首页 > 最新文献

Cellular and molecular bioengineering最新文献

英文 中文
Rational Design of HER2-Targeted Combination Therapies to Reverse Drug Resistance in Fibroblast-Protected HER2+ Breast Cancer Cells. 合理设计 HER2 靶向联合疗法,以逆转成纤维细胞保护的 HER2+ 乳腺癌细胞的耐药性。
IF 2.3 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-11 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00823-0
Matthew D Poskus, Jacob McDonald, Matthew Laird, Ruxuan Li, Kyle Norcoss, Ioannis K Zervantonakis

Introduction: Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells.

Methods: Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts.

Results: Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity.

Conclusions: Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00823-0.

导言:成纤维细胞是乳腺肿瘤微环境中一种丰富的细胞类型,它与癌细胞相互作用,并协调肿瘤的进展和耐药性。然而,人们对成纤维细胞衍生因子影响药物敏感性的机制仍知之甚少。在此,我们根据蛋白质组学分析结果开发出合理的联合疗法,以克服成纤维细胞介导的 HER2+ 乳腺癌细胞的耐药性:方法:在单培养和暴露于乳腺成纤维细胞调节培养基的条件下,研究了HER2激酶抑制剂拉帕替尼的药物敏感性。使用反相蛋白质阵列测量蛋白质表达。利用差异表达和多变量回归模型确定了联合疗法的候选靶点。后续实验评估了HER2激酶联合疗法在成纤维细胞保护癌细胞株和成纤维细胞中的效果:结果:与单培养相比,成纤维细胞条件培养基增加了拉帕替尼治疗的乳腺癌细胞中纤溶酶原激活物抑制剂-1(PAI1)和细胞周期调节剂polo like kinase 1(PLK1)的表达。拉帕替尼与针对PAI1或PLK1的抑制剂联合治疗,在与成纤维细胞直接共培养和成纤维细胞调节培养基保护两种条件下,都能消除成纤维细胞保护的癌细胞。对公开的临床转录组数据集的分析表明,HER2靶向疗法无法抑制富含基质的HER2+乳腺肿瘤中PLK1的表达,PAI1基因的高表达与基质密度高有关。此外,我们还发现了一种以表观遗传学为导向的方法,该方法使用溴链和外膜抑制剂来全面靶向成纤维细胞诱导的癌细胞蛋白质组适应性,也能恢复拉帕替尼的敏感性:我们以数据为驱动的乳腺癌细胞蛋白质组学分析框架确定了蛋白水解降解调节因子PAI1和细胞周期调节因子PLK1是成纤维细胞介导的治疗耐药性的预测因子。针对HER2激酶和这些成纤维细胞诱导的信号适应性的联合疗法可消除成纤维细胞保护的HER2+乳腺癌细胞:在线版本包含补充材料,可在10.1007/s12195-024-00823-0上获取。
{"title":"Rational Design of HER2-Targeted Combination Therapies to Reverse Drug Resistance in Fibroblast-Protected HER2+ Breast Cancer Cells.","authors":"Matthew D Poskus, Jacob McDonald, Matthew Laird, Ruxuan Li, Kyle Norcoss, Ioannis K Zervantonakis","doi":"10.1007/s12195-024-00823-0","DOIUrl":"10.1007/s12195-024-00823-0","url":null,"abstract":"<p><strong>Introduction: </strong>Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells.</p><p><strong>Methods: </strong>Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts.</p><p><strong>Results: </strong>Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity.</p><p><strong>Conclusions: </strong>Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00823-0.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"491-506"},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empowering High-Throughput High-Content Analysis of Microphysiological Models: Open-Source Software for Automated Image Analysis of Microvessel Formation and Cell Invasion. 增强微观生理学模型的高通量高内容分析能力:用于自动图像分析微血管形成和细胞侵袭的开源软件。
IF 2.3 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-10 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00821-2
Noah Wiggin, Carson Cook, Mitchell Black, Ines Cadena, Salam Rahal-Arabi, Chandler L Asnes, Yoanna Ivanova, Marian H Hettiaratchi, Laurel E Hind, Kaitlin C Fogg

Purpose: The primary aim of this study was to develop an open-source Python-based software for the automated analysis of dynamic cell behaviors in microphysiological models using non-confocal microscopy. This research seeks to address the existing gap in accessible tools for high-throughput analysis of endothelial tube formation and cell invasion in vitro, facilitating the rapid assessment of drug sensitivity.

Methods: Our approach involved annotating over 1000 2 mm Z-stacks of cancer and endothelial cell co-culture model and training machine learning models to automatically calculate cell coverage, cancer invasion depth, and microvessel dynamics. Specifically, cell coverage area was computed using focus stacking and Gaussian mixture models to generate thresholded Z-projections. Cancer invasion depth was determined using a ResNet-50 binary classification model, identifying which Z-planes contained invaded cells and measuring the total invasion depth. Lastly, microvessel dynamics were assessed through a U-Net Xception-style segmentation model for vessel prediction, the DisPerSE algorithm to extract an embedded graph, then graph analysis to quantify microvessel length and connectivity. To further validate our software, we reanalyzed an image set from a high-throughput drug screen involving a chemotherapy agent on a 3D cervical and endothelial co-culture model. Lastly, we applied this software to two naive image datasets from coculture lumen and microvascular fragment models.

Results: The software accurately measured cell coverage, cancer invasion, and microvessel length, yielding drug sensitivity IC50 values with a 95% confidence level compared to manual calculations. This approach significantly reduced the image processing time from weeks down to h. Furthermore, the software was able to calculate cell coverage, microvessel length, and invasion depth from two additional microphysiological models that were imaged with confocal microscopy, highlighting the versatility of the software.

Conclusions: Our free and open source software offers an automated solution for quantifying 3D cell behavior in microphysiological models assessed using non-confocal microscopy, providing the broader Cellular and Molecular Bioengineering community with an alternative to standard confocal microscopy paired with proprietary software.This software can be found in our GitHub repository: https://github.com/fogg-lab/tissue-model-analysis-tools.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00821-2.

目的:本研究的主要目的是开发一款基于 Python 的开源软件,用于使用非聚焦显微镜自动分析微生理学模型中的动态细胞行为。这项研究旨在解决目前在体外内皮管形成和细胞侵袭高通量分析工具方面存在的空白,从而促进药物敏感性的快速评估:我们的方法包括标注 1000 多张癌症和内皮细胞共培养模型的 2 毫米 Z 叠图,并训练机器学习模型来自动计算细胞覆盖面积、癌症侵袭深度和微血管动态。具体来说,细胞覆盖面积是通过聚焦堆叠和高斯混合模型计算得出的,以生成阈值化的 Z 投影。使用 ResNet-50 二元分类模型确定癌症侵袭深度,识别哪些 Z 平面包含侵袭细胞,并测量总侵袭深度。最后,通过 U-Net Xception 式血管预测分割模型评估微血管动态,使用 DisPerSE 算法提取嵌入图,然后通过图分析量化微血管长度和连通性。为了进一步验证我们的软件,我们在三维宫颈和内皮共培养模型上重新分析了涉及化疗药物的高通量药物筛选图像集。最后,我们将该软件应用于来自共培养管腔和微血管片段模型的两个天真图像数据集:结果:与人工计算相比,该软件准确测量了细胞覆盖率、癌症侵袭和微血管长度,得出的药物敏感性 IC50 值置信度达到 95%。此外,该软件还能从另外两个用共聚焦显微镜成像的微观生理模型中计算细胞覆盖率、微血管长度和侵袭深度,突出了该软件的多功能性:我们的免费开源软件为量化使用非共焦点显微镜评估的微生理学模型中的三维细胞行为提供了自动化解决方案,为更广泛的细胞与分子生物工程社区提供了标准共焦点显微镜与专有软件搭配的替代方案。该软件可在我们的 GitHub 存储库中找到:https://github.com/fogg-lab/tissue-model-analysis-tools.Supplementary information:在线版本包含补充材料,可查阅 10.1007/s12195-024-00821-2。
{"title":"Empowering High-Throughput High-Content Analysis of Microphysiological Models: Open-Source Software for Automated Image Analysis of Microvessel Formation and Cell Invasion.","authors":"Noah Wiggin, Carson Cook, Mitchell Black, Ines Cadena, Salam Rahal-Arabi, Chandler L Asnes, Yoanna Ivanova, Marian H Hettiaratchi, Laurel E Hind, Kaitlin C Fogg","doi":"10.1007/s12195-024-00821-2","DOIUrl":"https://doi.org/10.1007/s12195-024-00821-2","url":null,"abstract":"<p><strong>Purpose: </strong>The primary aim of this study was to develop an open-source Python-based software for the automated analysis of dynamic cell behaviors in microphysiological models using non-confocal microscopy. This research seeks to address the existing gap in accessible tools for high-throughput analysis of endothelial tube formation and cell invasion in vitro, facilitating the rapid assessment of drug sensitivity.</p><p><strong>Methods: </strong>Our approach involved annotating over 1000 2 mm Z-stacks of cancer and endothelial cell co-culture model and training machine learning models to automatically calculate cell coverage, cancer invasion depth, and microvessel dynamics. Specifically, cell coverage area was computed using focus stacking and Gaussian mixture models to generate thresholded Z-projections. Cancer invasion depth was determined using a ResNet-50 binary classification model, identifying which Z-planes contained invaded cells and measuring the total invasion depth. Lastly, microvessel dynamics were assessed through a U-Net Xception-style segmentation model for vessel prediction, the DisPerSE algorithm to extract an embedded graph, then graph analysis to quantify microvessel length and connectivity. To further validate our software, we reanalyzed an image set from a high-throughput drug screen involving a chemotherapy agent on a 3D cervical and endothelial co-culture model. Lastly, we applied this software to two naive image datasets from coculture lumen and microvascular fragment models.</p><p><strong>Results: </strong>The software accurately measured cell coverage, cancer invasion, and microvessel length, yielding drug sensitivity IC<sub>50</sub> values with a 95% confidence level compared to manual calculations. This approach significantly reduced the image processing time from weeks down to h. Furthermore, the software was able to calculate cell coverage, microvessel length, and invasion depth from two additional microphysiological models that were imaged with confocal microscopy, highlighting the versatility of the software.</p><p><strong>Conclusions: </strong>Our free and open source software offers an automated solution for quantifying 3D cell behavior in microphysiological models assessed using non-confocal microscopy, providing the broader Cellular and Molecular Bioengineering community with an alternative to standard confocal microscopy paired with proprietary software.This software can be found in our GitHub repository: https://github.com/fogg-lab/tissue-model-analysis-tools.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00821-2.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"369-383"},"PeriodicalIF":2.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph-Based Spatial Proximity of Super-Resolved Protein-Protein Interactions Predicts Cancer Drug Responses in Single Cells. 基于图谱的超解析蛋白质-蛋白质相互作用空间邻近性预测单细胞中的抗癌药物反应
IF 2.3 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-06 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00822-1
Nicholas Zhang, Shuangyi Cai, Mingshuang Wang, Thomas Hu, Frank Schneider, Shi-Yong Sun, Ahmet F Coskun

Purpose: Current bulk molecular assays fail to capture spatial signaling activities in cancers, limiting our understanding of drug resistance mechanisms. We developed a graph-based super-resolution protein-protein interaction (GSR-PPI) technique to spatially resolve single-cell signaling networks and evaluate whether higher resolution microscopy enhances the biological study of PPIs using deep learning classification models.

Methods: Single-cell spatial proximity ligation assays (PLA, ≤ 9 PPI pairs) were conducted on EGFR mutant (EGFRm) PC9 and HCC827 cells (>10,000 cells) treated with 100 nM Osimertinib. Multiplexed PPI images were obtained using wide-field and super-resolution microscopy (Zeiss Airyscan, SRRF). Graph-based deep learning models analyzed subcellular protein interactions to classify drug treatment states and test GSR-PPI on clinical tissue samples. GSR-PPI triangulated PPI nodes into 3D relationships, predicting drug treatment labels. Biological discriminative ability (BDA) was evaluated using accuracy, AUC, and F1 scores. The method was also applied to 3D spatial proteomic molecular pixelation (PixelGen) data from T cells.

Results: GSR-PPI outperformed baseline models in predicting drug responses from multiplexed PPI imaging in EGFRm cells. Super-resolution data significantly improved accuracy over localized wide-field imaging. GSR-PPI classified drug treatment states in cancer cells and human lung tissues, with performance improving as imaging resolution increased. It differentiated single and combination drug therapies in HCC827 cells and human tissues. Additionally, GSR-PPI accurately distinguished T-cell stimulation states, identifying key nodes such as CD44, CD45, and CD54.

Conclusion: The GSR-PPI framework provides valuable insights into spatial protein interactions and drug responses, enhancing the study of signaling biology and drug resistance.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00822-1.

目的:目前的大量分子检测无法捕捉癌症中的空间信号活动,限制了我们对耐药机制的了解。我们开发了一种基于图的超分辨率蛋白质-蛋白质相互作用(GSR-PPI)技术,从空间上解析单细胞信号转导网络,并利用深度学习分类模型评估更高分辨率的显微镜是否能加强PPIs的生物学研究:用100 nM Osimertinib处理表皮生长因子受体突变体(EGFRm)PC9和HCC827细胞(大于10,000个细胞),进行单细胞空间邻近连接试验(PLA,≤9个PPI对)。使用宽视场和超分辨率显微镜(Zeiss Airyscan、SRRF)获得了多重 PPI 图像。基于图的深度学习模型分析了亚细胞蛋白质相互作用,以对药物治疗状态进行分类,并在临床组织样本上测试 GSR-PPI。GSR-PPI 将 PPI 节点三角化为三维关系,预测药物治疗标签。使用准确率、AUC 和 F1 分数评估了生物鉴别能力(BDA)。该方法还应用于T细胞的三维空间蛋白质组分子像素化(PixelGen)数据:结果:GSR-PPI 在预测表皮生长因子受体(EGFRm)细胞中多重 PPI 成像的药物反应方面优于基线模型。超分辨率数据大大提高了局部宽视野成像的准确性。GSR-PPI 对癌细胞和人体肺组织中的药物治疗状态进行了分类,其性能随着成像分辨率的提高而提高。它能区分 HCC827 细胞和人体组织中的单一药物疗法和联合药物疗法。此外,GSR-PPI 还能准确区分 T 细胞刺激状态,识别 CD44、CD45 和 CD54 等关键节点:GSR-PPI框架为空间蛋白质相互作用和药物反应提供了宝贵的见解,加强了信号生物学和耐药性的研究:在线版本包含补充材料,可查阅 10.1007/s12195-024-00822-1。
{"title":"Graph-Based Spatial Proximity of Super-Resolved Protein-Protein Interactions Predicts Cancer Drug Responses in Single Cells.","authors":"Nicholas Zhang, Shuangyi Cai, Mingshuang Wang, Thomas Hu, Frank Schneider, Shi-Yong Sun, Ahmet F Coskun","doi":"10.1007/s12195-024-00822-1","DOIUrl":"https://doi.org/10.1007/s12195-024-00822-1","url":null,"abstract":"<p><strong>Purpose: </strong>Current bulk molecular assays fail to capture spatial signaling activities in cancers, limiting our understanding of drug resistance mechanisms. We developed a graph-based super-resolution protein-protein interaction (GSR-PPI) technique to spatially resolve single-cell signaling networks and evaluate whether higher resolution microscopy enhances the biological study of PPIs using deep learning classification models.</p><p><strong>Methods: </strong>Single-cell spatial proximity ligation assays (PLA, ≤ 9 PPI pairs) were conducted on EGFR mutant (EGFRm) PC9 and HCC827 cells (>10,000 cells) treated with 100 nM Osimertinib. Multiplexed PPI images were obtained using wide-field and super-resolution microscopy (Zeiss Airyscan, SRRF). Graph-based deep learning models analyzed subcellular protein interactions to classify drug treatment states and test GSR-PPI on clinical tissue samples. GSR-PPI triangulated PPI nodes into 3D relationships, predicting drug treatment labels. Biological discriminative ability (BDA) was evaluated using accuracy, AUC, and F1 scores. The method was also applied to 3D spatial proteomic molecular pixelation (PixelGen) data from T cells.</p><p><strong>Results: </strong>GSR-PPI outperformed baseline models in predicting drug responses from multiplexed PPI imaging in EGFRm cells. Super-resolution data significantly improved accuracy over localized wide-field imaging. GSR-PPI classified drug treatment states in cancer cells and human lung tissues, with performance improving as imaging resolution increased. It differentiated single and combination drug therapies in HCC827 cells and human tissues. Additionally, GSR-PPI accurately distinguished T-cell stimulation states, identifying key nodes such as CD44, CD45, and CD54.</p><p><strong>Conclusion: </strong>The GSR-PPI framework provides valuable insights into spatial protein interactions and drug responses, enhancing the study of signaling biology and drug resistance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00822-1.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"467-490"},"PeriodicalIF":2.3,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Based on Medicine, The Now and Future of Large Language Models 基于医学,大型语言模型的现状与未来
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-16 DOI: 10.1007/s12195-024-00820-3
Ziqing Su, Guozhang Tang, Rui Huang, Yang Qiao, Zheng Zhang, Xingliang Dai

Objectives

This review explores the potential applications of large language models (LLMs) such as ChatGPT, GPT-3.5, and GPT-4 in the medical field, aiming to encourage their prudent use, provide professional support, and develop accessible medical AI tools that adhere to healthcare standards.

Methods

This paper examines the impact of technologies such as OpenAI's Generative Pre-trained Transformers (GPT) series, including GPT-3.5 and GPT-4, and other large language models (LLMs) in medical education, scientific research, clinical practice, and nursing. Specifically, it includes supporting curriculum design, acting as personalized learning assistants, creating standardized simulated patient scenarios in education; assisting with writing papers, data analysis, and optimizing experimental designs in scientific research; aiding in medical imaging analysis, decision-making, patient education, and communication in clinical practice; and reducing repetitive tasks, promoting personalized care and self-care, providing psychological support, and enhancing management efficiency in nursing.

Results

LLMs, including ChatGPT, have demonstrated significant potential and effectiveness in the aforementioned areas, yet their deployment in healthcare settings is fraught with ethical complexities, potential lack of empathy, and risks of biased responses.

Conclusion

Despite these challenges, significant medical advancements can be expected through the proper use of LLMs and appropriate policy guidance. Future research should focus on overcoming these barriers to ensure the effective and ethical application of LLMs in the medical field.

目的本综述探讨了大型语言模型(LLM)(如 ChatGPT、GPT-3.5 和 GPT-4 等)在医疗领域的潜在应用,旨在鼓励谨慎使用这些模型,提供专业支持,并开发符合医疗保健标准的可访问的医疗人工智能工具。方法本文研究了 OpenAI 的生成预训练转换器(GPT)系列(包括 GPT-3.5 和 GPT-4)和其他大型语言模型(LLM)等技术在医学教育、科学研究、临床实践和护理方面的影响。具体来说,包括在教育领域支持课程设计、充当个性化学习助手、创建标准化模拟病人情景;在科研领域协助撰写论文、分析数据、优化实验设计;在临床实践领域协助医学影像分析、决策、病人教育和沟通;在护理领域减少重复性工作、促进个性化护理和自我护理、提供心理支持、提高管理效率。结果包括 ChatGPT 在内的 LLMs 在上述领域表现出了巨大的潜力和有效性,然而在医疗环境中应用 LLMs 却充满了复杂的伦理问题、可能缺乏同理心以及有偏差反应的风险。未来的研究应侧重于克服这些障碍,以确保在医疗领域有效、合乎道德地应用 LLM。
{"title":"Based on Medicine, The Now and Future of Large Language Models","authors":"Ziqing Su, Guozhang Tang, Rui Huang, Yang Qiao, Zheng Zhang, Xingliang Dai","doi":"10.1007/s12195-024-00820-3","DOIUrl":"https://doi.org/10.1007/s12195-024-00820-3","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>This review explores the potential applications of large language models (LLMs) such as ChatGPT, GPT-3.5, and GPT-4 in the medical field, aiming to encourage their prudent use, provide professional support, and develop accessible medical AI tools that adhere to healthcare standards.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This paper examines the impact of technologies such as OpenAI's Generative Pre-trained Transformers (GPT) series, including GPT-3.5 and GPT-4, and other large language models (LLMs) in medical education, scientific research, clinical practice, and nursing. Specifically, it includes supporting curriculum design, acting as personalized learning assistants, creating standardized simulated patient scenarios in education; assisting with writing papers, data analysis, and optimizing experimental designs in scientific research; aiding in medical imaging analysis, decision-making, patient education, and communication in clinical practice; and reducing repetitive tasks, promoting personalized care and self-care, providing psychological support, and enhancing management efficiency in nursing.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>LLMs, including ChatGPT, have demonstrated significant potential and effectiveness in the aforementioned areas, yet their deployment in healthcare settings is fraught with ethical complexities, potential lack of empathy, and risks of biased responses.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Despite these challenges, significant medical advancements can be expected through the proper use of LLMs and appropriate policy guidance. Future research should focus on overcoming these barriers to ensure the effective and ethical application of LLMs in the medical field.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer 多室微血管化肿瘤芯片用于研究卵巢癌中肿瘤与基质之间的相互作用和耐药性
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-14 DOI: 10.1007/s12195-024-00817-y
Simona Plesselova, Kristin Calar, Hailey Axemaker, Emma Sahly, Amrita Bhagia, Jessica L. Faragher, Darci M. Fink, Pilar de la Puente

Introduction

The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance.

Methods

We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF).

Results

The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance.

Conclusions

Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.

导言大多数接受标准化疗的卵巢癌(OC)患者会在 5 年内产生化疗耐药性。肿瘤微环境(TME)是影响疾病进展和治疗反应的动态因素。我们开发了一种三维微血管化多微切肿瘤芯片,由五个腔室(中央癌症腔室、两侧基质腔室和两个外循环腔室)组成,以再现肿瘤微环境的分区,并研究其对耐药性的影响。基质室包括单独的内皮细胞或与正常成纤维细胞或癌症相关成纤维细胞(CAF)共培养的内皮细胞。结果片上肿瘤再现了TME的空间分区,包括血管样结构、基质介导的细胞外基质(ECM)重塑、氧梯度的产生以及药物从循环室向癌症室的延迟扩散/渗透。与正常成纤维细胞相比,在有 CAF 存在的情况下,癌症室模拟了类似转移的迁移,并增加了对卡铂/紫杉醇治疗的耐药性。ECM 靶向疗法可挽救 CAF 介导的耐药性。重要的是,这些结果表明,细胞串扰再现和空间组织分区对于确定分区 OC-TME 对耐药性的影响至关重要。这项技术有望指导设计更有效、更有针对性的治疗策略,以克服 OC 的化疗耐药性。
{"title":"Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer","authors":"Simona Plesselova, Kristin Calar, Hailey Axemaker, Emma Sahly, Amrita Bhagia, Jessica L. Faragher, Darci M. Fink, Pilar de la Puente","doi":"10.1007/s12195-024-00817-y","DOIUrl":"https://doi.org/10.1007/s12195-024-00817-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"15 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Bacterial Chassis for Enhanced Surface Display of Recombinant Proteins 增强重组蛋白质表面展示的新型细菌底盘
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-13 DOI: 10.1007/s12195-024-00819-w
Rui Zhang, Ningyuan Ye, Zongqi Wang, Shaobo Yang, Jiahe Li

Introduction

Bacterial surface display is a valuable biotechnology technique for presenting proteins and molecules on the outer surface of bacterial cells. However, it has limitations, including potential toxicity to host bacteria and variability in display efficiency. To address these issues, we investigated the removal of abundant non-essential outer membrane proteins (OMPs) in E. coli as a new strategy to improve the surface display of recombinant proteins.

Methods

We targeted OmpA, a highly prevalent OMP in E. coli, using the lambda red method. We successfully knocked out ompA in two E. coli strains, K-12 MG1655 and E. coli BL-21, which have broad research and therapeutic applications. We then combined ompA knockout strains and two OMPs with three therapeutic proteins including an anti-toxin enzyme (ClbS), interleukin 18 (IL-18) for activating cytotoxic T cells and an anti- CTLA4 nanobody (αCTLA4) for immune checkpoint blockade.

Results

A total of six different display constructs were tested for their display levels by flow cytometry, showing that the ompA knockout strains increased the percentage as well as the levels of display in bacteria compared to those of isogenic wild-type strains.

Conclusions

By removing non-essential, highly abundant surface proteins, we develop an efficient platform for displaying enzymes and antibodies, with potential industrial and therapeutic applications. Additionally, the enhanced therapeutic efficacy opens possibilities for live bacteria-based therapeutics, expanding the technology’s relevance in the field.

引言 细菌表面展示是一种将蛋白质和分子展示在细菌细胞外表面的重要生物技术。然而,它也有局限性,包括对宿主细菌的潜在毒性和显示效率的可变性。为了解决这些问题,我们研究了去除大肠杆菌中丰富的非必要外膜蛋白(OMPs)作为改善重组蛋白表面展示的新策略。我们在两种大肠杆菌菌株(K-12 MG1655 和大肠杆菌 BL-21)中成功敲除了 OmpA,这两种菌株具有广泛的研究和治疗应用价值。然后,我们将敲除 ompA 的菌株和两种 OMP 与三种治疗蛋白结合起来,包括抗毒素酶(ClbS)、用于激活细胞毒性 T 细胞的白细胞介素 18(IL-18)和用于阻断免疫检查点的抗 CTLA4 纳米抗体(αCTLA4)。结果 通过流式细胞仪测试了六种不同的显示构建物的显示水平,结果显示,与同源野生型菌株相比,oppA 基因敲除菌株提高了细菌中显示的百分比和水平。此外,治疗效果的提高也为基于活细菌的疗法提供了可能性,扩大了该技术在该领域的相关性。
{"title":"A New Bacterial Chassis for Enhanced Surface Display of Recombinant Proteins","authors":"Rui Zhang, Ningyuan Ye, Zongqi Wang, Shaobo Yang, Jiahe Li","doi":"10.1007/s12195-024-00819-w","DOIUrl":"https://doi.org/10.1007/s12195-024-00819-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Bacterial surface display is a valuable biotechnology technique for presenting proteins and molecules on the outer surface of bacterial cells. However, it has limitations, including potential toxicity to host bacteria and variability in display efficiency. To address these issues, we investigated the removal of abundant non-essential outer membrane proteins (OMPs) in <i>E. coli</i> as a new strategy to improve the surface display of recombinant proteins.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We targeted OmpA, a highly prevalent OMP in E. coli, using the lambda red method. We successfully knocked out <i>ompA</i> in two <i>E. coli</i> strains, K-12 MG1655 and <i>E. coli</i> BL-21, which have broad research and therapeutic applications. We then combined <i>ompA</i> knockout strains and two OMPs with three therapeutic proteins including an anti-toxin enzyme (ClbS), interleukin 18 (IL-18) for activating cytotoxic T cells and an anti- CTLA4 nanobody (αCTLA4) for immune checkpoint blockade.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>A total of six different display constructs were tested for their display levels by flow cytometry, showing that the <i>ompA</i> knockout strains increased the percentage as well as the levels of display in bacteria compared to those of isogenic wild-type strains.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>By removing non-essential, highly abundant surface proteins, we develop an efficient platform for displaying enzymes and antibodies, with potential industrial and therapeutic applications. Additionally, the enhanced therapeutic efficacy opens possibilities for live bacteria-based therapeutics, expanding the technology’s relevance in the field.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"3 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant and Synthetic Affibodies Function Comparably for Modulating Protein Release 重组抗体和合成抗体在调节蛋白质释放方面的功能相当
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-12 DOI: 10.1007/s12195-024-00815-0
Jonathan Dorogin, Morrhyssey A. Benz, Cameron J. Moore, Danielle S. W. Benoit, Marian H. Hettiaratchi

Purpose

Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis.

Methods

High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) E. coli and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA).

Results

Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies.

Conclusions

Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.

目的 亲和抗体是一类用途广泛的亲和蛋白,具有广泛的治疗用途,从用于成像的造影剂到细胞靶向治疗。我们已经发现了几种与骨形态发生蛋白-2(BMP-2)具有不同结合亲和力的特异性亲和抗体,并证明了根据亲和抗体亲和力的强弱来调节BMP-2从亲和抗体结合的聚(乙二醇)马来酰亚胺(PEG-mal)水凝胶中的释放率的能力。方法用BL21(DE3)大肠杆菌重组表达高亲和力和低亲和力的BMP-2特异性亲和抗体,并用微波辅助固相肽合成法与Fmoc-Gly-Wang树脂进行化学合成。亲和抗体的二级结构和亲和抗体-BMP-2结合的解离常数分别通过圆二色性和生物层干涉仪进行了表征。内毒素水平是通过发色性嗜碱性卵母细胞裂解液(LAL)检测法测定的。通过酶联免疫吸附试验(ELISA)定量评估水凝胶的控释能力。结果 通过圆二色性测定,合成和重组的亲和抗体均为α螺旋型。合成的高亲和力和低亲和力BMP-2特异性亲和抗体与重组亲和抗体的BMP-2结合解离常数相当。重组亲和抗体在纯化后保留了一些内毒素,而合成亲和抗体中检测到的内毒素未超过美国食品药品管理局允许的限度。结论合成亲和抗体的结构和功能与重组亲和抗体相当,同时减少了内毒素污染并提高了产品产量,这表明固相肽合成是生产用于控制蛋白质释放和其他应用的亲和抗体的可行方法。
{"title":"Recombinant and Synthetic Affibodies Function Comparably for Modulating Protein Release","authors":"Jonathan Dorogin, Morrhyssey A. Benz, Cameron J. Moore, Danielle S. W. Benoit, Marian H. Hettiaratchi","doi":"10.1007/s12195-024-00815-0","DOIUrl":"https://doi.org/10.1007/s12195-024-00815-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) <i>E. coli</i> and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"19 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxic Preconditioned ADSC Exosomes Enhance Vaginal Wound Healing via Accelerated Keratinocyte Proliferation and Migration Through AKT/HIF‑1α Axis Activation 缺氧预处理 ADSC 外泌体通过激活 AKT/HIF-1α 轴加速角质形成细胞增殖和迁移促进阴道伤口愈合
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-04 DOI: 10.1007/s12195-024-00814-1
Xiaoyun Yang, Shasha Zhang, Kewei Chen, Dongsheng Shen, Yang Yang, Aiqun Shen, Junhua Liang, Mengjiao Xu, Yuanyuan Yang, Yanhong Zhao, Huaifang Li, Xiaowen Tong

Purpose

Accelerating wound healing is a main consideration in surgery. The three stages of wound healing are inflammatory response, tissue repair and cell proliferation. Much research has focused on epidermal cell proliferation and migration because this is an essential step in wound healing.

Methods and Results

The current study discovered that exosomes from Adipose-derived stem cell (ADSC) following hypoxic preconditioning (HExo) have a greater promotional effect on vaginal wound healing. Protein kinase B (AKT)/hypoxia-inducible factor 1-alpha (HIF-1α) play an important role in HExo-mediated HaCaT cell migration and proliferation. The promotional effect of HExo on rat wound healing was reversed by both, HIF‑1α and AKT inhibition. Phosphorylation of AKT (p-AKT) or HIF‑1α suppression reversed the protective effect of HExo on vaginal wound healing.

Conclusion

Taken together, our study found that hypoxic preconditioning of adipose MSC exosomes enhances vaginal wound healing via accelerated keratinocyte proliferation and migration through AKT/HIF‑1α axis activation.

目的 加速伤口愈合是外科手术的主要考虑因素。伤口愈合的三个阶段是炎症反应、组织修复和细胞增殖。目前的研究发现,缺氧预处理(HExo)后的脂肪来源干细胞(ADSC)外泌体对阴道伤口愈合有更大的促进作用。蛋白激酶B(AKT)/缺氧诱导因子1-α(HIF-1α)在HExo介导的HaCaT细胞迁移和增殖中发挥重要作用。抑制 HIF-1α 和 AKT 可逆转 HExo 对大鼠伤口愈合的促进作用。结论综上所述,我们的研究发现脂肪间充质干细胞外泌体的缺氧预处理可通过激活 AKT/HIF-1α 轴加速角质形成细胞的增殖和迁移,从而促进阴道伤口愈合。
{"title":"Hypoxic Preconditioned ADSC Exosomes Enhance Vaginal Wound Healing via Accelerated Keratinocyte Proliferation and Migration Through AKT/HIF‑1α Axis Activation","authors":"Xiaoyun Yang, Shasha Zhang, Kewei Chen, Dongsheng Shen, Yang Yang, Aiqun Shen, Junhua Liang, Mengjiao Xu, Yuanyuan Yang, Yanhong Zhao, Huaifang Li, Xiaowen Tong","doi":"10.1007/s12195-024-00814-1","DOIUrl":"https://doi.org/10.1007/s12195-024-00814-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Accelerating wound healing is a main consideration in surgery. The three stages of wound healing are inflammatory response, tissue repair and cell proliferation. Much research has focused on epidermal cell proliferation and migration because this is an essential step in wound healing.</p><h3 data-test=\"abstract-sub-heading\">Methods and Results</h3><p>The current study discovered that exosomes from Adipose-derived stem cell (ADSC) following hypoxic preconditioning (HExo) have a greater promotional effect on vaginal wound healing. Protein kinase B (AKT)/hypoxia-inducible factor 1-alpha (HIF-1α) play an important role in HExo-mediated HaCaT cell migration and proliferation. The promotional effect of HExo on rat wound healing was reversed by both, HIF‑1α and AKT inhibition. Phosphorylation of AKT (p-AKT) or HIF‑1α suppression reversed the protective effect of HExo on vaginal wound healing.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Taken together, our study found that hypoxic preconditioning of adipose MSC exosomes enhances vaginal wound healing via accelerated keratinocyte proliferation and migration through AKT/HIF‑1α axis activation.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"9 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes and Macrophages: Bidirectional Mutual Regulation in the Treatment of Diabetic Complications 外泌体和巨噬细胞:糖尿病并发症治疗中的双向相互调控
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-08-31 DOI: 10.1007/s12195-024-00816-z
Xue Li, Lianrong Yang, Shujun Xu, Yuan Tian, Xin Meng

Purpose

The bidirectional regulation of macrophages and exosomes provides a meaningful research direction for the treatment of complications arising from both type 1 and type 2 diabetes mellitus. However, there is currently no comprehensive evaluation of the bidirectional regulatory role of macrophages and exosomes in diabetic complications. In this review, we aim to provide the detailed process of the bidirectional regulation mechanism of macrophages and exosomes, and how macrophage-associated exosomes use this mechanism to make it better applied to clinical practice through biotechnology.

Methods

Therefore, we summarized the bidirectional regulation mechanism of macrophages and exosomes and the application based on the bidirectional regulation mechanism from two aspects of inflammation and insulin resistance.

Results

As key regulators of the immune system, macrophages are crucial in the progression of diabetic complications due to their significant impact on the regulation of cellular metabolism, inflammation, and insulin sensitivity. Furthermore, exosomes, as innovative mediators of intercellular communication, transport miRNAs, proteins, and various bioactive molecules, influencing the occurrence and progression of diabetic complications through the regulation of inflammation and insulin resistance. The bidirectional regulation between macrophages and exosomes provides a promising pathway for the treatment of diabetic complications aimed at regulating the immune response and improving insulin sensitivity.

Conclusions

Understanding the complexity of the interaction between macrophages and exosomes can advance the treatment of diabetic complications and drug development, and bringing more innovative and effective treatment strategies for diabetic complications.

目的 巨噬细胞和外泌体的双向调节为治疗 1 型和 2 型糖尿病并发症提供了一个有意义的研究方向。然而,目前还没有全面评估巨噬细胞和外泌体在糖尿病并发症中的双向调节作用。在这篇综述中,我们旨在提供巨噬细胞和外泌体双向调节机制的详细过程,以及巨噬细胞相关外泌体如何利用这一机制,通过生物技术使其更好地应用于临床实践。方法因此,我们从炎症和胰岛素抵抗两个方面总结了巨噬细胞和外泌体的双向调控机制以及基于双向调控机制的应用。结果作为免疫系统的关键调控因子,巨噬细胞对细胞代谢、炎症和胰岛素敏感性的调控具有重要影响,是糖尿病并发症进展的关键。此外,外泌体作为细胞间通信的创新介质,可运输 miRNA、蛋白质和各种生物活性分子,通过调节炎症和胰岛素抵抗影响糖尿病并发症的发生和发展。巨噬细胞与外泌体之间的双向调控为治疗糖尿病并发症提供了一条很有前景的途径,其目的是调节免疫反应和改善胰岛素敏感性。
{"title":"Exosomes and Macrophages: Bidirectional Mutual Regulation in the Treatment of Diabetic Complications","authors":"Xue Li, Lianrong Yang, Shujun Xu, Yuan Tian, Xin Meng","doi":"10.1007/s12195-024-00816-z","DOIUrl":"https://doi.org/10.1007/s12195-024-00816-z","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The bidirectional regulation of macrophages and exosomes provides a meaningful research direction for the treatment of complications arising from both type 1 and type 2 diabetes mellitus. However, there is currently no comprehensive evaluation of the bidirectional regulatory role of macrophages and exosomes in diabetic complications. In this review, we aim to provide the detailed process of the bidirectional regulation mechanism of macrophages and exosomes, and how macrophage-associated exosomes use this mechanism to make it better applied to clinical practice through biotechnology.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Therefore, we summarized the bidirectional regulation mechanism of macrophages and exosomes and the application based on the bidirectional regulation mechanism from two aspects of inflammation and insulin resistance.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>As key regulators of the immune system, macrophages are crucial in the progression of diabetic complications due to their significant impact on the regulation of cellular metabolism, inflammation, and insulin sensitivity. Furthermore, exosomes, as innovative mediators of intercellular communication, transport miRNAs, proteins, and various bioactive molecules, influencing the occurrence and progression of diabetic complications through the regulation of inflammation and insulin resistance. The bidirectional regulation between macrophages and exosomes provides a promising pathway for the treatment of diabetic complications aimed at regulating the immune response and improving insulin sensitivity.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Understanding the complexity of the interaction between macrophages and exosomes can advance the treatment of diabetic complications and drug development, and bringing more innovative and effective treatment strategies for diabetic complications.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"66 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
YIGSR, A Laminin-Derived Peptide, Dictates a Concentration-Dependent Impact on Macrophage Phenotype Response 一种由层粘蛋白衍生的多肽 YIGSR 对巨噬细胞表型反应具有浓度依赖性影响
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-07-26 DOI: 10.1007/s12195-024-00810-5
Aakanksha Jha, Erika Moore

Purpose

Macrophage immune cells play crucial roles in the inflammatory (M1) and regenerative (M2) processes. The extracellular matrix (ECM) composition, including presentation of embedded ligands, governs macrophage function. Laminin concentration is abundant in the basement membrane and is dependent on pathological state: reduced in inflammation and increased during regeneration. Distinct laminin ligands, such as IKVAV and YIGSR, have disparate roles in dictating cell function. For example, IKVAV, derived from the alpha chain of laminin, promotes angiogenesis and metastasis of cancer cells whereas YIGSR, beta chain derived, impedes angiogenesis and tumor progression. Previous work has demonstrated IKVAV’s inflammation inhibiting properties in macrophages. Given the divergent role of IKVAV and YIGSR in interacting with cells through varied integrin receptors, we ask: what role does laminin derived peptide YIGSR play in governing macrophage function?

Methods

We quantified the influence of YIGSR on macrophage phenotype in 2D and 3D via immunostaining assessments for M1 marker inducible nitric oxide synthase (iNOS) and M2 marker Arginase−1 (Arg-1). We also analysed the secretome of human and murine macrophage response to YIGSR via a Luminex bead assay.

Results

YIGSR impact on macrophage phenotype occurs in a concentration-dependent manner. At lower concentrations of YIGSR, macrophage inflammation was increased whereas, at higher concentrations of YIGSR the opposite effect was seen within the same time frame. Secretomic assessments also demonstrate that pro-inflammatory chemokines and cytokines were increased at low YIGSR concentrations in M0, M1, M2 macrophages while pro-inflammatory secretion was reduced at higher concentrations.

Conclusions

YIGSR can be used as a tool to modulate macrophage inflammatory state within M1 and M2 phenotypes depending on the concentration of peptide. YIGSR’s impact on macrophage function can be leveraged for the development of immunoengineering strategies in regenerative medicine and cancer therapy.

目的巨噬免疫细胞在炎症(M1)和再生(M2)过程中发挥着至关重要的作用。细胞外基质(ECM)的组成,包括嵌入配体的呈现,制约着巨噬细胞的功能。层粘连蛋白在基底膜中含量丰富,并与病理状态有关:炎症时减少,再生时增加。不同的层粘连配体,如 IKVAV 和 YIGSR,在决定细胞功能方面具有不同的作用。例如,源自层粘连蛋白α链的IKVAV促进血管生成和癌细胞转移,而源自β链的YIGSR则阻碍血管生成和肿瘤进展。先前的研究表明,IKVAV 在巨噬细胞中具有抑制炎症的特性。鉴于 IKVAV 和 YIGSR 通过不同的整合素受体与细胞相互作用的不同作用,我们不禁要问:层粘连蛋白衍生肽 YIGSR 在管理巨噬细胞功能方面起着什么作用?我们还通过 Luminex Bead 检测法分析了人和鼠巨噬细胞对 YIGSR 反应的分泌组。浓度较低的 YIGSR 会增加巨噬细胞的炎症反应,而浓度较高的 YIGSR 则会在相同的时间范围内产生相反的影响。分泌组学评估还表明,低浓度 YIGSR 会增加 M0、M1、M2 巨噬细胞中的促炎趋化因子和细胞因子,而高浓度则会减少促炎分泌。YIGSR 对巨噬细胞功能的影响可用于再生医学和癌症治疗领域免疫工程策略的开发。
{"title":"YIGSR, A Laminin-Derived Peptide, Dictates a Concentration-Dependent Impact on Macrophage Phenotype Response","authors":"Aakanksha Jha, Erika Moore","doi":"10.1007/s12195-024-00810-5","DOIUrl":"https://doi.org/10.1007/s12195-024-00810-5","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Macrophage immune cells play crucial roles in the inflammatory (M1) and regenerative (M2) processes. The extracellular matrix (ECM) composition, including presentation of embedded ligands, governs macrophage function. Laminin concentration is abundant in the basement membrane and is dependent on pathological state: reduced in inflammation and increased during regeneration. Distinct laminin ligands, such as IKVAV and YIGSR, have disparate roles in dictating cell function. For example, IKVAV, derived from the alpha chain of laminin, promotes angiogenesis and metastasis of cancer cells whereas YIGSR, beta chain derived, impedes angiogenesis and tumor progression. Previous work has demonstrated IKVAV’s inflammation inhibiting properties in macrophages. Given the divergent role of IKVAV and YIGSR in interacting with cells through varied integrin receptors, we ask: what role does laminin derived peptide YIGSR play in governing macrophage function?</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We quantified the influence of YIGSR on macrophage phenotype in 2D and 3D via immunostaining assessments for M1 marker inducible nitric oxide synthase (iNOS) and M2 marker Arginase−1 (Arg-1). We also analysed the secretome of human and murine macrophage response to YIGSR via a Luminex bead assay.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>YIGSR impact on macrophage phenotype occurs in a concentration-dependent manner. At lower concentrations of YIGSR, macrophage inflammation was increased whereas, at higher concentrations of YIGSR the opposite effect was seen within the same time frame. Secretomic assessments also demonstrate that pro-inflammatory chemokines and cytokines were increased at low YIGSR concentrations in M0, M1, M2 macrophages while pro-inflammatory secretion was reduced at higher concentrations.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>YIGSR can be used as a tool to modulate macrophage inflammatory state within M1 and M2 phenotypes depending on the concentration of peptide. YIGSR’s impact on macrophage function can be leveraged for the development of immunoengineering strategies in regenerative medicine and cancer therapy.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"28 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular and molecular bioengineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1