首页 > 最新文献

Cellular and molecular bioengineering最新文献

英文 中文
Leveraging Cell Migration Dynamics to Discriminate Between Senescent and Presenescent Human Mesenchymal Stem Cells 利用细胞迁移动力学区分衰老和成熟的人类间充质干细胞
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-07-20 DOI: 10.1007/s12195-024-00807-0
Farshad Amiri, Panagiotis Mistriotis

Purpose

The suboptimal clinical performance of human mesenchymal stem cells (hMSCs) has raised concerns about their therapeutic potential. One major contributing factor to this issue is the heterogeneous nature of hMSCs. Senescent cell accumulation during stem cell expansion is a key driver of MSC heterogeneity. Current methodologies to eradicate senescent hMSCs have either shown limited success or lack clinical relevance. This study leverages the inherent capacity of hMSCs to migrate toward damaged tissues as a means to discern senescent from presenescent stem cells. Given the established deficiency of senescent cells to migrate through physiologically relevant environments, we hypothesized that a microfluidic device, designed to emulate key facets of in vivo cell motility, could serve as a platform for identifying presenescent cells.

Methods

We employed a Y-shaped microchannel assay, which allows fine-tuning of fluid flow rates and the degree of confinement.

Results

Highly migratory hMSCs detected by the device not only demonstrate increased speed, smaller size, and higher proliferative capacity but also manifest reduced DNA damage and senescence compared to non-migratory cells. Additionally, this assay detects presenescent cells in experiments with mixed early and late passage cells. The introduction of fluid flow through the device can further increase the fraction of highly motile stem cells, improving the assay's effectiveness to remove senescent hMSCs.

Conclusions

Collectively, this assay facilitates the detection and isolation of a highly potent stem cell subpopulation. Given the positive correlation between the migratory potential of administered MSCs and the long-term clinical outcome, delivering homogeneous, highly motile presenescent hMSCs may benefit patient outcomes.

目的 人类间充质干细胞(hMSCs)的临床表现不尽如人意,引发了人们对其治疗潜力的担忧。造成这一问题的一个主要因素是间充质干细胞的异质性。干细胞扩增过程中衰老细胞的积累是间充质干细胞异质性的主要驱动因素。目前根除衰老hMSCs的方法要么成功率有限,要么缺乏临床意义。本研究利用hMSCs向受损组织迁移的固有能力,作为辨别衰老干细胞和新生干细胞的一种方法。鉴于衰老细胞缺乏在生理相关环境中迁移的能力,我们假设一个微流体装置可作为识别衰老细胞的平台,该装置旨在模拟体内细胞运动的关键环节。结果与非迁移性细胞相比,该装置检测到的高迁移性 hMSCs 不仅速度更快、体积更小、增殖能力更强,而且 DNA 损伤和衰老程度也有所降低。此外,这种检测方法还能在混合早期和晚期细胞的实验中检测到衰老前的细胞。通过该装置引入液流可进一步增加高运动性干细胞的比例,从而提高该检测方法去除衰老hMSCs的效果。鉴于给药间充质干细胞的迁移潜能与长期临床疗效之间存在正相关,提供均一、高运动性的衰老前hMSCs可能有利于患者的疗效。
{"title":"Leveraging Cell Migration Dynamics to Discriminate Between Senescent and Presenescent Human Mesenchymal Stem Cells","authors":"Farshad Amiri, Panagiotis Mistriotis","doi":"10.1007/s12195-024-00807-0","DOIUrl":"https://doi.org/10.1007/s12195-024-00807-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The suboptimal clinical performance of human mesenchymal stem cells (hMSCs) has raised concerns about their therapeutic potential. One major contributing factor to this issue is the heterogeneous nature of hMSCs. Senescent cell accumulation during stem cell expansion is a key driver of MSC heterogeneity. Current methodologies to eradicate senescent hMSCs have either shown limited success or lack clinical relevance. This study leverages the inherent capacity of hMSCs to migrate toward damaged tissues as a means to discern senescent from presenescent stem cells. Given the established deficiency of senescent cells to migrate through physiologically relevant environments, we hypothesized that a microfluidic device, designed to emulate key facets of in vivo cell motility, could serve as a platform for identifying presenescent cells.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We employed a Y-shaped microchannel assay, which allows fine-tuning of fluid flow rates and the degree of confinement.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Highly migratory hMSCs detected by the device not only demonstrate increased speed, smaller size, and higher proliferative capacity but also manifest reduced DNA damage and senescence compared to non-migratory cells. Additionally, this assay detects presenescent cells in experiments with mixed early and late passage cells. The introduction of fluid flow through the device can further increase the fraction of highly motile stem cells, improving the assay's effectiveness to remove senescent hMSCs.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Collectively, this assay facilitates the detection and isolation of a highly potent stem cell subpopulation. Given the positive correlation between the migratory potential of administered MSCs and the long-term clinical outcome, delivering homogeneous, highly motile presenescent hMSCs may benefit patient outcomes.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"31 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THP-1 Macrophages Limit Neutrophil Transendothelial Migration in a Model Infection THP-1 巨噬细胞在模型感染中限制中性粒细胞跨内皮迁移
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-07-20 DOI: 10.1007/s12195-024-00813-2
Aitana Ignes-Romeu, Hannah K. Weppner, Tanisha Kaur, Maya Singh, Laurel E. Hind

Introduction

Dysregulated neutrophil function plays a significant role in the pathology of infections, cancer, cardiovascular diseases, and autoimmune disorders. Neutrophil activity is influenced by various cell populations, including macrophages, which are crucial regulators. However, the exact role of human macrophages in controlling neutrophil function remains unclear due to a scarcity of studies utilizing human cells in physiologically relevant models.

Methods

We adapted our “Infection-on-a-Chip” microfluidic device to incorporate macrophages within the collagen extracellular matrix, allowing for the study of interactions between human neutrophils and macrophages in a context that mimics in vivo conditions. The integration of THP-1 macrophages was optimized and their effect on the endothelial lumen was characterized, focusing on permeability and structural integrity. The device was then employed to examine the influence of macrophages on neutrophil response to infection with the bacterial pathogen Pseudomonas aeruginosa.

Results

Integration of THP-1 macrophages into the microfluidic device was successfully optimized, showing no increase in endothelial permeability or structural damage. The presence of macrophages was found to significantly reduce neutrophil transendothelial migration in response to Pseudomonas aeruginosa infection.

Conclusions

Our findings highlight the regulatory role of macrophages in modulating neutrophil responses, suggesting potential therapeutic targets to control neutrophil function in various diseases. The modified microfluidic platform offers a valuable tool for mechanistic studies into macrophage-neutrophil interactions in disease contexts.

导言中性粒细胞功能失调在感染、癌症、心血管疾病和自身免疫性疾病的病理过程中起着重要作用。中性粒细胞的活性受多种细胞群的影响,其中巨噬细胞是关键的调节因子。我们对 "芯片感染 "微流控装置进行了改装,将巨噬细胞整合到胶原细胞外基质中,从而可以在模拟体内环境的条件下研究人中性粒细胞和巨噬细胞之间的相互作用。对 THP-1 巨噬细胞的整合进行了优化,并描述了它们对内皮腔的影响,重点是通透性和结构完整性。然后利用该装置检测了巨噬细胞对中性粒细胞感染细菌病原体铜绿假单胞菌反应的影响。结果在微流控装置中成功优化了 THP-1 巨噬细胞的整合,结果显示内皮通透性和结构损伤没有增加。结论我们的研究结果突显了巨噬细胞在调节中性粒细胞反应中的调控作用,为控制中性粒细胞在各种疾病中的功能提出了潜在的治疗靶点。改良的微流控平台为研究疾病中巨噬细胞与中性粒细胞相互作用的机理提供了宝贵的工具。
{"title":"THP-1 Macrophages Limit Neutrophil Transendothelial Migration in a Model Infection","authors":"Aitana Ignes-Romeu, Hannah K. Weppner, Tanisha Kaur, Maya Singh, Laurel E. Hind","doi":"10.1007/s12195-024-00813-2","DOIUrl":"https://doi.org/10.1007/s12195-024-00813-2","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Dysregulated neutrophil function plays a significant role in the pathology of infections, cancer, cardiovascular diseases, and autoimmune disorders. Neutrophil activity is influenced by various cell populations, including macrophages, which are crucial regulators. However, the exact role of human macrophages in controlling neutrophil function remains unclear due to a scarcity of studies utilizing human cells in physiologically relevant models.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We adapted our “Infection-on-a-Chip” microfluidic device to incorporate macrophages within the collagen extracellular matrix, allowing for the study of interactions between human neutrophils and macrophages in a context that mimics in vivo conditions. The integration of THP-1 macrophages was optimized and their effect on the endothelial lumen was characterized, focusing on permeability and structural integrity. The device was then employed to examine the influence of macrophages on neutrophil response to infection with the bacterial pathogen <i>Pseudomonas aeruginosa</i>.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Integration of THP-1 macrophages into the microfluidic device was successfully optimized, showing no increase in endothelial permeability or structural damage. The presence of macrophages was found to significantly reduce neutrophil transendothelial migration in response to <i>Pseudomonas aeruginosa</i> infection.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our findings highlight the regulatory role of macrophages in modulating neutrophil responses, suggesting potential therapeutic targets to control neutrophil function in various diseases. The modified microfluidic platform offers a valuable tool for mechanistic studies into macrophage-neutrophil interactions in disease contexts.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"42 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Transcriptional Programs During Single NK Cell Killing: Connecting Form to Function in Cellular Immunotherapy 单个 NK 细胞杀伤过程中的动态转录程序:连接细胞免疫疗法的形式与功能
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-07-09 DOI: 10.1007/s12195-024-00812-3
Joseph T. Decker, Matthew S. Hall, Devak Nanua, Sophia M. Orbach, Jyotirmoy Roy, Amogh Angadi, Julianna Caton, Lauren Hesse, Jacqueline S. Jeruss, Lonnie D. Shea

Introduction

Natural killer (NK) cell-based therapies are a promising new method for treating indolent cancer, however engineering new therapies is complex and progress towards therapy for solid tumors is slow. New methods for determining the underlying intracellular signaling driving the killing phenotype would significantly improve this progress.

Methods

We combined single-cell RNA sequencing with live cell imaging of a model system of NK cell killing to correlate transcriptomic data with functional output. A model of NK cell activity, the NK-92 cell line killing of HeLa cervical cancer cells, was used for these studies. NK cell killing activity was observed by microscopy during co-culture with target HeLa cells and killing activity subsequently manually mapped based on NK cell location and Annexin V expression. NK cells from this culture system were profiled by single-cell RNA sequencing using the 10× Genomics platform, and transcription factor activity inferred using the Viper and DoRothEA R packages. Luminescent microscopy of reporter constructs in the NK cells was then used to correlate activity of inferred transcriptional activity with killing activity.

Results

NK cells had heterogeneous killing activity during 10 h of culture with target HeLa cells. Analysis of the single cell sequencing data identified Nuclear Factor Kappa B (NF-κB), Signal Transducer and Activator of Transcription 1 (STAT1) and MYC activity as potential drivers of NK cell functional phenotype in our model system. Live cell imaging of the transcription factor activity found NF-κB activity was significantly correlated with past killing activity. No correlation was observed between STAT1 or MYC activity and NK cell killing.

Conclusions

Combining luminescent microscopy of transcription factor activity with single-cell RNA sequencing is an effective means of assigning functional phenotypes to inferred transcriptomics data.

导言:基于自然杀伤(NK)细胞的疗法是治疗轻度癌症的一种前景广阔的新方法,然而新疗法的工程设计非常复杂,实体瘤的治疗进展缓慢。我们将单细胞 RNA 测序与 NK 细胞杀伤模型系统的活细胞成像相结合,将转录组数据与功能输出相关联。这些研究使用了一个 NK 细胞活性模型,即杀死 HeLa 宫颈癌细胞的 NK-92 细胞系。在与目标 HeLa 细胞共培养的过程中,通过显微镜观察 NK 细胞的杀伤活性,然后根据 NK 细胞的位置和 Annexin V 表达手动绘制杀伤活性图。利用 10× Genomics 平台对该培养体系中的 NK 细胞进行单细胞 RNA 测序,并利用 Viper 和 DoRothEA R 软件包推断转录因子的活性。结果NK细胞在与目标HeLa细胞培养10小时后具有不同的杀伤活性。对单细胞测序数据的分析发现,核因子卡巴B(NF-κB)、信号转导和转录激活因子1(STAT1)和MYC活性是我们的模型系统中NK细胞功能表型的潜在驱动因素。对转录因子活性的活细胞成像发现,NF-κB 活性与过去的杀伤活性显著相关。结论将转录因子活性的发光显微镜技术与单细胞 RNA 测序技术相结合,是为推断的转录组学数据分配功能表型的有效方法。
{"title":"Dynamic Transcriptional Programs During Single NK Cell Killing: Connecting Form to Function in Cellular Immunotherapy","authors":"Joseph T. Decker, Matthew S. Hall, Devak Nanua, Sophia M. Orbach, Jyotirmoy Roy, Amogh Angadi, Julianna Caton, Lauren Hesse, Jacqueline S. Jeruss, Lonnie D. Shea","doi":"10.1007/s12195-024-00812-3","DOIUrl":"https://doi.org/10.1007/s12195-024-00812-3","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Natural killer (NK) cell-based therapies are a promising new method for treating indolent cancer, however engineering new therapies is complex and progress towards therapy for solid tumors is slow. New methods for determining the underlying intracellular signaling driving the killing phenotype would significantly improve this progress.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We combined single-cell RNA sequencing with live cell imaging of a model system of NK cell killing to correlate transcriptomic data with functional output. A model of NK cell activity, the NK-92 cell line killing of HeLa cervical cancer cells, was used for these studies. NK cell killing activity was observed by microscopy during co-culture with target HeLa cells and killing activity subsequently manually mapped based on NK cell location and Annexin V expression. NK cells from this culture system were profiled by single-cell RNA sequencing using the 10× Genomics platform, and transcription factor activity inferred using the Viper and DoRothEA R packages. Luminescent microscopy of reporter constructs in the NK cells was then used to correlate activity of inferred transcriptional activity with killing activity.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>NK cells had heterogeneous killing activity during 10 h of culture with target HeLa cells. Analysis of the single cell sequencing data identified Nuclear Factor Kappa B (NF-κB), Signal Transducer and Activator of Transcription 1 (STAT1) and MYC activity as potential drivers of NK cell functional phenotype in our model system. Live cell imaging of the transcription factor activity found NF-κB activity was significantly correlated with past killing activity. No correlation was observed between STAT1 or MYC activity and NK cell killing.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Combining luminescent microscopy of transcription factor activity with single-cell RNA sequencing is an effective means of assigning functional phenotypes to inferred transcriptomics data.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"18 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the Effects of Chirality on Self-Assembling Peptides: Hydrogel Formation, Degradation, Antigen Release, and Adjuvancy 探究手性对自组装肽的影响:水凝胶的形成、降解、抗原释放和佐剂作用
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-07-08 DOI: 10.1007/s12195-024-00806-1
Anushka Agrawal, Erin M. Euliano, Brett H. Pogostin, Marina H. Yu, Joseph W. R. Swain, Jeffrey D. Hartgerink, Kevin J. McHugh

Introduction

Multidomain peptides (MDPs) are amino acid sequences that self-assemble to form supramolecular hydrogels under physiological conditions that have shown promise for a number of biomedical applications. K2(SL)6K2 (“K2”), a widely studied MDP, has demonstrated the ability to enhance the humoral immune response to co-delivered antigen. Herein, we sought to explore the in vitro and in vivo properties of a peptide with the same sequence but opposite chirality (D-K2) since peptides composed of D-amino acids are resistant to protease degradation and potentially more immunostimulatory than their canonical counterparts.

Methods

K2 and D-K2 hydrogels were characterized and evaluated in vitro using circular dichroism, rheology, cryo-electron microscopy, and fluorescence recovery after photobleaching studies. In vivo experiments in SKH-1 mice were conducted to evaluate both ovalbumin release from the hydrogels and hydrogel degradation. The injection site of the hydrogels was analyzed using histology and humoral immunity was assessed by ELISA.

Results

In vitro, the enantiomeric hydrogels exhibited similar rheological properties, and fluorescence recovery after photobleaching experiments demonstrated that the diffusion of ovalbumin (OVA), a model antigen, was similar within both hydrogels. In vivo, K2 and D-K2 peptide hydrogels had similar OVA release rates, both releasing 89% of the antigen within 8 days. Both hydrogels elicited a similar antigen-specific humoral immune response. However, the in vivo degradation of the D-K2 hydrogel progressed significantly slower than K2. After 4 weeks in vivo, only 23 ± 7% of the K2 hydrogel remained at the injection site compared to 94 ± 7% of the D-K2 hydrogel, likely due to their different protease susceptibilities.

Conclusion

Taken together, these data suggest that peptide chirality can be a useful tool for increasing hydrogel residence time for biomedical applications that would benefit from long persistence times and that, if an antigen releases over a sufficiently short period, release can be largely independent of degradation rate, though slower-diffusing payloads may exhibit degradation rate dependence.

导言多肽(MDP)是一种氨基酸序列,可在生理条件下自组装形成超分子水凝胶,具有多种生物医学应用前景。K2(SL)6K2("K2")是一种被广泛研究的 MDP,它已被证明能够增强对联合递送抗原的体液免疫反应。在此,我们试图探索一种具有相同序列但手性相反的多肽(D-K2)的体外和体内特性,因为由 D-氨基酸组成的多肽可抗蛋白酶降解,而且可能比其典型对应物更具免疫刺激作用。方法 使用圆二色性、流变学、冷冻电镜和光漂白后荧光恢复研究对 K2 和 D-K2 水凝胶进行了体外表征和评估。对 SKH-1 小鼠进行了体内实验,以评估水凝胶中卵清蛋白的释放和水凝胶降解情况。结果体外实验中,对映体水凝胶表现出相似的流变特性,光漂白实验后的荧光恢复表明,模型抗原卵清蛋白(OVA)在两种水凝胶中的扩散情况相似。在体内,K2 和 D-K2 肽水凝胶的 OVA 释放率相似,都能在 8 天内释放 89% 的抗原。两种水凝胶引起的抗原特异性体液免疫反应相似。然而,D-K2 水凝胶的体内降解速度明显慢于 K2。综合来看,这些数据表明,多肽手性是一种有用的工具,可以延长水凝胶在生物医学应用中的停留时间,从而受益于较长的持续时间,而且如果抗原在足够短的时间内释放,释放在很大程度上与降解率无关,尽管扩散速度较慢的有效载荷可能会表现出降解率依赖性。
{"title":"Probing the Effects of Chirality on Self-Assembling Peptides: Hydrogel Formation, Degradation, Antigen Release, and Adjuvancy","authors":"Anushka Agrawal, Erin M. Euliano, Brett H. Pogostin, Marina H. Yu, Joseph W. R. Swain, Jeffrey D. Hartgerink, Kevin J. McHugh","doi":"10.1007/s12195-024-00806-1","DOIUrl":"https://doi.org/10.1007/s12195-024-00806-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Multidomain peptides (MDPs) are amino acid sequences that self-assemble to form supramolecular hydrogels under physiological conditions that have shown promise for a number of biomedical applications. K<sub>2</sub>(SL)<sub>6</sub>K<sub>2</sub> (“K<sub>2</sub>”), a widely studied MDP, has demonstrated the ability to enhance the humoral immune response to co-delivered antigen. Herein, we sought to explore the in vitro and in vivo properties of a peptide with the same sequence but opposite chirality (D-K<sub>2</sub>) since peptides composed of D-amino acids are resistant to protease degradation and potentially more immunostimulatory than their canonical counterparts.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>K<sub>2</sub> and D-K<sub>2</sub> hydrogels were characterized and evaluated in vitro using circular dichroism, rheology, cryo-electron microscopy, and fluorescence recovery after photobleaching studies. In vivo experiments in SKH-1 mice were conducted to evaluate both ovalbumin release from the hydrogels and hydrogel degradation. The injection site of the hydrogels was analyzed using histology and humoral immunity was assessed by ELISA.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>In vitro, the enantiomeric hydrogels exhibited similar rheological properties, and fluorescence recovery after photobleaching experiments demonstrated that the diffusion of ovalbumin (OVA), a model antigen, was similar within both hydrogels. In vivo, K<sub>2</sub> and D-K<sub>2</sub> peptide hydrogels had similar OVA release rates, both releasing 89% of the antigen within 8 days. Both hydrogels elicited a similar antigen-specific humoral immune response. However, the in vivo degradation of the D-K<sub>2</sub> hydrogel progressed significantly slower than K<sub>2</sub>. After 4 weeks in vivo, only 23 ± 7% of the K<sub>2</sub> hydrogel remained at the injection site compared to 94 ± 7% of the D-K<sub>2</sub> hydrogel, likely due to their different protease susceptibilities.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Taken together, these data suggest that peptide chirality can be a useful tool for increasing hydrogel residence time for biomedical applications that would benefit from long persistence times and that, if an antigen releases over a sufficiently short period, release can be largely independent of degradation rate, though slower-diffusing payloads may exhibit degradation rate dependence.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"43 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetoactive, Kirigami-Inspired Hammocks to Probe Lung Epithelial Cell Function 受桐木启发的磁活性吊床可探测肺上皮细胞功能
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-07-08 DOI: 10.1007/s12195-024-00808-z
Katherine Wei, Avinava Roy, Sonia Ejike, Madeline K. Eiken, Eleanor M. Plaster, Alan Shi, Max Shtein, Claudia Loebel

Introduction

Mechanical forces provide critical biological signals to cells. Within the distal lung, tensile forces act across the basement membrane and epithelial cells atop. Stretching devices have supported studies of mechanical forces in distal lung epithelium to gain mechanistic insights into pulmonary diseases. However, the integration of curvature into devices applying mechanical forces onto lung epithelial cell monolayers has remained challenging. To address this, we developed a hammock-shaped platform that offers desired curvature and mechanical forces to lung epithelial monolayers.

Methods

We developed hammocks using polyethylene terephthalate (PET)-based membranes and magnetic-particle modified silicone elastomer films within a 48-well plate that mimic the alveolar curvature and tensile forces during breathing. These hammocks were engineered and characterized for mechanical and cell-adhesive properties to facilitate cell culture. Using human small airway epithelial cells (SAECs), we measured monolayer formation and mechanosensing using F-Actin staining and immunofluorescence for cytokeratin to visualize intermediate filaments.

Results

We demonstrate a multi-functional design that facilitates a range of curvatures along with the incorporation of magnetic elements for dynamic actuation to induce mechanical forces. Using this system, we then showed that SAECs remain viable, proliferate, and form an epithelial cell monolayer across the entire hammock. By further applying mechanical stimulation via magnetic actuation, we observed an increase in proliferation and strengthening of the cytoskeleton, suggesting an increase in mechanosensing.

Conclusion

This hammock strategy provides an easily accessible and tunable cell culture platform for mimicking distal lung mechanical forces in vitro. We anticipate the promise of this culture platform for mechanistic studies, multi-modal stimulation, and drug or small molecule testing, extendable to other cell types and organ systems.

导言机械力为细胞提供了重要的生物信号。在肺远端,拉力作用于基底膜和上皮细胞顶部。拉伸装置有助于对远端肺上皮细胞的机械力进行研究,从而从机理上了解肺部疾病。然而,将曲率整合到在肺上皮细胞单层上施加机械力的装置中仍具有挑战性。为了解决这个问题,我们开发了一种吊床形状的平台,为肺上皮细胞单层提供所需的曲率和机械力。方法我们在 48 孔板中使用聚对苯二甲酸乙二醇酯(PET)膜和磁粉修饰的硅弹性体薄膜开发了吊床,模拟呼吸时的肺泡曲率和拉伸力。这些吊床经过设计,具有机械和细胞粘附特性,便于细胞培养。我们利用人类小气道上皮细胞(SAECs),使用 F-肌动蛋白染色法和细胞角蛋白免疫荧光法测量了单层细胞的形成和机械感应,以观察中间丝。使用该系统后,我们发现 SAECs 在整个吊床中仍能存活、增殖并形成上皮细胞单层。通过磁驱动进一步施加机械刺激,我们观察到细胞增殖增加,细胞骨架增强,表明机械传感增强。我们预计这种培养平台有望用于机理研究、多模式刺激、药物或小分子测试,并可扩展到其他细胞类型和器官系统。
{"title":"Magnetoactive, Kirigami-Inspired Hammocks to Probe Lung Epithelial Cell Function","authors":"Katherine Wei, Avinava Roy, Sonia Ejike, Madeline K. Eiken, Eleanor M. Plaster, Alan Shi, Max Shtein, Claudia Loebel","doi":"10.1007/s12195-024-00808-z","DOIUrl":"https://doi.org/10.1007/s12195-024-00808-z","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Mechanical forces provide critical biological signals to cells. Within the distal lung, tensile forces act across the basement membrane and epithelial cells atop. Stretching devices have supported studies of mechanical forces in distal lung epithelium to gain mechanistic insights into pulmonary diseases. However, the integration of curvature into devices applying mechanical forces onto lung epithelial cell monolayers has remained challenging. To address this, we developed a hammock-shaped platform that offers desired curvature and mechanical forces to lung epithelial monolayers.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We developed hammocks using polyethylene terephthalate (PET)-based membranes and magnetic-particle modified silicone elastomer films within a 48-well plate that mimic the alveolar curvature and tensile forces during breathing. These hammocks were engineered and characterized for mechanical and cell-adhesive properties to facilitate cell culture. Using human small airway epithelial cells (SAECs), we measured monolayer formation and mechanosensing using F-Actin staining and immunofluorescence for cytokeratin to visualize intermediate filaments.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We demonstrate a multi-functional design that facilitates a range of curvatures along with the incorporation of magnetic elements for dynamic actuation to induce mechanical forces. Using this system, we then showed that SAECs remain viable, proliferate, and form an epithelial cell monolayer across the entire hammock. By further applying mechanical stimulation via magnetic actuation, we observed an increase in proliferation and strengthening of the cytoskeleton, suggesting an increase in mechanosensing.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This hammock strategy provides an easily accessible and tunable cell culture platform for mimicking distal lung mechanical forces in vitro. We anticipate the promise of this culture platform for mechanistic studies, multi-modal stimulation, and drug or small molecule testing, extendable to other cell types and organ systems.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"84 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular Traction Force Holds the Potential as a Drug Testing Readout for In Vitro Cancer Metastasis 细胞牵引力有望成为体外癌症转移的药物测试读数
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-07-04 DOI: 10.1007/s12195-024-00811-4
Hui Yan Liew, Xiao Hui Liew, Wei Xuan Lin, Yee Zhen Lee, Yong Sze Ong, Satoshi Ogawa, Lor Huai Chong

Introduction

Metastasis is responsible for 90% of cancer-related deaths worldwide. However, the potential inhibitory effects of metastasis by various anticancer drugs have been left largely unexplored. Existing preclinical models primarily focus on antiproliferative agents on the primary tumor to halt the cancer growth but not in metastasis. Unlike primary tumors, metastasis requires cancer cells to exert sufficient cellular traction force through the actomyosin machinery to migrate away from the primary tumor site. Therefore, we seek to explore the potential of cellular traction force as a novel readout for screening drugs that target cancer metastasis.

Methods

In vitro models of invasive and non-invasive breast cancer were first established using MDA-MB-231 and MCF-7 cell lines, respectively. Cellular morphology was characterized, revealing spindle-like morphology in MDA-MB-231 and spherical morphology in MCF-7 cells. The baseline cellular traction force was quantified using the Traction force Microscopy technique. Cisplatin, a paradigm antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, were selected to evaluate the potential of cellular traction force as a drug testing readout for the in vitro cancer metastasis.

Results

MDA-MB-231 cells exhibited significantly higher baseline cellular traction force compared to MCF-7 cells. Treatment with Cisplatin, an antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, demonstrated distinct effects on cellular traction force in MDA-MB-231 but not in MCF-7 cells. These findings correlate with the invasive potential observed in the two models.

Conclusion

Cellular traction force emerges as a promising metric for evaluating drug efficacy in inhibiting cancer metastasis using in vitro models. This approach could enhance the screening and development of novel anti-metastatic therapies, addressing a critical gap in current anticancer drug research.

导言:全球 90% 的癌症相关死亡病例都是转移造成的。然而,各种抗癌药物对转移瘤的潜在抑制作用在很大程度上尚未得到研究。现有的临床前模型主要关注原发肿瘤的抗增殖药物,以阻止癌症生长,但对转移瘤却没有作用。与原发肿瘤不同,转移瘤需要癌细胞通过肌动蛋白机制产生足够的细胞牵引力,以远离原发肿瘤部位。因此,我们试图探索细胞牵引力作为一种新型读数的潜力,以筛选针对癌症转移的药物。方法首先分别使用 MDA-MB-231 和 MCF-7 细胞系建立了浸润性和非浸润性乳腺癌的体外模型。对细胞形态进行表征,发现 MDA-MB-231 细胞呈纺锤形,MCF-7 细胞呈球形。使用牵引力显微镜技术对基线细胞牵引力进行了量化。结果MDA-MB-231细胞的基线细胞牵引力明显高于MCF-7细胞。抗转移药物顺铂和非抗转移药物 5-氟尿嘧啶 (5FU) 对 MDA-MB-231 细胞的细胞牵引力有不同的影响,但对 MCF-7 细胞没有影响。这些发现与在这两种模型中观察到的侵袭潜力相关。这种方法可以促进新型抗转移疗法的筛选和开发,解决目前抗癌药物研究中的一个关键缺口。
{"title":"Cellular Traction Force Holds the Potential as a Drug Testing Readout for In Vitro Cancer Metastasis","authors":"Hui Yan Liew, Xiao Hui Liew, Wei Xuan Lin, Yee Zhen Lee, Yong Sze Ong, Satoshi Ogawa, Lor Huai Chong","doi":"10.1007/s12195-024-00811-4","DOIUrl":"https://doi.org/10.1007/s12195-024-00811-4","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Metastasis is responsible for 90% of cancer-related deaths worldwide. However, the potential inhibitory effects of metastasis by various anticancer drugs have been left largely unexplored. Existing preclinical models primarily focus on antiproliferative agents on the primary tumor to halt the cancer growth but not in metastasis. Unlike primary tumors, metastasis requires cancer cells to exert sufficient cellular traction force through the actomyosin machinery to migrate away from the primary tumor site. Therefore, we seek to explore the potential of cellular traction force as a novel readout for screening drugs that target cancer metastasis.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In vitro models of invasive and non-invasive breast cancer were first established using MDA-MB-231 and MCF-7 cell lines, respectively. Cellular morphology was characterized, revealing spindle-like morphology in MDA-MB-231 and spherical morphology in MCF-7 cells. The baseline cellular traction force was quantified using the Traction force Microscopy technique. Cisplatin, a paradigm antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, were selected to evaluate the potential of cellular traction force as a drug testing readout for the in vitro cancer metastasis.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>MDA-MB-231 cells exhibited significantly higher baseline cellular traction force compared to MCF-7 cells. Treatment with Cisplatin, an antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, demonstrated distinct effects on cellular traction force in MDA-MB-231 but not in MCF-7 cells. These findings correlate with the invasive potential observed in the two models.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Cellular traction force emerges as a promising metric for evaluating drug efficacy in inhibiting cancer metastasis using in vitro models. This approach could enhance the screening and development of novel anti-metastatic therapies, addressing a critical gap in current anticancer drug research.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"48 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary Human Cell-Derived Extracellular Matrix from Decellularized Fibroblast Microtissues with Tissue-Dependent Composition and Microstructure 脱细胞成纤维细胞微组织的原代人体细胞衍生细胞外基质,其成分和微结构取决于组织结构
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-07-04 DOI: 10.1007/s12195-024-00809-y
Vera C. Fonseca, Vivian Van, Blanche C. Ip

Purpose

Human extracellular matrix (ECM) exhibits complex protein composition and architecture depending on tissue and disease state, which remains challenging to reverse engineer. One promising approach is based on cell-secreted ECM from primary human fibroblasts that can be decellularized into acellular biomaterials. However, fibroblasts cultured on rigid culture plastic or biomaterial scaffolds can experience aberrant mechanical cues that perturb the biochemical, mechanical, and the efficiency of ECM production.

Methods

Here, we demonstrate a method for preparing decellularized ECM using primary human fibroblasts with tissue and disease-specific features with two case studies: (1) cardiac fibroblasts; (2) lung fibroblasts from healthy or diseased donors. Cells aggregate into engineered microtissues in low adhesion microwells that deposited ECM and can be decellularized. We systematically investigate microtissue morphology, matrix architecture, and mechanical properties, along with transcriptomic and proteomic analysis.

Results

Microtissues exhibited tissue-specific gene expression and proteomics profiling, with ECM complexity similar to native tissues. Healthy lung microtissues exhibited web-like fibrillar collagen compared to dense patches in healthy heart microtissues. Diseased lung exhibited more disrupted collagen architecture than healthy. Decellularized microtissues had tissue-specific mechanical stiffness that was physiologically relevant. Importantly, decellularized microtissues supported viability and proliferation of human cells.

Conclusions

We show that engineered microtissues of primary human fibroblasts seeded in low-adhesion microwells can be decellularized to produce human, tissue and disease-specific ECM. This approach should be widely applicable for generating personalized matrix that recapitulate tissues and disease states, relevant for culturing patient cells ex vivo as well as implantation for therapeutic treatments.

目的人体细胞外基质(ECM)因组织和疾病状态的不同而表现出复杂的蛋白质组成和结构,这对逆向工程来说仍然具有挑战性。一种很有前景的方法是基于原代人体成纤维细胞分泌的 ECM,这种 ECM 可以脱细胞成为无细胞生物材料。然而,在刚性培养塑料或生物材料支架上培养的成纤维细胞可能会经历异常的机械线索,从而干扰 ECM 生成的生化、机械和效率。方法在此,我们通过两个案例研究展示了一种利用具有组织和疾病特异性特征的原代人类成纤维细胞制备脱细胞 ECM 的方法:(1)心脏成纤维细胞;(2)来自健康或患病供体的肺成纤维细胞。细胞在沉积 ECM 的低粘附微孔中聚集成工程微组织,并可进行脱细胞处理。我们系统地研究了微组织形态、基质结构和机械性能,并进行了转录组学和蛋白质组学分析。结果 微组织表现出组织特异性基因表达和蛋白质组学特征,其 ECM 复杂性与原生组织相似。与健康心脏微组织的致密斑块相比,健康肺部微组织表现出网状纤维胶原。与健康组织相比,患病肺部的胶原结构更为紊乱。脱细胞微组织具有与生理相关的特定组织机械硬度。重要的是,脱细胞微组织支持人体细胞的存活和增殖。结论我们的研究表明,将原代人类成纤维细胞播种到低粘附微孔中的工程微组织可以脱细胞,以产生人类、组织和疾病特异性 ECM。这种方法可广泛应用于生成能再现组织和疾病状态的个性化基质,适用于患者细胞的体外培养和植入治疗。
{"title":"Primary Human Cell-Derived Extracellular Matrix from Decellularized Fibroblast Microtissues with Tissue-Dependent Composition and Microstructure","authors":"Vera C. Fonseca, Vivian Van, Blanche C. Ip","doi":"10.1007/s12195-024-00809-y","DOIUrl":"https://doi.org/10.1007/s12195-024-00809-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Human extracellular matrix (ECM) exhibits complex protein composition and architecture depending on tissue and disease state, which remains challenging to reverse engineer. One promising approach is based on cell-secreted ECM from primary human fibroblasts that can be decellularized into acellular biomaterials. However, fibroblasts cultured on rigid culture plastic or biomaterial scaffolds can experience aberrant mechanical cues that perturb the biochemical, mechanical, and the efficiency of ECM production.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Here, we demonstrate a method for preparing decellularized ECM using primary human fibroblasts with tissue and disease-specific features with two case studies: (1) cardiac fibroblasts; (2) lung fibroblasts from healthy or diseased donors. Cells aggregate into engineered microtissues in low adhesion microwells that deposited ECM and can be decellularized. We systematically investigate microtissue morphology, matrix architecture, and mechanical properties, along with transcriptomic and proteomic analysis.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Microtissues exhibited tissue-specific gene expression and proteomics profiling, with ECM complexity similar to native tissues. Healthy lung microtissues exhibited web-like fibrillar collagen compared to dense patches in healthy heart microtissues. Diseased lung exhibited more disrupted collagen architecture than healthy. Decellularized microtissues had tissue-specific mechanical stiffness that was physiologically relevant. Importantly, decellularized microtissues supported viability and proliferation of human cells.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>We show that engineered microtissues of primary human fibroblasts seeded in low-adhesion microwells can be decellularized to produce human, tissue and disease-specific ECM. This approach should be widely applicable for generating personalized matrix that recapitulate tissues and disease states, relevant for culturing patient cells ex vivo as well as implantation for therapeutic treatments.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"45 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioglitazone Antagonized the Effects of Advanced Glycation End Products on Achilles Tendon Healing and Improved the Recovery of Tendon Biomechanical Properties 吡格列酮拮抗高级糖化终产物对跟腱愈合的影响并改善跟腱生物力学特性的恢复
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-04-02 DOI: 10.1007/s12195-024-00800-7
Gengxin Jia, Xiaoyang Jia, Juan Yang, Tianhao Shi, Minfei Qiang, Yanxi Chen

Purpose

Advanced glycation end products (AGEs) often accumulate in the Achilles tendon during the course of diabetes. This study aims to determine the impact of AGEs on tendon repair and explore the role of pioglitazone in mitigating this impact.

Methods

Forty-eight male 8 week-old Sprague Dawley rats were selected in this study. After transection of Achilles tendon, the rats were randomly divided into four groups. The Achilles tendons of rats were injected with 1000 mmol/L D-ribose to elevate the content of AGEs within the tendons in two groups, the remaining two groups received injections of phosphate buffered saline (PBS) solution. Subsequently, the first two groups were respectively received oral administration of pioglitazone (20 mg/kg/day) and PBS. The remaining two groups were given the same treatment. The expression of the collagen-I, TNF-α, IL-6 of the repaired tendon were detected. The macroscopic, pathologic and biomechanical aspects of tendon healing were also evaluated.

Results

AGEs accumulation in tendon during the healing process increases the expression of inflammatory factors such as TNF-α and IL-6, leading to insufficient synthesis of collagen-I and delayed recovery of the tendon's tensile strength. Pioglitazone significantly attenuated the damage caused by AGEs to the tendon healing process, effectively improving the recovery of tendon tensile strength. Pioglitazone could not inhibit the generation of AGEs in the tissue and also had no impact on the normal healing process of the tendon.

Conclusions

Pioglitazone could prevent the deleterious impact of AGEs on the Achilles tendon healing and improve the biomechanical properties of the tendon.

目的在糖尿病过程中,高级糖化终产物(AGEs)通常会在跟腱中积累。本研究旨在确定 AGEs 对肌腱修复的影响,并探讨吡格列酮在减轻这种影响方面的作用。跟腱横断后,大鼠被随机分为四组。其中两组给大鼠跟腱注射 1000 mmol/L D-核糖以提高肌腱内 AGEs 的含量,其余两组注射磷酸盐缓冲盐水(PBS)溶液。随后,前两组分别口服吡格列酮(20 毫克/千克/天)和 PBS。其余两组的治疗方法相同。检测修复肌腱的胶原蛋白-I、TNF-α和IL-6的表达。结果 在肌腱愈合过程中,AGEs 在肌腱中的积累会增加 TNF-α 和 IL-6 等炎症因子的表达,导致胶原蛋白-I 合成不足,肌腱抗拉强度恢复延迟。吡格列酮能明显减轻 AGEs 对肌腱愈合过程的损伤,有效改善肌腱抗张强度的恢复。结论 吡格列酮可以防止 AGEs 对跟腱愈合的有害影响,改善跟腱的生物力学特性。
{"title":"Pioglitazone Antagonized the Effects of Advanced Glycation End Products on Achilles Tendon Healing and Improved the Recovery of Tendon Biomechanical Properties","authors":"Gengxin Jia, Xiaoyang Jia, Juan Yang, Tianhao Shi, Minfei Qiang, Yanxi Chen","doi":"10.1007/s12195-024-00800-7","DOIUrl":"https://doi.org/10.1007/s12195-024-00800-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Advanced glycation end products (AGEs) often accumulate in the Achilles tendon during the course of diabetes. This study aims to determine the impact of AGEs on tendon repair and explore the role of pioglitazone in mitigating this impact.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Forty-eight male 8 week-old Sprague Dawley rats were selected in this study. After transection of Achilles tendon, the rats were randomly divided into four groups. The Achilles tendons of rats were injected with 1000 mmol/L D-ribose to elevate the content of AGEs within the tendons in two groups, the remaining two groups received injections of phosphate buffered saline (PBS) solution. Subsequently, the first two groups were respectively received oral administration of pioglitazone (20 mg/kg/day) and PBS. The remaining two groups were given the same treatment. The expression of the collagen-I, TNF-α, IL-6 of the repaired tendon were detected. The macroscopic, pathologic and biomechanical aspects of tendon healing were also evaluated.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>AGEs accumulation in tendon during the healing process increases the expression of inflammatory factors such as TNF-α and IL-6, leading to insufficient synthesis of collagen-I and delayed recovery of the tendon's tensile strength. Pioglitazone significantly attenuated the damage caused by AGEs to the tendon healing process, effectively improving the recovery of tendon tensile strength. Pioglitazone could not inhibit the generation of AGEs in the tissue and also had no impact on the normal healing process of the tendon.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Pioglitazone could prevent the deleterious impact of AGEs on the Achilles tendon healing and improve the biomechanical properties of the tendon.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"159 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glioblastoma Cells Use an Integrin- and CD44-Mediated Motor-Clutch Mode of Migration in Brain Tissue 胶质母细胞瘤细胞利用整合素和 CD44 介导的马达离合器模式在脑组织中迁移
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-03-04 DOI: 10.1007/s12195-024-00799-x
Sarah M. Anderson, Marcus Kelly, David J. Odde

Purpose

Glioblastoma (GBM) is an aggressive malignant brain tumor with 2 year survival rates of 6.7% (Stupp et al. in J Clin Oncol Off J Am Soc Clin Oncol 25:4127–4136, 2007; Mohammed et al. in Rep Pract Oncol Radiother 27:1026–1036, 2002). One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue (Lefranc et al. in J Clin Oncol Off J Am Soc Clin Oncol 23:2411–2422, 2005; Hoelzinger et al. in J Natl Cancer Inst 21:1583–1593, 2007). To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Several models of cell migration have been proposed, including the motor-clutch, bleb-based motility, and osmotic engine models.

Methods

Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration.

Results

We found that nearly all cell-vasculature interactions reflected pulling, rather than pushing, on vasculature at the cell leading edge, a finding consistent with a motor-clutch mode of migration, and inconsistent with an osmotic engine model or confined bleb-based migration. Reducing myosin motor activity, a key component in the motor-clutch model, was found to decrease migration speed at high doses for all cell types including U251 and 6 low-passage patient-derived xenograft lines (3 proneural and 3 mesenchymal subtypes). Variable responses were found at low doses, consistent with a motor-clutch mode of migration which predicts a biphasic relationship between migration speed and motor-to-clutch ratio. Targeting of molecular clutches including integrins and CD44 slowed migration of U251 cells.

Conclusions

Overall we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch.

目的胶质母细胞瘤(GBM)是一种侵袭性恶性脑肿瘤,2 年生存率仅为 6.7%(Stupp 等人,发表于 J Clin Oncol Off J Am Soc Clin Oncol 25:4127-4136, 2007;Mohammed 等人,发表于 Rep Pract Oncol Radiother 27:1026-1036, 2002)。这种疾病的一个主要特征是胶质母细胞瘤细胞能够快速迁移并扩散到整个健康的脑组织(Lefranc 等,发表于 J Clin Oncol Off J Am Soc Clin Oncol 23:2411-2422, 2005;Hoelzinger 等,发表于 J Natl Cancer Inst 21:1583-1593, 2007)。要开发出有效针对细胞迁移的治疗方法,就必须了解驱动脑组织细胞迁移的基本机制。方法我们利用共聚焦成像技术测量了胶质母细胞瘤细胞在小鼠有机脑切片中的牵引动态和迁移速度,以确定细胞迁移的模式。结果我们发现,几乎所有细胞与血管的相互作用都反映了细胞前缘对血管的牵引而非推动,这一发现与马达离合器迁移模式一致,而与渗透引擎模式或封闭的蚕泡迁移模式不一致。降低肌球蛋白马达活性是马达离合器模式的关键组成部分,研究发现,高剂量可降低所有细胞类型的迁移速度,包括 U251 和 6 个低通过率患者衍生异种移植系(3 个软骨亚型和 3 个间充质亚型)。在低剂量时发现了不同的反应,这与马达-离合器迁移模式一致,该模式预测了迁移速度与马达-离合器比率之间的双相关系。结论总之,我们发现胶质母细胞瘤细胞的迁移最符合体内通过脑组织迁移的马达-离合器机制,而整合素和 CD44 以及肌球蛋白马达在构成粘附离合器方面发挥着重要作用。
{"title":"Glioblastoma Cells Use an Integrin- and CD44-Mediated Motor-Clutch Mode of Migration in Brain Tissue","authors":"Sarah M. Anderson, Marcus Kelly, David J. Odde","doi":"10.1007/s12195-024-00799-x","DOIUrl":"https://doi.org/10.1007/s12195-024-00799-x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Glioblastoma (GBM) is an aggressive malignant brain tumor with 2 year survival rates of 6.7% (Stupp et al. in J Clin Oncol Off J Am Soc Clin Oncol 25:4127–4136, 2007; Mohammed et al. in Rep Pract Oncol Radiother 27:1026–1036, 2002). One key characteristic of the disease is the ability of glioblastoma cells to migrate rapidly and spread throughout healthy brain tissue (Lefranc et al. in J Clin Oncol Off J Am Soc Clin Oncol 23:2411–2422, 2005; Hoelzinger et al. in J Natl Cancer Inst 21:1583–1593, 2007). To develop treatments that effectively target cell migration, it is important to understand the fundamental mechanism driving cell migration in brain tissue. Several models of cell migration have been proposed, including the motor-clutch, bleb-based motility, and osmotic engine models.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Here we utilized confocal imaging to measure traction dynamics and migration speeds of glioblastoma cells in mouse organotypic brain slices to identify the mode of cell migration.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We found that nearly all cell-vasculature interactions reflected pulling, rather than pushing, on vasculature at the cell leading edge, a finding consistent with a motor-clutch mode of migration, and inconsistent with an osmotic engine model or confined bleb-based migration. Reducing myosin motor activity, a key component in the motor-clutch model, was found to decrease migration speed at high doses for all cell types including U251 and 6 low-passage patient-derived xenograft lines (3 proneural and 3 mesenchymal subtypes). Variable responses were found at low doses, consistent with a motor-clutch mode of migration which predicts a biphasic relationship between migration speed and motor-to-clutch ratio. Targeting of molecular clutches including integrins and CD44 slowed migration of U251 cells.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Overall we find that glioblastoma cell migration is most consistent with a motor-clutch mechanism to migrate through brain tissue ex vivo, and that both integrins and CD44, as well as myosin motors, play an important role in constituting the adhesive clutch.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"30 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Tumor Models to Study Cancer Stemness-Mediated Drug Resistance 研究癌症干细胞介导的抗药性的三维肿瘤模型
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-02-21 DOI: 10.1007/s12195-024-00798-y
Astha Lamichhane, Hossein Tavana

Solid tumors often contain genetically different populations of cancer cells, stromal cells, various structural and soluble proteins, and other soluble signaling molecules. The American Cancer society estimated 1,958,310 new cancer cases and 609,820 cancer deaths in the United States in 2023. A major barrier against successful treatment of cancer patients is drug resistance. Gain of stem cell-like states by cancer cells under drug pressure or due to interactions with the tumor microenvironment is a major mechanism that renders therapies ineffective. Identifying approaches to target cancer stem cells is expected to improve treatment outcomes for patients. Most of our understanding of drug resistance and the role of cancer stemness is from monolayer cell cultures. Recent advances in cell culture technologies have enabled developing sophisticated three-dimensional tumor models that facilitate mechanistic studies of cancer drug resistance. This review summarizes the role of cancer stemness in drug resistance and highlights the various tumor models that are used to discover the underlying mechanisms and test potentially novel therapeutics.

实体瘤通常包含不同基因的癌细胞、基质细胞、各种结构蛋白和可溶性蛋白以及其他可溶性信号分子。据美国癌症协会估计,2023 年美国将新增 1,958,310 例癌症病例和 609,820 例癌症死亡病例。抗药性是成功治疗癌症患者的一大障碍。癌细胞在药物压力下或因与肿瘤微环境相互作用而获得干细胞样状态,是导致疗法无效的主要机制。找到针对癌症干细胞的方法有望改善患者的治疗效果。我们对耐药性和癌症干细胞作用的了解大多来自单层细胞培养。近来细胞培养技术的进步使我们能够建立复杂的三维肿瘤模型,促进癌症耐药性的机理研究。本综述总结了癌症干细胞在耐药性中的作用,并重点介绍了用于发现潜在机制和测试潜在新型疗法的各种肿瘤模型。
{"title":"Three-Dimensional Tumor Models to Study Cancer Stemness-Mediated Drug Resistance","authors":"Astha Lamichhane, Hossein Tavana","doi":"10.1007/s12195-024-00798-y","DOIUrl":"https://doi.org/10.1007/s12195-024-00798-y","url":null,"abstract":"<p>Solid tumors often contain genetically different populations of cancer cells, stromal cells, various structural and soluble proteins, and other soluble signaling molecules. The American Cancer society estimated 1,958,310 new cancer cases and 609,820 cancer deaths in the United States in 2023. A major barrier against successful treatment of cancer patients is drug resistance. Gain of stem cell-like states by cancer cells under drug pressure or due to interactions with the tumor microenvironment is a major mechanism that renders therapies ineffective. Identifying approaches to target cancer stem cells is expected to improve treatment outcomes for patients. Most of our understanding of drug resistance and the role of cancer stemness is from monolayer cell cultures. Recent advances in cell culture technologies have enabled developing sophisticated three-dimensional tumor models that facilitate mechanistic studies of cancer drug resistance. This review summarizes the role of cancer stemness in drug resistance and highlights the various tumor models that are used to discover the underlying mechanisms and test potentially novel therapeutics.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"138 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular and molecular bioengineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1