Ikbal Andrian Malau, Jane Pei-Chen Chang, Yi-Wen Lin, Cheng-Chen Chang, Wei-Che Chiu, Kuan-Pin Su
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes associated with MDD. Damage-associated molecular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology, focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of microglia and astrocytes in propagating inflammatory cascades and discuss how these processes affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High Mobility Group Box 1 (HMGB1) and S100 Calcium Binding Protein β (S100β) as alarmins, and Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflammatory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial activation, cytokine production, and neuronal resilience in cellular models of depression. We critically analyze experimental data on how ω-3 PUFA supplementation influences the expression and release of HMGB1, S100β, and NSE in neuronal and glial cultures. By integrating findings from lipidomic and cellular neurobiology, this review aims to elucidate the mechanisms by which ω-3 PUFAs may exert their antidepressant effects through modulation of neuroinflammatory markers. These insights contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the development of targeted, lipid-based therapies for both depression and neurodegenerative disorders.
{"title":"Omega-3 Fatty Acids and Neuroinflammation in Depression: Targeting Damage-Associated Molecular Patterns and Neural Biomarkers.","authors":"Ikbal Andrian Malau, Jane Pei-Chen Chang, Yi-Wen Lin, Cheng-Chen Chang, Wei-Che Chiu, Kuan-Pin Su","doi":"10.3390/cells13211791","DOIUrl":"10.3390/cells13211791","url":null,"abstract":"<p><p>Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes associated with MDD. Damage-associated molecular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology, focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of microglia and astrocytes in propagating inflammatory cascades and discuss how these processes affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High Mobility Group Box 1 (HMGB1) and S100 Calcium Binding Protein β (S100β) as alarmins, and Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflammatory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial activation, cytokine production, and neuronal resilience in cellular models of depression. We critically analyze experimental data on how ω-3 PUFA supplementation influences the expression and release of HMGB1, S100β, and NSE in neuronal and glial cultures. By integrating findings from lipidomic and cellular neurobiology, this review aims to elucidate the mechanisms by which ω-3 PUFAs may exert their antidepressant effects through modulation of neuroinflammatory markers. These insights contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the development of targeted, lipid-based therapies for both depression and neurodegenerative disorders.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Godehard A Scholz, Sisi Xie, Tasneem Arsiwala, Daniel Guggisberg, Monique Vogel, Martin Bachmann, Burkhard Möller
<p><p><b>Background:</b> In response to inflammation, the absorption of nutritional iron is restricted. Since the pathophysiological significance of the presence and uptake of iron in chronic inflammation is still unknown, we tested the effect of a low iron diet on the clinical course of arthritis in the mouse model of collagen-induced arthritis (CIA). <b>Methods:</b> Six- to eight-week-old male DBA/1 mice were fed either a normal (51 mg/kg) or a low iron diet (5 mg/kg) starting four weeks before the first immunization. From day 4 after the second collagen booster made on day 25, the development of arthritis was regularly monitored until the end of the experiment (day 34), using a standard clinical arthritis score. Concentrations of mouse anti-bovine and anti-mouse collagen type 2 IgG antibodies were measured by ELISA; blood cell counts were performed and mediators of inflammation, tissue matrix degradation, oxygenation and oxidative stress were measured in the mouse sera of both diet groups at the end of the experiment by bead-based multiplex assay. Fe<sup>2+</sup>, Fe<sup>3+</sup>, oxidized and reduced glutathione (GSH and GSSG) and malondialdehyde (MDA) were quantified in whole paw tissue by ELISA. Quantitative PCR was performed in the tissues for glutathione peroxidase 4 and other key regulator genes of iron metabolism and ferroptosis. We used nonparametric tests to compare cross-sectional data. Nonlinear regression models were used for longitudinal data of the arthritis scores. <b>Results:</b> Mice fed a low iron diet showed a significantly less severe course of arthritis compared to mice fed a normal iron diet (<i>p</i> < 0.001). The immune response against bovine and mouse type 2 collagen did not differ between the two diet groups. Mice fed a low iron diet exhibited significantly lower serum levels of tissue inhibitor of metalloproteinase-1 (TIMP-1), a central regulator of inflammation and tissue matrix degradation (<i>p</i> < 0.05). In addition, a low iron diet led to a significant reduction in red blood cell indices, indicating restricted iron uptake and latent iron deficiency, but had no effect on hemoglobin concentrations or red blood cell counts. There were no differences between the dietary groups in Fe<sup>2+</sup> or Fe<sup>3+</sup> content in the paws. Based on calculation of the GSH/GSSG ratio and high MDA levels, high oxidative stress and lipid peroxidation were likewise detected in the paws of both diet groups of mice. Consequently, no differences associated with gene expression of key regulators of iron metabolism and ferroptosis could be detected between the paws of both diet groups. <b>Conclusions:</b> Restricted dietary iron intake alleviates immune-mediated inflammation in CIA without causing anemia. This finding suggests a promising option for dietary treatment of arthritis in inflammation. The underlying mechanism causing reduced arthritis may be linked to the complex regulatory network of TIMP-1 and appears to be indepe
{"title":"Low Iron Diet Improves Clinical Arthritis in the Mouse Model of Collagen-Induced Arthritis.","authors":"Godehard A Scholz, Sisi Xie, Tasneem Arsiwala, Daniel Guggisberg, Monique Vogel, Martin Bachmann, Burkhard Möller","doi":"10.3390/cells13211792","DOIUrl":"10.3390/cells13211792","url":null,"abstract":"<p><p><b>Background:</b> In response to inflammation, the absorption of nutritional iron is restricted. Since the pathophysiological significance of the presence and uptake of iron in chronic inflammation is still unknown, we tested the effect of a low iron diet on the clinical course of arthritis in the mouse model of collagen-induced arthritis (CIA). <b>Methods:</b> Six- to eight-week-old male DBA/1 mice were fed either a normal (51 mg/kg) or a low iron diet (5 mg/kg) starting four weeks before the first immunization. From day 4 after the second collagen booster made on day 25, the development of arthritis was regularly monitored until the end of the experiment (day 34), using a standard clinical arthritis score. Concentrations of mouse anti-bovine and anti-mouse collagen type 2 IgG antibodies were measured by ELISA; blood cell counts were performed and mediators of inflammation, tissue matrix degradation, oxygenation and oxidative stress were measured in the mouse sera of both diet groups at the end of the experiment by bead-based multiplex assay. Fe<sup>2+</sup>, Fe<sup>3+</sup>, oxidized and reduced glutathione (GSH and GSSG) and malondialdehyde (MDA) were quantified in whole paw tissue by ELISA. Quantitative PCR was performed in the tissues for glutathione peroxidase 4 and other key regulator genes of iron metabolism and ferroptosis. We used nonparametric tests to compare cross-sectional data. Nonlinear regression models were used for longitudinal data of the arthritis scores. <b>Results:</b> Mice fed a low iron diet showed a significantly less severe course of arthritis compared to mice fed a normal iron diet (<i>p</i> < 0.001). The immune response against bovine and mouse type 2 collagen did not differ between the two diet groups. Mice fed a low iron diet exhibited significantly lower serum levels of tissue inhibitor of metalloproteinase-1 (TIMP-1), a central regulator of inflammation and tissue matrix degradation (<i>p</i> < 0.05). In addition, a low iron diet led to a significant reduction in red blood cell indices, indicating restricted iron uptake and latent iron deficiency, but had no effect on hemoglobin concentrations or red blood cell counts. There were no differences between the dietary groups in Fe<sup>2+</sup> or Fe<sup>3+</sup> content in the paws. Based on calculation of the GSH/GSSG ratio and high MDA levels, high oxidative stress and lipid peroxidation were likewise detected in the paws of both diet groups of mice. Consequently, no differences associated with gene expression of key regulators of iron metabolism and ferroptosis could be detected between the paws of both diet groups. <b>Conclusions:</b> Restricted dietary iron intake alleviates immune-mediated inflammation in CIA without causing anemia. This finding suggests a promising option for dietary treatment of arthritis in inflammation. The underlying mechanism causing reduced arthritis may be linked to the complex regulatory network of TIMP-1 and appears to be indepe","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faiza Mahmud, Drishty B Sarker, Jonathan A Jocelyn, Qing-Xiang Amy Sang
Microplastics and nanoplastics (MNPs) are ubiquitous environmental contaminants. Their prevalence, persistence, and increasing industrial production have led to questions about their long-term impact on human and animal health. This narrative review describes the effects of MNPs on oxidative stress, inflammation, and aging. Exposure to MNPs leads to increased production of reactive oxygen species (ROS) across multiple experimental models, including cell lines, organoids, and animal systems. ROS can cause damage to cellular macromolecules such as DNA, proteins, and lipids. Direct interaction between MNPs and immune cells or an indirect result of oxidative stress-mediated cellular damage may lead to increased production of pro-inflammatory cytokines throughout different MNP-exposure conditions. This inflammatory response is a common feature in the pathogenesis of neurodegenerative, cardiovascular, and other age-related diseases. MNPs also act as cell senescence inducers by promoting mitochondrial dysfunction, impairing autophagy, and activating DNA damage responses, exacerbating cellular aging altogether. Increased senescence of reproductive cells and transfer of MNPs/induced damages from parents to offspring in animals further corroborates the transgenerational health risks of the tiny particles. This review aims to provoke a deeper investigation into the notorious effects these pervasive particles may have on human well-being and longevity.
{"title":"Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence.","authors":"Faiza Mahmud, Drishty B Sarker, Jonathan A Jocelyn, Qing-Xiang Amy Sang","doi":"10.3390/cells13211788","DOIUrl":"10.3390/cells13211788","url":null,"abstract":"<p><p>Microplastics and nanoplastics (MNPs) are ubiquitous environmental contaminants. Their prevalence, persistence, and increasing industrial production have led to questions about their long-term impact on human and animal health. This narrative review describes the effects of MNPs on oxidative stress, inflammation, and aging. Exposure to MNPs leads to increased production of reactive oxygen species (ROS) across multiple experimental models, including cell lines, organoids, and animal systems. ROS can cause damage to cellular macromolecules such as DNA, proteins, and lipids. Direct interaction between MNPs and immune cells or an indirect result of oxidative stress-mediated cellular damage may lead to increased production of pro-inflammatory cytokines throughout different MNP-exposure conditions. This inflammatory response is a common feature in the pathogenesis of neurodegenerative, cardiovascular, and other age-related diseases. MNPs also act as cell senescence inducers by promoting mitochondrial dysfunction, impairing autophagy, and activating DNA damage responses, exacerbating cellular aging altogether. Increased senescence of reproductive cells and transfer of MNPs/induced damages from parents to offspring in animals further corroborates the transgenerational health risks of the tiny particles. This review aims to provoke a deeper investigation into the notorious effects these pervasive particles may have on human well-being and longevity.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteoporosis is a common skeletal disease, primarily associated with aging, that results from decreased bone density and bone volume. This reduction significantly increases the risk of fractures in osteoporosis patients compared to individuals with normal bone density. Additionally, the bone regeneration process in these patients is slow, making complete healing difficult. Along with the decline in bone volume and density, osteoporosis is characterized by an increase in marrow adipose tissue (MAT), which is fat within the bone. In this altered bone microenvironment, osteoblasts are influenced by various factors secreted by adipocytes. Notably, saturated fatty acids promote osteoclast activity, inhibit osteoblast differentiation, and induce apoptosis, further reducing osteoblast formation. In contrast, monounsaturated fatty acids inhibit osteoclast formation and mitigate the apoptosis caused by saturated fatty acids. Leveraging these properties, we aimed to investigate the effects of overexpressing stearoyl-CoA desaturase 1 (SCD1), an enzyme that converts saturated fatty acids into monounsaturated fatty acids, on osteogenic differentiation and bone regeneration in both in vivo and in vitro models. Through this novel approach, we seek to develop a stem cell-based therapeutic strategy that harnesses SCD1 to improve bone regeneration in the adipocyte-rich osteoporotic environment.
{"title":"Therapeutic Potential of Stearoyl-CoA Desaturase1 (SCD1) in Modulating the Effects of Fatty Acids on Osteoporosis.","authors":"Young-Jin Seo, Jin-Ho Park, June-Ho Byun","doi":"10.3390/cells13211781","DOIUrl":"10.3390/cells13211781","url":null,"abstract":"<p><p>Osteoporosis is a common skeletal disease, primarily associated with aging, that results from decreased bone density and bone volume. This reduction significantly increases the risk of fractures in osteoporosis patients compared to individuals with normal bone density. Additionally, the bone regeneration process in these patients is slow, making complete healing difficult. Along with the decline in bone volume and density, osteoporosis is characterized by an increase in marrow adipose tissue (MAT), which is fat within the bone. In this altered bone microenvironment, osteoblasts are influenced by various factors secreted by adipocytes. Notably, saturated fatty acids promote osteoclast activity, inhibit osteoblast differentiation, and induce apoptosis, further reducing osteoblast formation. In contrast, monounsaturated fatty acids inhibit osteoclast formation and mitigate the apoptosis caused by saturated fatty acids. Leveraging these properties, we aimed to investigate the effects of overexpressing stearoyl-CoA desaturase 1 (SCD1), an enzyme that converts saturated fatty acids into monounsaturated fatty acids, on osteogenic differentiation and bone regeneration in both in vivo and in vitro models. Through this novel approach, we seek to develop a stem cell-based therapeutic strategy that harnesses SCD1 to improve bone regeneration in the adipocyte-rich osteoporotic environment.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wasp venom allergy can trigger severe allergic reactions, and predicting these acute responses remains challenging. This study evaluates the utility of immune system indexes, particularly the eosinophil-basophil/lymphocyte (EB/LR) and eosinophil-basophil-platelet/lymphocyte (EBP/LR) ratios, in assessing the severity of allergic reactions in patients with wasp venom allergy. A total of 61 patients with confirmed wasp venom allergy were categorized according to the Mueller scale, which classifies the severity of allergic reactions. Blood samples were analyzed for total and specific IgE levels alongside a range of hematological and biochemical parameters. This study found significant differences in the EB/LR and EBP/LR indexes between patients with mild (Mueller I-II) and severe (Mueller III-IV) allergic reactions, with higher values indicating more severe responses. However, no significant differences were observed in other immune indexes, such as the platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio, systemic immune-inflammation index, and systemic inflammatory response index, as well as in additional blood parameters. These findings suggest that the EB/LR and EBP/LR ratios may serve as useful markers for predicting the severity of allergic reactions in patients with wasp venom allergy. This is the first study to establish such a link, although further research with larger cohorts is necessary to confirm these results and their potential application in clinical settings.
{"title":"Eosinophil-Basophil/Lymphocyte (EB/LR) and Eosinophil-Basophil-Platelet/Lymphocyte (EBP/LR) Ratios Could Serve as Useful Additional Markers for Assessing the Severity of Wasp Allergic Reactions.","authors":"Weronika Urbańska, Łukasz Szymański, Aneta Lewicka, Martyna Ciepielak, Karolina Kostrzeńska-Sęk, Andrzej Chciałowski, Sławomir Lewicki","doi":"10.3390/cells13211786","DOIUrl":"10.3390/cells13211786","url":null,"abstract":"<p><p>Wasp venom allergy can trigger severe allergic reactions, and predicting these acute responses remains challenging. This study evaluates the utility of immune system indexes, particularly the eosinophil-basophil/lymphocyte (EB/LR) and eosinophil-basophil-platelet/lymphocyte (EBP/LR) ratios, in assessing the severity of allergic reactions in patients with wasp venom allergy. A total of 61 patients with confirmed wasp venom allergy were categorized according to the Mueller scale, which classifies the severity of allergic reactions. Blood samples were analyzed for total and specific IgE levels alongside a range of hematological and biochemical parameters. This study found significant differences in the EB/LR and EBP/LR indexes between patients with mild (Mueller I-II) and severe (Mueller III-IV) allergic reactions, with higher values indicating more severe responses. However, no significant differences were observed in other immune indexes, such as the platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio, systemic immune-inflammation index, and systemic inflammatory response index, as well as in additional blood parameters. These findings suggest that the EB/LR and EBP/LR ratios may serve as useful markers for predicting the severity of allergic reactions in patients with wasp venom allergy. This is the first study to establish such a link, although further research with larger cohorts is necessary to confirm these results and their potential application in clinical settings.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allan Langlois, Michel Pinget, Laurence Kessler, Karim Bouzakri
Islet transplantation is a promising approach for treating patients with unstable T1DM. However, it is confronted with numerous obstacles throughout the various stages of the transplantation procedure. Significant progress has been made over the last 25 years in understanding the mechanisms behind the loss of functional islet mass and in developing protective strategies. Nevertheless, at present, two to three pancreases are still needed to treat a single patient, which limits the maximal number of patients who can benefit from islet transplantation. Thus, this publication provides an overview of recent scientific findings on the various issues affecting islet transplantation. Specifically, we will focus on the understanding of the mechanisms involved and the strategies developed to alleviate these problems from the isolation stage to the post-transplantation phase. Finally, we hope that this review will highlight new avenues of action, enabling us to propose pancreatic islet transplantation to a maximum number of patients with T1DM.
{"title":"Islet Transplantation: Current Limitations and Challenges for Successful Outcomes.","authors":"Allan Langlois, Michel Pinget, Laurence Kessler, Karim Bouzakri","doi":"10.3390/cells13211783","DOIUrl":"10.3390/cells13211783","url":null,"abstract":"<p><p>Islet transplantation is a promising approach for treating patients with unstable T1DM. However, it is confronted with numerous obstacles throughout the various stages of the transplantation procedure. Significant progress has been made over the last 25 years in understanding the mechanisms behind the loss of functional islet mass and in developing protective strategies. Nevertheless, at present, two to three pancreases are still needed to treat a single patient, which limits the maximal number of patients who can benefit from islet transplantation. Thus, this publication provides an overview of recent scientific findings on the various issues affecting islet transplantation. Specifically, we will focus on the understanding of the mechanisms involved and the strategies developed to alleviate these problems from the isolation stage to the post-transplantation phase. Finally, we hope that this review will highlight new avenues of action, enabling us to propose pancreatic islet transplantation to a maximum number of patients with T1DM.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Jing Tu, Yan-Yu Zang, Yun Stone Shi, Xiao-Yu Teng
The intestines are in a constant state of motion and self-renewal. The mechanical breakdown of food facilitates intestinal movement and aids digestion. It is believed that mechanical stimulation, triggered by changes in osmotic pressure within the intestines, plays a crucial role in regulating gastrointestinal motility. While TRPs and PIEZO1/2 have been identified as mechanosensitive ion channels involved in this process, there still exist numerous unidentified channels with similar properties. In this study, we demonstrate that the TMEM63B expressed in intestinal stem cells contributes to the regulation of intestinal motility and digestion. The deletion of TMEM63B in intestinal stem cells not only decelerates intestinal motility and impairs digestion but also attenuates the proliferation of intestinal stem cells and exacerbates DSS-induced colitis in mice. Collectively, our findings unveil the pivotal role of TMEM63B in governing optimal digestive function and modulating intestinal motility.
{"title":"The TMEM63B Channel Facilitates Intestinal Motility and Enhances Proliferation of Intestinal Stem Cells.","authors":"Jing-Jing Tu, Yan-Yu Zang, Yun Stone Shi, Xiao-Yu Teng","doi":"10.3390/cells13211784","DOIUrl":"10.3390/cells13211784","url":null,"abstract":"<p><p>The intestines are in a constant state of motion and self-renewal. The mechanical breakdown of food facilitates intestinal movement and aids digestion. It is believed that mechanical stimulation, triggered by changes in osmotic pressure within the intestines, plays a crucial role in regulating gastrointestinal motility. While TRPs and PIEZO1/2 have been identified as mechanosensitive ion channels involved in this process, there still exist numerous unidentified channels with similar properties. In this study, we demonstrate that the TMEM63B expressed in intestinal stem cells contributes to the regulation of intestinal motility and digestion. The deletion of TMEM63B in intestinal stem cells not only decelerates intestinal motility and impairs digestion but also attenuates the proliferation of intestinal stem cells and exacerbates DSS-induced colitis in mice. Collectively, our findings unveil the pivotal role of TMEM63B in governing optimal digestive function and modulating intestinal motility.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ádám Radványi, Katalin Gyurina, Emese Rácz, Ilona Kovács, Gábor Méhes, Tamás Röszer
Prenatal adipose tissue development affects body composition and growth trajectory in early infancy, therefore it is a key determinant of adiposity in childhood. Childhood overweight and obesity increase the probability of being obese as an adult. After birth and in adulthood, adipose tissue macrophages (ATMs) are relevant constituents of the fat depots, and they are necessary for physiological adipose tissue development and fat metabolism. In obesity, however, ATMs may induce chronic inflammation leading to insulin resistance, pancreatic beta cell damage and self-immunity. Despite being relevant regulators of adipose tissue development and functioning, it is unknown whether ATMs are present in the fetal adipose tissue, therefore it is elusive whether they may affect the prenatal establishment of fat depots. Here we studied the distribution of ATMs in the human fetus between gestational weeks 17 and 38 and labeled ATMs in the early postnatal life. We found that CD45+/CD14+/CD68+ ATMs infiltrated the fetal adipose tissue from the 17th week of gestation and remained persistent throughout the second and third trimesters. ATMs were phagocytic in the neonate and expressed interleukin-6, along with other pro-inflammatory gene products. These findings show that ATMs colonize the adipose tissue early in gestation, raising the possibility that intrauterine ATM-adipocyte communication may exist, eventually allowing ATMs to affect prenatal adipose tissue development.
{"title":"Adipose Tissue Macrophages of the Human Fetus.","authors":"Ádám Radványi, Katalin Gyurina, Emese Rácz, Ilona Kovács, Gábor Méhes, Tamás Röszer","doi":"10.3390/cells13211787","DOIUrl":"10.3390/cells13211787","url":null,"abstract":"<p><p>Prenatal adipose tissue development affects body composition and growth trajectory in early infancy, therefore it is a key determinant of adiposity in childhood. Childhood overweight and obesity increase the probability of being obese as an adult. After birth and in adulthood, adipose tissue macrophages (ATMs) are relevant constituents of the fat depots, and they are necessary for physiological adipose tissue development and fat metabolism. In obesity, however, ATMs may induce chronic inflammation leading to insulin resistance, pancreatic beta cell damage and self-immunity. Despite being relevant regulators of adipose tissue development and functioning, it is unknown whether ATMs are present in the fetal adipose tissue, therefore it is elusive whether they may affect the prenatal establishment of fat depots. Here we studied the distribution of ATMs in the human fetus between gestational weeks 17 and 38 and labeled ATMs in the early postnatal life. We found that CD45<sup>+</sup>/CD14<sup>+</sup>/CD68<sup>+</sup> ATMs infiltrated the fetal adipose tissue from the 17th week of gestation and remained persistent throughout the second and third trimesters. ATMs were phagocytic in the neonate and expressed interleukin-6, along with other pro-inflammatory gene products. These findings show that ATMs colonize the adipose tissue early in gestation, raising the possibility that intrauterine ATM-adipocyte communication may exist, eventually allowing ATMs to affect prenatal adipose tissue development.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Damayanti Das Ghosh, Hannah McDonald, Rajeswari Dutta, Keerthana Krishnan, Jaya Thilakan, Manash K Paul, Neha Arya, Mahadev Rao, Vivek M Rangnekar
Non-small cell lung cancer (NSCLC) has established predictive biomarkers that enable decisions on treatment regimens for many patients. However, resistance to therapy is widespread. It is therefore essential to have a panel of molecular biomarkers that may help overcome therapy resistance and prevent adverse effects of treatment. We performed in silico analysis of NSCLC prognostic indicators, separately for adenocarcinomas and squamous carcinomas, by using The Cancer Genome Atlas (TCGA) and non-TCGA data sources in cBioPortal as well as UALCAN. This review describes lung cancer biology, elaborating on the key genetic alterations and specific genes responsible for resistance to conventional treatments. Importantly, we examined the mechanisms associated with resistance to immune checkpoint inhibitors. Our analysis indicated that a robust prognostic biomarker was lacking for NSCLC, especially for squamous cell carcinomas. In this work, our screening uncovered previously unidentified prognostic gene expression indicators, namely, MYO1E, FAM83 homologs, and DKK1 for adenocarcinoma, and FGA and TRIB1 for squamous cell carcinoma. It was further observed that overexpression of these genes was associated with poor prognosis. Additionally, FAM83 homolog and TRIB1 unexpectedly harbored copy number amplifications. In conclusion, this study elucidated novel prognostic indicators for NSCLC that may serve as targets to overcome therapy resistance toward improved patient outcomes.
{"title":"Prognostic Indicators for Precision Treatment of Non-Small Cell Lung Carcinoma.","authors":"Damayanti Das Ghosh, Hannah McDonald, Rajeswari Dutta, Keerthana Krishnan, Jaya Thilakan, Manash K Paul, Neha Arya, Mahadev Rao, Vivek M Rangnekar","doi":"10.3390/cells13211785","DOIUrl":"10.3390/cells13211785","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) has established predictive biomarkers that enable decisions on treatment regimens for many patients. However, resistance to therapy is widespread. It is therefore essential to have a panel of molecular biomarkers that may help overcome therapy resistance and prevent adverse effects of treatment. We performed in silico analysis of NSCLC prognostic indicators, separately for adenocarcinomas and squamous carcinomas, by using The Cancer Genome Atlas (TCGA) and non-TCGA data sources in cBioPortal as well as UALCAN. This review describes lung cancer biology, elaborating on the key genetic alterations and specific genes responsible for resistance to conventional treatments. Importantly, we examined the mechanisms associated with resistance to immune checkpoint inhibitors. Our analysis indicated that a robust prognostic biomarker was lacking for NSCLC, especially for squamous cell carcinomas. In this work, our screening uncovered previously unidentified prognostic gene expression indicators, namely, <i>MYO1E</i>, <i>FAM83</i> homologs, and <i>DKK1</i> for adenocarcinoma, and <i>FGA</i> and <i>TRIB1</i> for squamous cell carcinoma. It was further observed that overexpression of these genes was associated with poor prognosis. Additionally, <i>FAM83</i> homolog and <i>TRIB1</i> unexpectedly harbored copy number amplifications. In conclusion, this study elucidated novel prognostic indicators for NSCLC that may serve as targets to overcome therapy resistance toward improved patient outcomes.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuanrong Wang, Lili Wan, Jian Ren, Na Zhang, Hongxia Zeng, Jiaqi Wei, Mi Tang
CRISPR/Cas9 is a powerful genome editing tool for trait improvement in various crops; however, enhancing mutation efficiency using CRISPR/Cas9 in watermelon and melon remains challenging. We designed four CRISPR systems with different sgRNA expression cassettes to target the phytoene desaturase (PDS) gene in melon. The constructed vectors were delivered to host plants using Agrobacterium-mediated transformation. Phenotypic and genotypic analyses of the edited melon seedlings revealed that the CRISPR systems with tRNA and Csy4 spacers driven by the Pol II-type promoter significantly improved mutation efficiency, reaching 25.20% and 42.82%, respectively. Notably, 78.95% of the mutations generated by the Csy4 system involved large-fragment deletions (LDs) between the two target sites. In watermelon, the Csy4 system achieved a PDS editing efficiency of 41.48%, with 71.43% of the edited seedlings showing LD between the two target sites. Sequencing analysis indicated that the edited melon seedlings exhibited heterozygous, three-allele mutation and chimeric events; the edited watermelon seedlings included 2/14 homozygous mutations. Compared to the commonly used Pol III promoter, using the Pol II promoter to drive sgRNA expression cassettes containing Csy4 showed the best improvement in CRISPR/Cas9 editing efficiency in melon; this system was also effective in watermelon.
{"title":"Improving the Genome Editing Efficiency of CRISPR/Cas9 in Melon and Watermelon.","authors":"Zhuanrong Wang, Lili Wan, Jian Ren, Na Zhang, Hongxia Zeng, Jiaqi Wei, Mi Tang","doi":"10.3390/cells13211782","DOIUrl":"10.3390/cells13211782","url":null,"abstract":"<p><p>CRISPR/Cas9 is a powerful genome editing tool for trait improvement in various crops; however, enhancing mutation efficiency using CRISPR/Cas9 in watermelon and melon remains challenging. We designed four CRISPR systems with different sgRNA expression cassettes to target the phytoene desaturase (<i>PDS</i>) gene in melon. The constructed vectors were delivered to host plants using <i>Agrobacterium</i>-mediated transformation. Phenotypic and genotypic analyses of the edited melon seedlings revealed that the CRISPR systems with tRNA and Csy4 spacers driven by the Pol II-type promoter significantly improved mutation efficiency, reaching 25.20% and 42.82%, respectively. Notably, 78.95% of the mutations generated by the Csy4 system involved large-fragment deletions (LDs) between the two target sites. In watermelon, the Csy4 system achieved a <i>PDS</i> editing efficiency of 41.48%, with 71.43% of the edited seedlings showing LD between the two target sites. Sequencing analysis indicated that the edited melon seedlings exhibited heterozygous, three-allele mutation and chimeric events; the edited watermelon seedlings included 2/14 homozygous mutations. Compared to the commonly used Pol III promoter, using the Pol II promoter to drive sgRNA expression cassettes containing Csy4 showed the best improvement in CRISPR/Cas9 editing efficiency in melon; this system was also effective in watermelon.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 21","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}