tianyi Fei, Long Xie, Zhenrui Zuo, Di Li, Pinzheng Huang, Hu Feng, Yaqi Cao, Nana Yan, Xinming Wei, Lei Shi, Yongsen Sun, Wu Wei, Yidi Sun, Erwei Zuo","doi":"10.1038/s41421-023-00624-1","DOIUrl":"10.1038/s41421-023-00624-1","url":null,"abstract":"<p><p>Adenine base editors (ABEs) and cytosine base editors (CBEs) enable the single nucleotide editing of targeted DNA sites avoiding generation of double strand breaks, however, the genomic features that influence the outcomes of base editing in vivo still remain to be characterized. High-throughput datasets from lentiviral integrated libraries were used to investigate the sequence features affecting base editing outcomes, but the effects of endogenous factors beyond the DNA sequences are still largely unknown. Here the base editing outcomes of ABE and CBE were evaluated in mammalian cells for 5012 endogenous genomic sites and 11,868 genome-integrated target sequences, with 4654 genomic sites sharing the same target sequences. The comparative analyses revealed that the editing outcomes of ABE and CBE at endogenous sites were substantially different from those obtained using genome-integrated sequences. We found that the base editing efficiency at endogenous target sites of both ABE and CBE was influenced by endogenous factors, including epigenetic modifications and transcriptional activity. A deep-learning algorithm referred as BE_Endo, was developed based on the endogenous factors and sequence information from our genomic datasets, and it yielded unprecedented accuracy in predicting the base editing outcomes. These findings along with the developed computational algorithms may facilitate future application of BEs for scientific research and clinical gene therapy.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"20"},"PeriodicalIF":33.5,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural insights into cholesterol transport and hydrolase activity of a putative human RNA transport protein SIDT1.","authors":"Wenxia Liu, Mengyuan Tang, Jiening Wang, Fangfang Wang, Gaojie Song, Xiaokang Zhang, Shan Wu, Heng Ru","doi":"10.1038/s41421-024-00647-2","DOIUrl":"10.1038/s41421-024-00647-2","url":null,"abstract":"","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"21"},"PeriodicalIF":33.5,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1038/s41421-023-00636-x
Ya-Nan Qiao, Lei Li, Song-Hua Hu, Yuan-Xin Yang, Zhen-Zhen Ma, Lin Huang, Yan-Peng An, Yi-Yuan Yuan, Yan Lin, Wei Xu, Yao Li, Peng-Cheng Lin, Jing Cao, Jian-Yuan Zhao, Shi-Min Zhao
Ketogenic diet (KD) alleviates refractory epilepsy and reduces seizures in children. However, the metabolic/cell biologic mechanisms by which the KD exerts its antiepileptic efficacy remain elusive. Herein, we report that KD-produced β-hydroxybutyric acid (BHB) augments brain gamma-aminobutyric acid (GABA) and the GABA/glutamate ratio to inhibit epilepsy. The KD ameliorated pentetrazol-induced epilepsy in mice. Mechanistically, KD-produced BHB, but not other ketone bodies, inhibited HDAC1/HDAC2, increased H3K27 acetylation, and transcriptionally upregulated SIRT4 and glutamate decarboxylase 1 (GAD1). BHB-induced SIRT4 de-carbamylated and inactivated glutamate dehydrogenase to preserve glutamate for GABA synthesis, and GAD1 upregulation increased mouse brain GABA/glutamate ratio to inhibit neuron excitation. BHB administration in mice inhibited epilepsy induced by pentetrazol. BHB-mediated relief of epilepsy required high GABA level and GABA/glutamate ratio. These results identified BHB as the major antiepileptic metabolite of the KD and suggested that BHB may serve as an alternative and less toxic antiepileptic agent than KD.
{"title":"Ketogenic diet-produced β-hydroxybutyric acid accumulates brain GABA and increases GABA/glutamate ratio to inhibit epilepsy.","authors":"Ya-Nan Qiao, Lei Li, Song-Hua Hu, Yuan-Xin Yang, Zhen-Zhen Ma, Lin Huang, Yan-Peng An, Yi-Yuan Yuan, Yan Lin, Wei Xu, Yao Li, Peng-Cheng Lin, Jing Cao, Jian-Yuan Zhao, Shi-Min Zhao","doi":"10.1038/s41421-023-00636-x","DOIUrl":"10.1038/s41421-023-00636-x","url":null,"abstract":"<p><p>Ketogenic diet (KD) alleviates refractory epilepsy and reduces seizures in children. However, the metabolic/cell biologic mechanisms by which the KD exerts its antiepileptic efficacy remain elusive. Herein, we report that KD-produced β-hydroxybutyric acid (BHB) augments brain gamma-aminobutyric acid (GABA) and the GABA/glutamate ratio to inhibit epilepsy. The KD ameliorated pentetrazol-induced epilepsy in mice. Mechanistically, KD-produced BHB, but not other ketone bodies, inhibited HDAC1/HDAC2, increased H3K27 acetylation, and transcriptionally upregulated SIRT4 and glutamate decarboxylase 1 (GAD1). BHB-induced SIRT4 de-carbamylated and inactivated glutamate dehydrogenase to preserve glutamate for GABA synthesis, and GAD1 upregulation increased mouse brain GABA/glutamate ratio to inhibit neuron excitation. BHB administration in mice inhibited epilepsy induced by pentetrazol. BHB-mediated relief of epilepsy required high GABA level and GABA/glutamate ratio. These results identified BHB as the major antiepileptic metabolite of the KD and suggested that BHB may serve as an alternative and less toxic antiepileptic agent than KD.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"17"},"PeriodicalIF":33.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1038/s41421-024-00649-0
Zhaotong Cong, Fenghui Zhao, Yang Li, Gan Luo, Yiting Mai, Xianyue Chen, Yanyan Chen, Shi Lin, Xiaoqing Cai, Qingtong Zhou, Dehua Yang, Ming-Wei Wang
Class B1 G protein-coupled receptors (GPCRs) are important regulators of many physiological functions such as glucose homeostasis, which is mainly mediated by three peptide hormones, i.e., glucagon-like peptide-1 (GLP-1), glucagon (GCG), and glucose-dependent insulinotropic polypeptide (GIP). They trigger a cascade of signaling events leading to the formation of an active agonist-receptor-G protein complex. However, intracellular signal transducers can also activate the receptor independent of extracellular stimuli, suggesting an intrinsic role of G proteins in this process. Here, we report cryo-electron microscopy structures of the human GLP-1 receptor (GLP-1R), GCG receptor (GCGR), and GIP receptor (GIPR) in complex with Gs proteins without the presence of cognate ligands. These ligand-free complexes share a similar intracellular architecture to those bound by endogenous peptides, in which, the Gs protein alone directly opens the intracellular binding cavity and rewires the extracellular orthosteric pocket to stabilize the receptor in a state unseen before. While the peptide-binding site is partially occupied by the inward folded transmembrane helix 6 (TM6)-extracellular loop 3 (ECL3) juncture of GIPR or a segment of GCGR ECL2, the extracellular portion of GLP-1R adopts a conformation close to the active state. Our findings offer valuable insights into the distinct activation mechanisms of these three important receptors. It is possible that in the absence of a ligand, the intracellular half of transmembrane domain is mobilized with the help of Gs protein, which in turn rearranges the extracellular half to form a transitional conformation, facilitating the entry of the peptide N-terminus.
B1 类 G 蛋白偶联受体(GPCR)是许多生理功能(如葡萄糖平衡)的重要调节器,葡萄糖平衡主要由三种肽类激素(即胰高血糖素样肽-1(GLP-1)、胰高血糖素(GCG)和葡萄糖依赖性促胰岛素多肽(GIP))介导。它们会触发一连串的信号传导事件,从而形成活跃的激动剂-受体-G 蛋白复合物。然而,细胞内的信号转导物也能激活受体,而不受细胞外刺激的影响,这表明 G 蛋白在这一过程中发挥着内在作用。在这里,我们报告了人类 GLP-1 受体(GLP-1R)、GCG 受体(GCGR)和 GIP 受体(GIPR)在没有同源配体存在的情况下与 Gs 蛋白复合物的冷冻电镜结构。这些不含配体的复合物具有与内源性肽结合的复合物相似的细胞内结构,其中,Gs 蛋白单独直接打开细胞内结合腔,并重新连接细胞外正交口袋,使受体稳定在前所未有的状态。肽结合位点部分被 GIPR 向内折叠的跨膜螺旋 6(TM6)-细胞外环 3(ECL3)连接点或 GCGR ECL2 的一段占据,而 GLP-1R 的细胞外部分则采用了接近活性状态的构象。我们的发现为了解这三种重要受体的不同激活机制提供了宝贵的见解。在没有配体的情况下,跨膜结构域的胞内部分可能在 Gs 蛋白的帮助下被调动起来,进而重新排列胞外部分以形成过渡构象,从而促进多肽 N 端的进入。
{"title":"Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with G<sub>s</sub> proteins.","authors":"Zhaotong Cong, Fenghui Zhao, Yang Li, Gan Luo, Yiting Mai, Xianyue Chen, Yanyan Chen, Shi Lin, Xiaoqing Cai, Qingtong Zhou, Dehua Yang, Ming-Wei Wang","doi":"10.1038/s41421-024-00649-0","DOIUrl":"10.1038/s41421-024-00649-0","url":null,"abstract":"<p><p>Class B1 G protein-coupled receptors (GPCRs) are important regulators of many physiological functions such as glucose homeostasis, which is mainly mediated by three peptide hormones, i.e., glucagon-like peptide-1 (GLP-1), glucagon (GCG), and glucose-dependent insulinotropic polypeptide (GIP). They trigger a cascade of signaling events leading to the formation of an active agonist-receptor-G protein complex. However, intracellular signal transducers can also activate the receptor independent of extracellular stimuli, suggesting an intrinsic role of G proteins in this process. Here, we report cryo-electron microscopy structures of the human GLP-1 receptor (GLP-1R), GCG receptor (GCGR), and GIP receptor (GIPR) in complex with G<sub>s</sub> proteins without the presence of cognate ligands. These ligand-free complexes share a similar intracellular architecture to those bound by endogenous peptides, in which, the G<sub>s</sub> protein alone directly opens the intracellular binding cavity and rewires the extracellular orthosteric pocket to stabilize the receptor in a state unseen before. While the peptide-binding site is partially occupied by the inward folded transmembrane helix 6 (TM6)-extracellular loop 3 (ECL3) juncture of GIPR or a segment of GCGR ECL2, the extracellular portion of GLP-1R adopts a conformation close to the active state. Our findings offer valuable insights into the distinct activation mechanisms of these three important receptors. It is possible that in the absence of a ligand, the intracellular half of transmembrane domain is mobilized with the help of G<sub>s</sub> protein, which in turn rearranges the extracellular half to form a transitional conformation, facilitating the entry of the peptide N-terminus.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"18"},"PeriodicalIF":33.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.
组蛋白变体 H2A.Z 存在于启动子中并调节转录。依赖 ATP 的染色质重塑者 SRCAP 复合物(SRCAP-C)能促进 H2A.Z-H2B 二聚体取代标准组蛋白 H2A-H2B 二聚体。在这里,我们以接近原子分辨率测定了人类 SRCAP-C 与含 H2A 核小体结合的结构。SRCAP亚基整合了一个6亚基肌动蛋白相关蛋白(ARP)模块和一个含ATP酶的马达模块。与 ATPase 相关的 ARP 模块沿 DNA 环绕核小体的一半,可抑制 DNA 的净移位,这是 SRCAP-C 的独特之处。马达模块在无核苷酸、ADP结合和ADP-BeFx结合状态下采用不同的核小体结合模式,表明ATP酶驱动的运动通过解开入口DNA来破坏H2A-H2B的稳定性,并通过ZNHIT1亚基将H2A-H2B拉出核小体。结构引导的染色质免疫沉淀测序分析证实,H2A接触ZNHIT1在维持H2A.Z在基因组上的占有率方面是必需的。我们的研究从结构上揭示了 SRCAP-C 介导的 H2A-H2A.Z 交换机制。
{"title":"Structural insights into histone exchange by human SRCAP complex.","authors":"Jiali Yu, Fengrui Sui, Feng Gu, Wanjun Li, Zishuo Yu, Qianmin Wang, Shuang He, Li Wang, Yanhui Xu","doi":"10.1038/s41421-023-00640-1","DOIUrl":"10.1038/s41421-023-00640-1","url":null,"abstract":"<p><p>Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeF<sub>x</sub>-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"15"},"PeriodicalIF":33.5,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}