首页 > 最新文献

Cell and Tissue Research最新文献

英文 中文
Paracrine and endocrine pathways of natriuretic peptides assessed by ligand-receptor mapping in the Japanese eel brain. 通过配体-受体映射评估日本鳗鱼大脑中钠利尿肽的旁分泌和内分泌途径。
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-19 DOI: 10.1007/s00441-024-03873-y
Tomoki Izumi, Ami Saito, Takanori Ida, Takao Mukuda, Yukitoshi Katayama, Marty Kwok-Shing Wong, Takehiro Tsukada

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.

钠尿肽(NP)家族包括心脏钠尿肽(ANP、BNP 和 VNP)和远足类动物的脑钠尿肽(CNP)。除 CNP1-4 外,最近还在包括日本鳗鱼在内的基础远洋鱼类中发现了 CNP4 的旁系亲属(命名为 CNP4b)。哺乳动物在进化过程中失去了大部分的CNPs,但远洋鱼类的CNPs却得到了保存和多样化,这表明CNPs是维持远洋鱼类大脑功能的重要激素。本研究评估了在 CHO 细胞中过表达的每种日本鳗鲡 CNP 对其 NP 受体(NPR-A、NPR-B、NPR-C 和 NPR-D)的效力。通过整合原位杂交的定位结果,构建了日本鳗鲡表达 CNP 和 NPRs 神经元的综合脑图。结果表明,表达NPR-A和NPR-B的CHO细胞在受到心脏和脑NPs刺激后,分别诱导产生强烈的cGMP。关于 cnps 在大脑中的分布,cnp1 分布在腹侧端脑区和脑室周围区,包括视前核旁区(Pp)、结节前/后核和视神经室周围灰区。cnp4 在腹侧端脑区域表达,而 cnp4b 则在延髓区域的运动神经元中表达。这种 CNP 同工酶的特异性定位表明,每种 CNP 的功能在鳗鱼大脑中已经分化。此外,缺乏血脑屏障的 Pp 同时表达 npra 和 nprb,这表明内分泌和旁分泌 NP 相互作用,调节日本鳗鱼的 Pp 功能。
{"title":"Paracrine and endocrine pathways of natriuretic peptides assessed by ligand-receptor mapping in the Japanese eel brain.","authors":"Tomoki Izumi, Ami Saito, Takanori Ida, Takao Mukuda, Yukitoshi Katayama, Marty Kwok-Shing Wong, Takehiro Tsukada","doi":"10.1007/s00441-024-03873-y","DOIUrl":"10.1007/s00441-024-03873-y","url":null,"abstract":"<p><p>The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"197-212"},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KDELR2 promotes bone marrow mesenchymal stem cell osteogenic differentiation via GSK3β/β-catenin signaling pathway. KDELR2通过GSK3β/β-catenin信号通路促进骨髓间充质干细胞成骨分化。
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-05-01 Epub Date: 2024-03-12 DOI: 10.1007/s00441-024-03884-9
Xiaoyong Wu, Weijun Zhang, Long Long, Yibo Wang, Hongyu Chen, Kanbin Wang, Zhongxiang Wang, Jinwu Bai, Deting Xue, Zhijun Pan

Nonunion is a challenging complication of fractures for the surgeon. Recently the Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum protein retention receptor 2 (KDELR2) has been found that involved in osteogenesis imperfecta. However, the exact mechanism is still unclear. In this study, we used lentivirus infection and mouse fracture model to investigate the role of KDELR2 in osteogenesis. Our results showed that KDELR2 knockdown inhibited the osteogenic differentiation of mBMSCs, whereas KDELR2 overexpression had the opposite effect. Furthermore, the levels of active-β-catenin and phospho-GSK3β (Ser9) were upregulated by KDELR2 overexpression and downregulated by KDELR2 knockdown. In the fracture model, mBMSCs overexpressing KDELR2 promoted healing. In conclusion, KDELR2 promotes the osteogenesis of mBMSCs by regulating the GSK3β/β-catenin signaling pathway.

对于外科医生来说,骨折不愈合是一种具有挑战性的并发症。最近发现 Lys-Asp-Glu-Leu (KDEL) 内质网蛋白保留受体 2 (KDELR2) 与成骨不全症有关。然而,其确切机制仍不清楚。本研究利用慢病毒感染和小鼠骨折模型研究了KDELR2在成骨过程中的作用。结果表明,KDELR2敲除会抑制mBMSCs的成骨分化,而KDELR2过表达则有相反的作用。此外,KDELR2过表达会上调活性-β-catenin和磷酸化-GSK3β(Ser9)的水平,而KDELR2敲除会下调活性-β-catenin和磷酸化-GSK3β(Ser9)的水平。在骨折模型中,过表达 KDELR2 的 mBMSCs 可促进骨折愈合。总之,KDELR2通过调节GSK3β/β-catenin信号通路促进mBMSCs成骨。
{"title":"KDELR2 promotes bone marrow mesenchymal stem cell osteogenic differentiation via GSK3β/β-catenin signaling pathway.","authors":"Xiaoyong Wu, Weijun Zhang, Long Long, Yibo Wang, Hongyu Chen, Kanbin Wang, Zhongxiang Wang, Jinwu Bai, Deting Xue, Zhijun Pan","doi":"10.1007/s00441-024-03884-9","DOIUrl":"10.1007/s00441-024-03884-9","url":null,"abstract":"<p><p>Nonunion is a challenging complication of fractures for the surgeon. Recently the Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum protein retention receptor 2 (KDELR2) has been found that involved in osteogenesis imperfecta. However, the exact mechanism is still unclear. In this study, we used lentivirus infection and mouse fracture model to investigate the role of KDELR2 in osteogenesis. Our results showed that KDELR2 knockdown inhibited the osteogenic differentiation of mBMSCs, whereas KDELR2 overexpression had the opposite effect. Furthermore, the levels of active-β-catenin and phospho-GSK3β (Ser9) were upregulated by KDELR2 overexpression and downregulated by KDELR2 knockdown. In the fracture model, mBMSCs overexpressing KDELR2 promoted healing. In conclusion, KDELR2 promotes the osteogenesis of mBMSCs by regulating the GSK3β/β-catenin signaling pathway.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"269-281"},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Nescient helix-loop-helix 1 (Nhlh1) is a novel activating transcription factor 5 (ATF5) target gene in olfactory and vomeronasal sensory neurons in mice. 更正:Nescient helix-loop-helix 1 (Nhlh1) 是小鼠嗅觉和绒毛感觉神经元中一种新型激活转录因子 5 (ATF5) 的靶基因。
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-05-01 DOI: 10.1007/s00441-024-03891-w
Chiharu Ishii, Haruo Nakano, Riko Higashiseto, Yusaku Ooki, Mariko Umemura, Shigeru Takahashi, Yuji Takahashi
{"title":"Correction to: Nescient helix-loop-helix 1 (Nhlh1) is a novel activating transcription factor 5 (ATF5) target gene in olfactory and vomeronasal sensory neurons in mice.","authors":"Chiharu Ishii, Haruo Nakano, Riko Higashiseto, Yusaku Ooki, Mariko Umemura, Shigeru Takahashi, Yuji Takahashi","doi":"10.1007/s00441-024-03891-w","DOIUrl":"10.1007/s00441-024-03891-w","url":null,"abstract":"","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"291-292"},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gadolinium retention effect on macrophages — a potential cause of MRI contrast agent Dotarem toxicity 钆对巨噬细胞的滞留效应--磁共振成像造影剂多他雷毒性的潜在原因
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-04-16 DOI: 10.1007/s00441-024-03885-8
Marta Halasa, Ahmed Uosef, Henry V. Ubelaker, Arijita Subuddhi, Krupa R. Mysore, Jacek Z. Kubiak, Rafik M. Ghobrial, Jarek Wosik, Malgorzata Kloc

Gadolinium is a component of the MRI contrast agent Dotarem. Although Dotarem is the least toxic among MRI contrasts used, gadolinium present in Dotarem accumulates for many years in various organs and tissues exerting toxic effects. We showed previously that gadolinium remains in macrophages for at least 7 days after exposure to Dotarem. However, very little is known about the effect of gadolinium retention on the immune cells such as macrophages. We studied the effect of 1-day and 7-day retention of gadolinium on various functions and molecular pathways of macrophages. Gadolinium retention for 7 days decreased macrophage adhesion and motility and dysregulated the expression of adhesion and fibrotic pathway-related proteins such as Notch1 and its ligand Jagged1, adhesion/migration-related proteins PAK1 and Shp1, immune response-related transcription factors Smad3 and TCF19, and chemokines CXCL10 and CXCL13, and dysregulated the mRNA expression of fibrosis-related genes involved in extracellular matrix (ECM) synthesis, such as Col6a1, Fibronectin, MMP9, and MMP12. It also completely (below a level of detection) shut down the transcription of anti-inflammatory M2 macrophage polarization marker the Arg-1. Such changes, if they occur in MRI patients, can be potentially detrimental to the patient’s immune system and immune response-related processes.

钆是磁共振成像造影剂多达雷姆的一种成分。虽然多他瑞姆是目前使用的磁共振成像造影剂中毒性最小的一种,但多他瑞姆中的钆会在各种器官和组织中蓄积多年,产生毒性作用。我们以前的研究表明,暴露于多他雷后,钆在巨噬细胞中的存留时间至少为 7 天。然而,人们对钆滞留对巨噬细胞等免疫细胞的影响知之甚少。我们研究了钆滞留 1 天和 7 天对巨噬细胞各种功能和分子通路的影响。钆滞留 7 天会降低巨噬细胞的粘附性和运动性,并使粘附和纤维化途径相关蛋白的表达失调,如 Notch1 及其配体 Jagged1、粘附/迁移相关蛋白 PAK1 和 Shp1、免疫反应相关转录因子 Smad3 和 TCF19,趋化因子 CXCL10 和 CXCL13,以及参与细胞外基质(ECM)合成的纤维化相关基因(如 Col6a1、纤连蛋白、MMP9 和 MMP12)的 mRNA 表达失调。它还会完全(低于检测水平)关闭抗炎 M2 巨噬细胞极化标记 Arg-1 的转录。这种变化如果发生在核磁共振成像患者身上,可能会对患者的免疫系统和免疫反应相关过程造成危害。
{"title":"Gadolinium retention effect on macrophages — a potential cause of MRI contrast agent Dotarem toxicity","authors":"Marta Halasa, Ahmed Uosef, Henry V. Ubelaker, Arijita Subuddhi, Krupa R. Mysore, Jacek Z. Kubiak, Rafik M. Ghobrial, Jarek Wosik, Malgorzata Kloc","doi":"10.1007/s00441-024-03885-8","DOIUrl":"https://doi.org/10.1007/s00441-024-03885-8","url":null,"abstract":"<p>Gadolinium is a component of the MRI contrast agent Dotarem. Although Dotarem is the least toxic among MRI contrasts used, gadolinium present in Dotarem accumulates for many years in various organs and tissues exerting toxic effects. We showed previously that gadolinium remains in macrophages for at least 7 days after exposure to Dotarem. However, very little is known about the effect of gadolinium retention on the immune cells such as macrophages. We studied the effect of 1-day and 7-day retention of gadolinium on various functions and molecular pathways of macrophages<b>.</b> Gadolinium retention for 7 days decreased macrophage adhesion and motility and dysregulated the expression of adhesion and fibrotic pathway-related proteins such as Notch1 and its ligand Jagged1, adhesion/migration-related proteins PAK1 and Shp1, immune response-related transcription factors Smad3 and TCF19, and chemokines CXCL10 and CXCL13, and dysregulated the mRNA expression of fibrosis-related genes involved in extracellular matrix (ECM) synthesis, such as <i>Col6a1</i>, <i>Fibronectin</i>, <i>MMP9</i>, and <i>MMP12</i>. It also completely (below a level of detection) shut down the transcription of anti-inflammatory M2 macrophage polarization marker the <i>Arg-1</i>. Such changes, if they occur in MRI patients, can be potentially detrimental to the patient’s immune system and immune response-related processes.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":"40 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD34+ synovial fibroblasts exhibit high osteogenic potential in synovial chondromatosis CD34+ 滑膜成纤维细胞在滑膜软骨瘤病中表现出很高的成骨潜能
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-04-11 DOI: 10.1007/s00441-024-03892-9
Xiaoyu Li, Hao Sun, Deng Li, Zhiqing Cai, Jie Xu, Ruofan Ma

Synovial chondromatosis (SC) is a disorder of the synovium characterized by the formation of osteochondral nodules within the synovium. This study aimed to identify the abnormally differentiated progenitor cells and possible pathogenic signaling pathways. Loose bodies and synovium were obtained from patients with SC during knee arthroplasty. Single-cell RNA sequencing was used to identify cell subsets and their gene signatures in SC synovium. Cells derived from osteoarthritis (OA) synovium were used as controls. Multi-differentiation and colony-forming assays were used to identify progenitor cells. The roles of transcription factors and signaling pathways were investigated through computational analysis and experimental verification. We identified an increased proportion of CD34+ sublining fibroblasts in SC synovium. CD34+CD31− cells and CD34−CD31− cells were sorted from SC synovium. Compared with CD34− cells, CD34+ cells had larger alkaline phosphatase (ALP)-stained area and calcified area after osteogenic induction. In addition, CD34+ cells exhibited a stronger tube formation ability than CD34− cells. Our bioinformatic analysis suggested the expression of TWIST1, a negative regulator of osteogenesis, in CD34− sublining fibroblasts and was regulated by the TGF-β signaling pathway. The experiment showed that CD34+ cells acquired the TWIST1 expression during culture and the combination of TGF-β1 and harmine, an inhibitor of Twist1, could further stimulate the osteogenesis of CD34+ cells. Overall, CD34+ synovial fibroblasts in SC synovium have multiple differentiation potentials, especially osteogenic differentiation potential, and might be responsible for the pathogenesis of SC.

滑膜软骨瘤病(SC)是一种以滑膜内形成骨软骨结节为特征的滑膜疾病。本研究旨在确定异常分化的祖细胞和可能的致病信号通路。研究人员在膝关节置换术中从SC患者身上获取了松质体和滑膜。利用单细胞RNA测序鉴定SC滑膜中的细胞亚群及其基因特征。取自骨关节炎(OA)滑膜的细胞作为对照。多重分化和集落形成试验用于鉴定祖细胞。通过计算分析和实验验证研究了转录因子和信号通路的作用。我们发现SC滑膜中CD34+亚成纤维细胞的比例增加。从SC滑膜中分拣出CD34+CD31-细胞和CD34-CD31-细胞。与 CD34- 细胞相比,CD34+ 细胞在成骨诱导后具有更大的碱性磷酸酶(ALP)染色面积和钙化面积。此外,CD34+细胞比CD34-细胞具有更强的管形成能力。我们的生物信息学分析表明,成骨负调控因子 TWIST1 在 CD34- 下层成纤维细胞中的表达受 TGF-β 信号通路的调控。实验表明,CD34+细胞在培养过程中获得了TWIST1的表达,而TGF-β1和Twist1抑制剂harmine的联合作用可进一步刺激CD34+细胞的成骨。总之,SC滑膜中的CD34+滑膜成纤维细胞具有多种分化潜能,尤其是成骨分化潜能,可能是SC的发病机制之一。
{"title":"CD34+ synovial fibroblasts exhibit high osteogenic potential in synovial chondromatosis","authors":"Xiaoyu Li, Hao Sun, Deng Li, Zhiqing Cai, Jie Xu, Ruofan Ma","doi":"10.1007/s00441-024-03892-9","DOIUrl":"https://doi.org/10.1007/s00441-024-03892-9","url":null,"abstract":"<p>Synovial chondromatosis (SC) is a disorder of the synovium characterized by the formation of osteochondral nodules within the synovium. This study aimed to identify the abnormally differentiated progenitor cells and possible pathogenic signaling pathways. Loose bodies and synovium were obtained from patients with SC during knee arthroplasty. Single-cell RNA sequencing was used to identify cell subsets and their gene signatures in SC synovium. Cells derived from osteoarthritis (OA) synovium were used as controls. Multi-differentiation and colony-forming assays were used to identify progenitor cells. The roles of transcription factors and signaling pathways were investigated through computational analysis and experimental verification. We identified an increased proportion of CD34+ sublining fibroblasts in SC synovium. CD34+CD31− cells and CD34−CD31− cells were sorted from SC synovium. Compared with CD34− cells, CD34+ cells had larger alkaline phosphatase (ALP)-stained area and calcified area after osteogenic induction. In addition, CD34+ cells exhibited a stronger tube formation ability than CD34− cells. Our bioinformatic analysis suggested the expression of TWIST1, a negative regulator of osteogenesis, in CD34− sublining fibroblasts and was regulated by the TGF-β signaling pathway. The experiment showed that CD34+ cells acquired the TWIST1 expression during culture and the combination of TGF-β1 and harmine, an inhibitor of Twist1, could further stimulate the osteogenesis of CD34+ cells. Overall, CD34+ synovial fibroblasts in SC synovium have multiple differentiation potentials, especially osteogenic differentiation potential, and might be responsible for the pathogenesis of SC.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":"2 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential expression of neuropeptide F in the digestive organs of female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle 雌性淡水对虾消化器官中神经肽 F 在卵巢周期中的差异表达
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-04-09 DOI: 10.1007/s00441-024-03893-8
Warinthip Vetkama, Ruchanok Tinikul, Prasert Sobhon, Yotsawan Tinikul

Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.

神经肽 F 是一种控制无脊椎动物(包括十足目甲壳类动物)摄食的关键激素。我们研究了雌性罗氏沼虾(Macrobrachium rosenbergii)神经肽 F(MrNPF)在卵巢周期消化器官中的不同表达。通过RT-qPCR,MrNPF mRNA在前肠(FG)食道(ESO)、贲门(CD)和幽门(PY)的表达量从第二阶段开始逐渐增加,在第三阶段达到峰值。在中肠(MG)、后肠(HG)和肝胰腺(HP)中,MrNPF mRNA 从第一阶段开始增加,在第二阶段达到最高水平,在第三和第四阶段下降约一半(P < 0.05)。在 ESO、CD 和PY 中,上皮细胞、肌肉和固有层中可见强烈的 MrNPF 免疫反应。在 MG 细胞和肌肉层中发现了强烈的 MrNPF-ir 活性。在 HG 中,绒毛和腺体区域的上皮细胞中检测到了 MrNPF-ir,而在 HP 中的 F-、R- 和 B 细胞中也有较强的 MrNPF-ir。然而,我们发现在消化组织中,MrNPF 和 PGP9.5/ChAT 几乎没有共定位,这意味着大多数阳性细胞可能不是神经元,而可能是消化道相关的内分泌细胞,它们产生并分泌 MrNPF 以控制消化器官在采食和利用饲料方面的功能。综上所述,我们的首次研究结果表明,MrNPF在消化器官中的不同表达与卵巢周期相关,这表明MrNPF、各消化器官在摄食过程中的生理机能以及可能的卵巢成熟之间存在重要联系。
{"title":"Differential expression of neuropeptide F in the digestive organs of female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle","authors":"Warinthip Vetkama, Ruchanok Tinikul, Prasert Sobhon, Yotsawan Tinikul","doi":"10.1007/s00441-024-03893-8","DOIUrl":"https://doi.org/10.1007/s00441-024-03893-8","url":null,"abstract":"<p>Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of <i>Macrobrachium rosenbergii</i> neuropeptide F (MrNPF) in the digestive organs of female prawns, <i>M. rosenbergii</i>, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (<i>P</i> &lt; 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female <i>M</i>. <i>rosenbergii</i>.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":"103 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of ANO1 currents in pacemaking of PDGFRα-positive specialised smooth muscle cells in rat caudal epididymis ANO1 电流参与了大鼠尾侧附睾 PDGFRα 阳性特化平滑肌细胞的起搏过程
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-04-08 DOI: 10.1007/s00441-024-03890-x
Wataru Kudo, Retsu Mitsui, Hikaru Hashitani

The epididymal duct exhibits spontaneous phasic contractions (SPCs) to store and transport sperm. Here, we explored molecular identification of pacemaker cells driving SPCs in the caudal epididymal duct and also investigated properties of pacemaker currents underlying SPCs focusing on ANO1 Ca2+-activated Cl channels (CaCCs). Immunohistochemistry was performed to visualise the distribution of platelet-derived growth factor receptor α (PDGFRα)- or ANO1-positive cells in the rat caudal epididymal duct. Perforated whole-cell patch clamp technique was applied to enzymatically isolated epididymal cells, while SPCs were recorded with video edge-tracking technique. Immunohistochemistry revealed the distribution of α-smooth muscle actin (α-SMA)-positive cells co-expressing both PDGFRα and ANO1 in the innermost smooth muscle layer. Approximately one-third of isolated epididymis cells exhibited spontaneous transient inward currents (STICs) at the holding potential −60 mV. The reversal potential for STICs was close to the calculated chloride equivalent potential depending on intracellular Cl concentrations. Ani9 (3 µM), the ANO1 specific inhibitor, decreased both amplitude and frequency of STICs, while cyclopiazonic acid (CPA, 30 µM), a sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor, abolished STICs. Ani9 (3 or 10 µM) reduced the frequency of SPCs without changing their amplitude. Thus, PDGFRα+, ANO1+ specialised smooth muscle cells (SMCs) appear to function as pacemaker cells to electrically drive epididymal SPCs by generating ANO1-dependnet STICs. STICs arising from spontaneous Ca2+ release from intracellular Ca2+ store and subsequent opening of ANO1 result in depolarisations that spread into adjacent SMCs where L-type voltage-dependent Ca2+ channels are activated to develop SPCs.

附睾管表现出自发性阶段性收缩(SPC),以储存和运输精子。在这里,我们探索了驱动尾侧附睾管 SPC 的起搏器细胞的分子鉴定,并以 ANO1 Ca2+ 激活的 Cl- 通道(CaCC)为重点,研究了 SPC 背后的起搏器电流特性。通过免疫组织化学方法观察了大鼠尾侧附睾管中血小板衍生生长因子受体α(PDGFRα)或ANO1阳性细胞的分布。酶切分离的附睾细胞采用穿孔全细胞膜片钳技术,SPCs则采用视频边缘跟踪技术记录。免疫组化显示,α-平滑肌肌动蛋白(α-SMA)阳性细胞分布在最内层的平滑肌层,同时表达PDGFRα和ANO1。大约三分之一的离体附睾细胞在保持电位-60 mV时表现出自发瞬态内向电流(STIC)。根据细胞内 Cl- 浓度的不同,STIC 的反向电位接近计算出的氯等效电位。ANO1特异性抑制剂Ani9(3 µM)可降低STIC的振幅和频率,而肌浆/内质网Ca2+-ATP酶(SERCA)抑制剂环哌嗪酸(CPA,30 µM)可消除STIC。Ani9(3 或 10 µM)降低了 SPCs 的频率,但不改变其振幅。因此,PDGFRα+、ANO1+特化平滑肌细胞(SMC)似乎可作为起搏器细胞,通过产生依赖 ANO1 的 STIC,以电驱动附睾 SPC。STIC 由细胞内 Ca2+ 储存库自发释放 Ca2+ 和 ANO1 随后打开导致去极化,去极化扩散到邻近的 SMC,在那里 L 型电压依赖性 Ca2+ 通道被激活,从而形成 SPC。
{"title":"Involvement of ANO1 currents in pacemaking of PDGFRα-positive specialised smooth muscle cells in rat caudal epididymis","authors":"Wataru Kudo, Retsu Mitsui, Hikaru Hashitani","doi":"10.1007/s00441-024-03890-x","DOIUrl":"https://doi.org/10.1007/s00441-024-03890-x","url":null,"abstract":"<p>The epididymal duct exhibits spontaneous phasic contractions (SPCs) to store and transport sperm. Here, we explored molecular identification of pacemaker cells driving SPCs in the caudal epididymal duct and also investigated properties of pacemaker currents underlying SPCs focusing on ANO1 Ca<sup>2+</sup>-activated Cl<sup>−</sup> channels (CaCCs). Immunohistochemistry was performed to visualise the distribution of platelet-derived growth factor receptor α (PDGFRα)- or ANO1-positive cells in the rat caudal epididymal duct. Perforated whole-cell patch clamp technique was applied to enzymatically isolated epididymal cells, while SPCs were recorded with video edge-tracking technique. Immunohistochemistry revealed the distribution of α-smooth muscle actin (α-SMA)-positive cells co-expressing both PDGFRα and ANO1 in the innermost smooth muscle layer. Approximately one-third of isolated epididymis cells exhibited spontaneous transient inward currents (STICs) at the holding potential −60 mV. The reversal potential for STICs was close to the calculated chloride equivalent potential depending on intracellular Cl<sup>−</sup> concentrations. Ani9 (3 µM), the ANO1 specific inhibitor, decreased both amplitude and frequency of STICs, while cyclopiazonic acid (CPA, 30 µM), a sarco-/endoplasmic reticulum Ca<sup>2+</sup>-ATPase (SERCA) inhibitor, abolished STICs. Ani9 (3 or 10 µM) reduced the frequency of SPCs without changing their amplitude. Thus, PDGFRα<sup>+</sup>, ANO1<sup>+</sup> specialised smooth muscle cells (SMCs) appear to function as pacemaker cells to electrically drive epididymal SPCs by generating ANO1-dependnet STICs. STICs arising from spontaneous Ca<sup>2+</sup> release from intracellular Ca<sup>2+</sup> store and subsequent opening of ANO1 result in depolarisations that spread into adjacent SMCs where L-type voltage-dependent Ca<sup>2+</sup> channels are activated to develop SPCs.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":"2 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Induction of forkhead box M1 (FoxM1) by EGF through ERK signaling pathway promotes trophoblast cell invasion 更正为EGF通过ERK信号通路诱导叉头盒M1(FoxM1)促进滋养层细胞侵袭
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-04-05 DOI: 10.1007/s00441-024-03889-4
Yunpeng Xie, Dan Cui, Linlin Sui, Yuefei Xu, Ningning Zhang, Yanni Ma, Yinghua Li, Ying Kong
{"title":"Correction to: Induction of forkhead box M1 (FoxM1) by EGF through ERK signaling pathway promotes trophoblast cell invasion","authors":"Yunpeng Xie, Dan Cui, Linlin Sui, Yuefei Xu, Ningning Zhang, Yanni Ma, Yinghua Li, Ying Kong","doi":"10.1007/s00441-024-03889-4","DOIUrl":"https://doi.org/10.1007/s00441-024-03889-4","url":null,"abstract":"","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":"2 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic changes in endoplasmic reticulum morphology and its contact with the plasma membrane in motor neurons in response to nerve injury. 运动神经元内质网形态及其与质膜接触的动态变化对神经损伤的反应
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-04-01 Epub Date: 2024-02-05 DOI: 10.1007/s00441-024-03858-x
Mahmoud Elgendy, Hiromi Tamada, Takaya Taira, Yuma Iio, Akinobu Kawamura, Ayusa Kunogi, Yuka Mizutani, Hiroshi Kiyama

The endoplasmic reticulum (ER) extends throughout a cell and plays a critical role in maintaining cellular homeostasis. Changes in ER shape could provide a clue to explore the mechanisms that underlie the fate determination of neurons after axon injury because the ER drastically changes its morphology under neuronal stress to maintain cellular homeostasis and recover from damage. Because of their tiny structures and richness in the soma, the detailed morphology of the ER and its dynamics have not been well analysed. In this study, the focused ion beam/scanning electron microscopy (FIB/SEM) analysis was performed to explore the ultra-structures of the ER in the somata of motor neuron with axon regenerative injury models. In normal motor neurons, ER in the somata is abundantly localised near the perinucleus and represents lamella-like structures. After injury, analysis of the ER volume and ER branching points indicated a collapse of the normal distribution and a transformation from lamella-like structures to mesh-like structures. Furthermore, accompanied by ER accumulation near the plasma membrane (PM), the contact between the ER and PM (ER-PM contacts) significantly increased after injury. The accumulation of extended-synaptotagmin 1 (E-Syt1), a tethering protein of the ER and PM that regulates Ca2+-dependent lipid transfer, was also identified by immunohistochemistry and quantitative Real-time PCR after injury. These morphological alterations of ER and the increase in ER-PM contacts may be crucial events that occur in motor neurons as a resilient response for the survival after axonal injury.

内质网(ER)遍布整个细胞,在维持细胞稳态方面发挥着关键作用。内质网形状的变化可为探索神经元轴突损伤后的命运决定机制提供线索,因为内质网在神经元应激状态下会急剧改变其形态,以维持细胞稳态并从损伤中恢复。由于神经元ER结构微小,且丰富分布于神经元体部,因此人们尚未对其详细形态及其动态进行深入分析。本研究通过聚焦离子束/扫描电子显微镜(FIB/SEM)分析,探索了轴突再生损伤模型运动神经元体部ER的超结构。正常运动神经元体部的ER大量分布在核周附近,呈薄片状结构。损伤后,对ER体积和ER分支点的分析表明,ER的正常分布被打破,从片状结构转变为网状结构。此外,伴随着ER在质膜(PM)附近的积累,损伤后ER与质膜之间的接触(ER-PM接触)显著增加。免疫组化和定量实时聚合酶链式反应还发现,损伤后ER和PM的拴系蛋白--扩展突触标签蛋白1(E-Syt1)--也出现了聚集。ER的这些形态学改变和ER-PM接触的增加可能是运动神经元在轴突损伤后作为生存的一种弹性反应而发生的关键事件。
{"title":"Dynamic changes in endoplasmic reticulum morphology and its contact with the plasma membrane in motor neurons in response to nerve injury.","authors":"Mahmoud Elgendy, Hiromi Tamada, Takaya Taira, Yuma Iio, Akinobu Kawamura, Ayusa Kunogi, Yuka Mizutani, Hiroshi Kiyama","doi":"10.1007/s00441-024-03858-x","DOIUrl":"10.1007/s00441-024-03858-x","url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) extends throughout a cell and plays a critical role in maintaining cellular homeostasis. Changes in ER shape could provide a clue to explore the mechanisms that underlie the fate determination of neurons after axon injury because the ER drastically changes its morphology under neuronal stress to maintain cellular homeostasis and recover from damage. Because of their tiny structures and richness in the soma, the detailed morphology of the ER and its dynamics have not been well analysed. In this study, the focused ion beam/scanning electron microscopy (FIB/SEM) analysis was performed to explore the ultra-structures of the ER in the somata of motor neuron with axon regenerative injury models. In normal motor neurons, ER in the somata is abundantly localised near the perinucleus and represents lamella-like structures. After injury, analysis of the ER volume and ER branching points indicated a collapse of the normal distribution and a transformation from lamella-like structures to mesh-like structures. Furthermore, accompanied by ER accumulation near the plasma membrane (PM), the contact between the ER and PM (ER-PM contacts) significantly increased after injury. The accumulation of extended-synaptotagmin 1 (E-Syt1), a tethering protein of the ER and PM that regulates Ca<sup>2+</sup>-dependent lipid transfer, was also identified by immunohistochemistry and quantitative Real-time PCR after injury. These morphological alterations of ER and the increase in ER-PM contacts may be crucial events that occur in motor neurons as a resilient response for the survival after axonal injury.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"71-84"},"PeriodicalIF":3.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium imaging of adult olfactory epithelium reveals amines as important odor class in fish. 成鱼嗅上皮细胞的钙成像显示胺是鱼类的重要气味类别。
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-04-01 Epub Date: 2024-02-13 DOI: 10.1007/s00441-024-03859-w
M Dieris, D Kowatschew, T Hassenklöver, I Manzini, S I Korsching

The odor space of aquatic organisms is by necessity quite different from that of air-breathing animals. The recognized odor classes in teleost fish include amino acids, bile acids, reproductive hormones, nucleotides, and a limited number of polyamines. Conversely, a significant portion of the fish olfactory receptor repertoire is composed of trace amine-associated receptors, generally assumed to be responsible for detecting amines. Zebrafish possess over one hundred of these receptors, but the responses of olfactory sensory neurons to amines have not been known so far. Here we examined odor responses of zebrafish olfactory epithelial explants at the cellular level, employing calcium imaging. We report that amines elicit strong responses in olfactory sensory neurons, with a time course characteristically different from that of ATP-responsive (basal) cells. A quantitative analysis of the laminar height distribution shows amine-responsive cells undistinguishable from ciliated neurons positive for olfactory marker protein. This distribution is significantly different from those measured for microvillous neurons positive for transient receptor potential channel 2 and basal cells positive for proliferating cell nuclear antigen. Our results suggest amines as an important odor class for teleost fish.

水生生物的气味空间必然与呼吸空气的动物有很大不同。远洋鱼类公认的气味类别包括氨基酸、胆汁酸、生殖激素、核苷酸和数量有限的多胺。相反,鱼类嗅觉受体的很大一部分是由痕量胺相关受体组成的,一般认为这些受体负责检测胺。斑马鱼拥有一百多种这样的受体,但嗅觉神经元对胺的反应至今仍不得而知。在此,我们采用钙成像技术,在细胞水平上研究了斑马鱼嗅上皮外植体的气味反应。我们发现胺能引起嗅觉神经元的强烈反应,其反应时间与 ATP 反应(基底)细胞的反应时间截然不同。层高分布的定量分析显示,胺反应细胞与嗅觉标志蛋白阳性的纤毛神经元没有区别。这种分布与瞬时受体电位通道 2 阳性的微绒毛神经元和增殖细胞核抗原阳性的基底细胞的分布明显不同。我们的研究结果表明,胺类是长尾鳍鱼类的一个重要气味类别。
{"title":"Calcium imaging of adult olfactory epithelium reveals amines as important odor class in fish.","authors":"M Dieris, D Kowatschew, T Hassenklöver, I Manzini, S I Korsching","doi":"10.1007/s00441-024-03859-w","DOIUrl":"10.1007/s00441-024-03859-w","url":null,"abstract":"<p><p>The odor space of aquatic organisms is by necessity quite different from that of air-breathing animals. The recognized odor classes in teleost fish include amino acids, bile acids, reproductive hormones, nucleotides, and a limited number of polyamines. Conversely, a significant portion of the fish olfactory receptor repertoire is composed of trace amine-associated receptors, generally assumed to be responsible for detecting amines. Zebrafish possess over one hundred of these receptors, but the responses of olfactory sensory neurons to amines have not been known so far. Here we examined odor responses of zebrafish olfactory epithelial explants at the cellular level, employing calcium imaging. We report that amines elicit strong responses in olfactory sensory neurons, with a time course characteristically different from that of ATP-responsive (basal) cells. A quantitative analysis of the laminar height distribution shows amine-responsive cells undistinguishable from ciliated neurons positive for olfactory marker protein. This distribution is significantly different from those measured for microvillous neurons positive for transient receptor potential channel 2 and basal cells positive for proliferating cell nuclear antigen. Our results suggest amines as an important odor class for teleost fish.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"95-102"},"PeriodicalIF":3.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell and Tissue Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1