W. Trzciński, Karol Zalewski, Z. Chyłek, L. Szymańczyk
{"title":"Experimental Study of the Effectiveness of a Model Reactive Armour without Metal Plates","authors":"W. Trzciński, Karol Zalewski, Z. Chyłek, L. Szymańczyk","doi":"10.22211/cejem/150827","DOIUrl":"https://doi.org/10.22211/cejem/150827","url":null,"abstract":"","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46981707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ammonium Dodecahydrododecaborate (NH4)2[B12H12]: Hydrogen and Boron Rich Fuel for Jet Propulsion Engines","authors":"P. Jadhav, Hima Prasanth, J. Patil, C. G. Rao","doi":"10.22211/cejem/151579","DOIUrl":"https://doi.org/10.22211/cejem/151579","url":null,"abstract":"","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45817716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Elshenawy, A. Reyad, Eldesoky Ezzat, M. Abd Elkader
{"title":"Influence of Liner Wall Thickness on the Penetration Performance of PETN-HTPB PBX-based Shaped Charges into Steel Targets","authors":"T. Elshenawy, A. Reyad, Eldesoky Ezzat, M. Abd Elkader","doi":"10.22211/cejem/147682","DOIUrl":"https://doi.org/10.22211/cejem/147682","url":null,"abstract":"","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45629608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radiative Properties of a Red Phosphorus Based Combustion Flame","authors":"E. Koch","doi":"10.22211/cejem/147623","DOIUrl":"https://doi.org/10.22211/cejem/147623","url":null,"abstract":"","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42545958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of the Thermal Decomposition Temperature of High-Energy Heterocyclic Aromatic Compounds in Order to Increase Their Safety during Storage, Handling, and Application","authors":"M. Keshavarz, S. Mousavi, M. Drikvand","doi":"10.22211/cejem/147646","DOIUrl":"https://doi.org/10.22211/cejem/147646","url":null,"abstract":"","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46457581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sudhir Singh, Sidharth Raveendran, D. Kshirsagar, M. Gupta, C. Bhongale
: The isocyanate-based curing agents used for polyurethane are toxic and hygroscopic in nature. In the present work, an alternate approach was adopted, a reaction between the unsaturated rubber having an α -methylene hydrogen atom and a dinitrosobenzene (DNB) ‒ generating system (quinol ether of 1,4-benzoquinone dioxime, QE) without a catalyst, thus generating a cured system. QE is a novel curing agent for propellant applications which imparts the necessary curing. The curing reaction between nitrile butatadiene rubber (NBR) and quinol ether (QE) was studied by FTIR and the results revealed the formation of anil groups (Ar–C=N). The anil group results from the reaction between NBR and DNB, generated on decomposition of QE. Propellant formulations were prepared with variation of the curing agent from 0.2 to 0.5%. The composition and rheological, mechanical, ballistic and thermal properties of the resulting cured systems were investigated. The viscosity and spreadability were suitable for casting. The tensile strength, modulus, and hardness show an increasing trend and the elongation decreases on varying QE from 0.2 to 0.5% in the propellant. However, all of the compositions showed nearly the same burning rate and pressure exponent. The QE based curing system is non-hygroscopic and has extremely low toxicity. The experimental results revealed that the proposed curing agent may find application in explosives and propellants.
{"title":"Studies on Curing of an Aluminized Ammonium Perchlorate Composite Propellant Based on Nitrile Butadiene Rubber Using a Quinol Ether of 1,4-Benzoquinone Dioxime","authors":"Sudhir Singh, Sidharth Raveendran, D. Kshirsagar, M. Gupta, C. Bhongale","doi":"10.22211/cejem/147553","DOIUrl":"https://doi.org/10.22211/cejem/147553","url":null,"abstract":": The isocyanate-based curing agents used for polyurethane are toxic and hygroscopic in nature. In the present work, an alternate approach was adopted, a reaction between the unsaturated rubber having an α -methylene hydrogen atom and a dinitrosobenzene (DNB) ‒ generating system (quinol ether of 1,4-benzoquinone dioxime, QE) without a catalyst, thus generating a cured system. QE is a novel curing agent for propellant applications which imparts the necessary curing. The curing reaction between nitrile butatadiene rubber (NBR) and quinol ether (QE) was studied by FTIR and the results revealed the formation of anil groups (Ar–C=N). The anil group results from the reaction between NBR and DNB, generated on decomposition of QE. Propellant formulations were prepared with variation of the curing agent from 0.2 to 0.5%. The composition and rheological, mechanical, ballistic and thermal properties of the resulting cured systems were investigated. The viscosity and spreadability were suitable for casting. The tensile strength, modulus, and hardness show an increasing trend and the elongation decreases on varying QE from 0.2 to 0.5% in the propellant. However, all of the compositions showed nearly the same burning rate and pressure exponent. The QE based curing system is non-hygroscopic and has extremely low toxicity. The experimental results revealed that the proposed curing agent may find application in explosives and propellants.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46267836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, Polymer Bonded Explosives (PBX) have been used in a wide variety of military applications. Many different kinds of polymers are used for such explosive formulations. This component determines both the preparation method and the properties of a PBX. In this paper, results are presented of studies on the preparation and testing of explosive compositions based on pentaerythritol tetranitrate (PETN, penthrite) and silicone rubber. These studies were undertaken to obtain elastic formulations of PBXs. Therefore, the possibility of applying a silicone rubber as a component of the composition was checked. In the first stage of this study, several compositions were prepared in order to choose the optimal mixture ratio with respect to cohesion of the explosive. For this purpose, a new method using the Brookfield Texture Analyser was developed. Subsequently, compatibility tests using thermal analysis methods were carried out. The best of composition was subjected to tests for determining its physicochemical and explosive characteristics.
{"title":"A New Testing Method for the Mechanical Properties of Elastic Explosive Compositions","authors":"D. Powała, M. Nita, A. Orzechowski, A. Maranda","doi":"10.22211/cejem/145427","DOIUrl":"https://doi.org/10.22211/cejem/145427","url":null,"abstract":"In recent years, Polymer Bonded Explosives (PBX) have been used in a wide variety of military applications. Many different kinds of polymers are used for such explosive formulations. This component determines both the preparation method and the properties of a PBX. In this paper, results are presented of studies on the preparation and testing of explosive compositions based on pentaerythritol tetranitrate (PETN, penthrite) and silicone rubber. These studies were undertaken to obtain elastic formulations of PBXs. Therefore, the possibility of applying a silicone rubber as a component of the composition was checked. In the first stage of this study, several compositions were prepared in order to choose the optimal mixture ratio with respect to cohesion of the explosive. For this purpose, a new method using the Brookfield Texture Analyser was developed. Subsequently, compatibility tests using thermal analysis methods were carried out. The best of composition was subjected to tests for determining its physicochemical and explosive characteristics.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47576490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Orzechowski, M. Nita, D. Powała, Mariusz Pietraszek, Tomasz Klemba, A. Maranda
Mg/Teflon®/Viton (MTV) flares are the pyrotechnic compositions used in infrared decoys to protect aerial targets from IR-guided missiles. In this study, the influence of formulation changes on the burning time, and on the time to reach the required level of intensity of infrared radiation was examined. An ignition, in particular the quantity of ignition mixture used, and the ignition surface has a significant influence on the tested parameters. For charges with a density of 1.7 g/cm3 and a mass of approx. 40 g, it was possible to obtain the required rise time and intensity of radiation after applying about 5 g of the igniting mixture. The ratio of the grooved area, with the ignition mixture on the lateral surface of the pellet, to the total lateral surface of the pellet was approx. 0.6.
{"title":"Investigation of the Ignition of MTV Decoy Flares","authors":"A. Orzechowski, M. Nita, D. Powała, Mariusz Pietraszek, Tomasz Klemba, A. Maranda","doi":"10.22211/cejem/145383","DOIUrl":"https://doi.org/10.22211/cejem/145383","url":null,"abstract":"Mg/Teflon®/Viton (MTV) flares are the pyrotechnic compositions used in infrared decoys to protect aerial targets from IR-guided missiles. In this study, the influence of formulation changes on the burning time, and on the time to reach the required level of intensity of infrared radiation was examined. An ignition, in particular the quantity of ignition mixture used, and the ignition surface has a significant influence on the tested parameters. For charges with a density of 1.7 g/cm3 and a mass of approx. 40 g, it was possible to obtain the required rise time and intensity of radiation after applying about 5 g of the igniting mixture. The ratio of the grooved area, with the ignition mixture on the lateral surface of the pellet, to the total lateral surface of the pellet was approx. 0.6.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46267901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Gołofit, Bartosz Zakościelny, Paweł Maksimowski, M. Chmielarek, Katarzyna Cieślak, T. Sałaciński
{"title":"Review of Methods for Testing the Compatibility of High Energy Mixed Components","authors":"T. Gołofit, Bartosz Zakościelny, Paweł Maksimowski, M. Chmielarek, Katarzyna Cieślak, T. Sałaciński","doi":"10.22211/cejem/144931","DOIUrl":"https://doi.org/10.22211/cejem/144931","url":null,"abstract":"","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45433549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}