Maeva Agapoff, Chloé Dubreil, Emmanuelle Waeckel-Énée, Frédéric Geinguenaud, Valérie Manceau, Julien Diana, Barbara Bertocci, Laurence Motte, Peter van Endert
Autoimmune type 1 diabetes (T1D) results from the failure of the physiologic regulatory mechanisms that are designed to maintain immune tolerance to pancreatic beta cells. Consequently, the design of strategies to restore tolerance to beta cell antigens is an attractive objective of translational research. We have designed ultrasmall nanoparticles (NPs) loaded with a proinsulin (PI) fusion protein and an agonist for the aryl hydrocarbon receptor (AhR), a transcription factor promoting tolerance induction by different immune cells. We report that a 4 week-treatment with these NPs in non-obese diabetic (NOD) mice starting at disease onset induces temporary and sometimes durable disease remission. Mechanistically, short-term NP treatment induces a rapid depletion of islet infiltrates with a dramatic reduction in the number of CD8+ T cells and dendritic cells. This is accompanied by the emergence of B lymphocytes producing IL-10. In the rare mice that undergo durable disease remission, the disappearance of islet infiltrates is associated with the emergence of Foxp3+ CD4+ regulatory T cells, IFN-γ-producing memory T cells in the spleen, and draining lymph nodes (LNs). We conclude that treatment with these NPs could be of interest in the treatment of recent-onset autoimmune diabetes, but is unlikely to be sufficient for the induction of long-term remission as a stand-alone therapy.
{"title":"Proinsulin-Loaded Nanoparticles Suppress Insulitis and Induce Temporary Diabetes Remission.","authors":"Maeva Agapoff, Chloé Dubreil, Emmanuelle Waeckel-Énée, Frédéric Geinguenaud, Valérie Manceau, Julien Diana, Barbara Bertocci, Laurence Motte, Peter van Endert","doi":"10.3390/cells15020174","DOIUrl":"10.3390/cells15020174","url":null,"abstract":"<p><p>Autoimmune type 1 diabetes (T1D) results from the failure of the physiologic regulatory mechanisms that are designed to maintain immune tolerance to pancreatic beta cells. Consequently, the design of strategies to restore tolerance to beta cell antigens is an attractive objective of translational research. We have designed ultrasmall nanoparticles (NPs) loaded with a proinsulin (PI) fusion protein and an agonist for the aryl hydrocarbon receptor (AhR), a transcription factor promoting tolerance induction by different immune cells. We report that a 4 week-treatment with these NPs in non-obese diabetic (NOD) mice starting at disease onset induces temporary and sometimes durable disease remission. Mechanistically, short-term NP treatment induces a rapid depletion of islet infiltrates with a dramatic reduction in the number of CD8<sup>+</sup> T cells and dendritic cells. This is accompanied by the emergence of B lymphocytes producing IL-10. In the rare mice that undergo durable disease remission, the disappearance of islet infiltrates is associated with the emergence of Foxp3<sup>+</sup> CD4<sup>+</sup> regulatory T cells, IFN-γ-producing memory T cells in the spleen, and draining lymph nodes (LNs). We conclude that treatment with these NPs could be of interest in the treatment of recent-onset autoimmune diabetes, but is unlikely to be sufficient for the induction of long-term remission as a stand-alone therapy.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a type of cell with self-renewal ability and multi-directional differentiation potential, stem cells are closely related to their functions, such as reprogramming transcription factors, histone modifications, and energy metabolism. m6A (N6-methyladenosine modification) is one of the most abundant modifications in RNA, and dynamic reversible m6A modification plays an important role in regulating stem cell function. This review moves beyond listing isolated functions and instead adopts an integrated perspective, viewing m6A as a temporal regulator of cellular state transitions. We discuss how m6A dynamically regulates stem cell pluripotency, coordinates epigenetic and metabolic reprogramming, and serves as a central hub integrating key signaling pathways (Wnt, PI3K-AKT, JAK-STAT, and Hippo). Finally, using somatic reprogramming as an example, we elucidate the stage-specific role of m6A in complex fate transitions. This comprehensive exposition not only clarifies the context-dependent logic of m6A regulation but also provides a precise framework for targeting the m6A axis in regenerative medicine and cancer therapy.
{"title":"The Regulatory Role of m<sup>6</sup>A Modification in the Function and Signaling Pathways of Animal Stem Cells.","authors":"Xiaoguang Yang, Yongjie Xu, Suaipeng Zhu, Mengru Wang, Hongguo Cao, Lizhi Lu","doi":"10.3390/cells15020181","DOIUrl":"10.3390/cells15020181","url":null,"abstract":"<p><p>As a type of cell with self-renewal ability and multi-directional differentiation potential, stem cells are closely related to their functions, such as reprogramming transcription factors, histone modifications, and energy metabolism. m<sup>6</sup>A (N<sup>6</sup>-methyladenosine modification) is one of the most abundant modifications in RNA, and dynamic reversible m<sup>6</sup>A modification plays an important role in regulating stem cell function. This review moves beyond listing isolated functions and instead adopts an integrated perspective, viewing m<sup>6</sup>A as a temporal regulator of cellular state transitions. We discuss how m<sup>6</sup>A dynamically regulates stem cell pluripotency, coordinates epigenetic and metabolic reprogramming, and serves as a central hub integrating key signaling pathways (Wnt, PI3K-AKT, JAK-STAT, and Hippo). Finally, using somatic reprogramming as an example, we elucidate the stage-specific role of m<sup>6</sup>A in complex fate transitions. This comprehensive exposition not only clarifies the context-dependent logic of m<sup>6</sup>A regulation but also provides a precise framework for targeting the m<sup>6</sup>A axis in regenerative medicine and cancer therapy.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12840471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica Neagu, Andreea Robu, Stelian Arjoca, Adrian Neagu
Organoids are self-organizing multicellular structures generated in vitro that recapitulate the micro-architecture and function of an organ. They are commonly derived from stem cells but can also emerge from pieces of proliferative tissues. Organoid technology has opened novel ways to model development and disease, but it is not without challenges. Computational models of organoids have been established to elucidate organoid growth and facilitate the optimization of organoid cultures. This article is a systematic review of in silico organoid models constructed at single-cell or subcellular resolution. PubMed, Scopus, and Web of Science were searched for original papers published in peer-reviewed journals before 26 September 2025, yielding 439 records after deduplication. Two independent reviewers screened their titles and abstracts, retrieved 84 papers for full-text scrutiny, and identified 32 papers that met the inclusion criteria. They were grouped by organoid type: 12 intestinal, 1 airway, 2 pancreas, 3 neural, 1 kidney, 1 inner cell mass, 9 tumor, and 3 generic. The analysis of these works revealed that computer simulations guided experimental work. Parsimonious computational models provided insights into diverse organoid behaviors, such as the rotation of airway organoids, size oscillations of pancreatic organoids, epithelial patterning of neural tube organoids, or nephron segment formation in kidney organoids. Generally, a deep understanding was achieved through combined in silico and in vitro investigations (e.g., optic cup morphogenesis). Recent research trends suggest that next-generation computational models of organoids may emerge from a more detailed understanding of the complex regulatory circuits that govern stem cell fate, and machine-learning-based, high-throughput imaging of organoids.
类器官是在体外产生的自组织多细胞结构,再现了器官的微结构和功能。它们通常来自干细胞,但也可以来自增殖组织。类器官技术为模拟发育和疾病开辟了新的途径,但它并非没有挑战。类器官的计算模型已经建立,以阐明类器官的生长和促进类器官培养的优化。这篇文章是在单细胞或亚细胞分辨率上构建的硅类器官模型的系统综述。PubMed、Scopus和Web of Science检索了2025年9月26日之前发表在同行评议期刊上的原始论文,在重复数据删除后得到439条记录。两位独立审稿人筛选了他们的标题和摘要,检索了84篇论文进行全文审查,并确定了32篇符合纳入标准的论文。按器官类型分组:肠道12例、气道1例、胰腺2例、神经3例、肾脏1例、内细胞团1例、肿瘤9例、一般3例。对这些工作的分析表明,计算机模拟可以指导实验工作。简约的计算模型提供了对各种类器官行为的见解,例如气道类器官的旋转,胰腺类器官的大小振荡,神经管类器官的上皮模式或肾类器官的肾元节段形成。一般来说,通过结合硅和体外研究(例如,视杯形态发生)来实现深入的理解。最近的研究趋势表明,下一代类器官的计算模型可能来自对控制干细胞命运的复杂调控回路的更详细理解,以及基于机器学习的类器官高通量成像。
{"title":"Cell-Based Computational Models of Organoids: A Systematic Review.","authors":"Monica Neagu, Andreea Robu, Stelian Arjoca, Adrian Neagu","doi":"10.3390/cells15020177","DOIUrl":"10.3390/cells15020177","url":null,"abstract":"<p><p>Organoids are self-organizing multicellular structures generated in vitro that recapitulate the micro-architecture and function of an organ. They are commonly derived from stem cells but can also emerge from pieces of proliferative tissues. Organoid technology has opened novel ways to model development and disease, but it is not without challenges. Computational models of organoids have been established to elucidate organoid growth and facilitate the optimization of organoid cultures. This article is a systematic review of in silico organoid models constructed at single-cell or subcellular resolution. PubMed, Scopus, and Web of Science were searched for original papers published in peer-reviewed journals before 26 September 2025, yielding 439 records after deduplication. Two independent reviewers screened their titles and abstracts, retrieved 84 papers for full-text scrutiny, and identified 32 papers that met the inclusion criteria. They were grouped by organoid type: 12 intestinal, 1 airway, 2 pancreas, 3 neural, 1 kidney, 1 inner cell mass, 9 tumor, and 3 generic. The analysis of these works revealed that computer simulations guided experimental work. Parsimonious computational models provided insights into diverse organoid behaviors, such as the rotation of airway organoids, size oscillations of pancreatic organoids, epithelial patterning of neural tube organoids, or nephron segment formation in kidney organoids. Generally, a deep understanding was achieved through combined in silico and in vitro investigations (e.g., optic cup morphogenesis). Recent research trends suggest that next-generation computational models of organoids may emerge from a more detailed understanding of the complex regulatory circuits that govern stem cell fate, and machine-learning-based, high-throughput imaging of organoids.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839770/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glioblastoma (GB) is one of the most aggressive and invasive cancers. Current treatment protocols for GB include surgical resection, radiotherapy, and chemotherapy with temozolomide. However, despite these treatments, physicians still struggle to effectively image, diagnose, and treat GB. As such, patients frequently experience recurrence of GB, demanding innovative strategies for early detection and effective therapy. Bioconjugated quantum dots (QDs) have emerged as powerful nanoplatforms for precision imaging and targeted drug delivery due to their unique optical properties, tunable size, and surface versatility. Due to their extremely small size, QDs can cross the blood-brain barrier and be used for precision imaging of GB. This review explores the integration of QDs with click chemistry for robust bioconjugation, focusing on artificial intelligence (AI) to advance GB therapy, mechanistic insights into cellular uptake and signaling, and strategies for mitigating toxicity. Click chemistry enables site-specific and stable conjugation of targeting ligands, peptides, and therapeutic agents to QDs, enhancing selectivity and functionalization. Algorithms driven by AI may facilitate predictive modeling, image reconstruction, and personalized treatment planning, optimizing QD design and therapeutic outcomes. We discuss molecular mechanisms underlying interactions of QDs with GB, including receptor-mediated endocytosis and intracellular trafficking, which influence biodistribution and therapeutic efficacy. Use of QDs in photodynamic therapy, which uses reactive oxygen species to induce apoptotic cell death in GB cells, is an innovative therapy that is covered in this review. Finally, this review addresses concerns associated with the toxicity of metal-based QDs and highlights how QDs can be coupled with AI to develop new methods for precision imaging for detecting and treating GB for induction of apoptosis. By converging nanotechnology and computational intelligence, bioconjugated QDs represent a transformative platform for paving a safer path to smarter and more effective clinical interventions of GB.
{"title":"Advancing Bioconjugated Quantum Dots with Click Chemistry and Artificial Intelligence to Image and Treat Glioblastoma.","authors":"Pranav Kalaga, Swapan K Ray","doi":"10.3390/cells15020185","DOIUrl":"10.3390/cells15020185","url":null,"abstract":"<p><p>Glioblastoma (GB) is one of the most aggressive and invasive cancers. Current treatment protocols for GB include surgical resection, radiotherapy, and chemotherapy with temozolomide. However, despite these treatments, physicians still struggle to effectively image, diagnose, and treat GB. As such, patients frequently experience recurrence of GB, demanding innovative strategies for early detection and effective therapy. Bioconjugated quantum dots (QDs) have emerged as powerful nanoplatforms for precision imaging and targeted drug delivery due to their unique optical properties, tunable size, and surface versatility. Due to their extremely small size, QDs can cross the blood-brain barrier and be used for precision imaging of GB. This review explores the integration of QDs with click chemistry for robust bioconjugation, focusing on artificial intelligence (AI) to advance GB therapy, mechanistic insights into cellular uptake and signaling, and strategies for mitigating toxicity. Click chemistry enables site-specific and stable conjugation of targeting ligands, peptides, and therapeutic agents to QDs, enhancing selectivity and functionalization. Algorithms driven by AI may facilitate predictive modeling, image reconstruction, and personalized treatment planning, optimizing QD design and therapeutic outcomes. We discuss molecular mechanisms underlying interactions of QDs with GB, including receptor-mediated endocytosis and intracellular trafficking, which influence biodistribution and therapeutic efficacy. Use of QDs in photodynamic therapy, which uses reactive oxygen species to induce apoptotic cell death in GB cells, is an innovative therapy that is covered in this review. Finally, this review addresses concerns associated with the toxicity of metal-based QDs and highlights how QDs can be coupled with AI to develop new methods for precision imaging for detecting and treating GB for induction of apoptosis. By converging nanotechnology and computational intelligence, bioconjugated QDs represent a transformative platform for paving a safer path to smarter and more effective clinical interventions of GB.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karolina Zimkowska, Marc Riu-Villanueva, José A Del Río
Neuromechanobiology has emerged as a multidisciplinary field at the interface of neuroscience and mechanobiology, aiming to elucidate how mechanical forces influence the development, organization, and function of the nervous system. This review offers a comprehensive overview of the historical evolution of the discipline, its molecular and biophysical foundations, and the experimental strategies employed to investigate it. Recent advances have revealed the pivotal roles of substrate stiffness, mechanical signaling, and force transduction in neural stem proliferation, axon guidance, synapse formation, and neural circuit maturation. All these effects originate at the molecular level and extend to the mesoscopic scale. Disrupted mechanotransduction has been increasingly implicated in neurodevelopmental disorders and neurodegenerative diseases, underscoring its clinical relevance. Key unresolved questions and future directions are also highlighted, with emphasis on the need for integrative approaches to decipher the complex interplay between mechanical forces and neural function.
{"title":"Neuromechanobiology: Bridging Mechanobiology and Neuroscience Through Evidence and Open Questions.","authors":"Karolina Zimkowska, Marc Riu-Villanueva, José A Del Río","doi":"10.3390/cells15020178","DOIUrl":"10.3390/cells15020178","url":null,"abstract":"<p><p>Neuromechanobiology has emerged as a multidisciplinary field at the interface of neuroscience and mechanobiology, aiming to elucidate how mechanical forces influence the development, organization, and function of the nervous system. This review offers a comprehensive overview of the historical evolution of the discipline, its molecular and biophysical foundations, and the experimental strategies employed to investigate it. Recent advances have revealed the pivotal roles of substrate stiffness, mechanical signaling, and force transduction in neural stem proliferation, axon guidance, synapse formation, and neural circuit maturation. All these effects originate at the molecular level and extend to the mesoscopic scale. Disrupted mechanotransduction has been increasingly implicated in neurodevelopmental disorders and neurodegenerative diseases, underscoring its clinical relevance. Key unresolved questions and future directions are also highlighted, with emphasis on the need for integrative approaches to decipher the complex interplay between mechanical forces and neural function.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carla Cangalaya, Henning Peter Düsedau, Ildiko Rita Dunay, Alexander Dityatev, Stoyan Stoyanov
In both Alzheimer's disease (AD) patients and animal models, senile plaques are generally observed in the cerebral cortex rather than the cerebellum. The mechanisms underlying the regional resistance of the cerebellum to amyloid plaque deposition remain poorly understood. We investigated this cerebellar resistance using 5xFAD mice, an amyloidosis model with high expression of mutant human APP and PSEN1 in the cortex and cerebellum. In aged 5xFAD mice, the cerebellum had minimal amyloid-β (Aβ) deposition despite robust transgene expression, correlating with lower expression levels of IBA1, CD68, TREM2, and CD36 (although elevated expression of CD45 and MHC I) compared to the cortex. Consistent with the absence of plaques, cerebellar tissue lacked the dystrophic VGLUT1-positive synaptic accumulations prominent in the cortex. Cerebellar microglia maintained a distinct, less inflammatory phenotype yet displayed efficient clearance activity. Notably, ASC inflammasome specks-capable of seeding Aβ aggregation-were paradoxically more abundant in the cerebellum, implying that rapid Aβ clearance prevents these seeds from driving plaque formation. Furthermore, key extracellular matrix (ECM) proteoglycans brevican and aggrecan were elevated in the 5xFAD cerebellum. Cerebellar microglia showed enhanced internalization of brevican alongside small Aβ aggregates, exceeding that in cortical microglia. These findings indicate that region-specific microglial and ECM interactions-particularly efficient uptake and degradation of ECM-Aβ co-aggregates-may underlie the cerebellum's resilience to amyloid plaque pathology.
在阿尔茨海默病(AD)患者和动物模型中,老年斑通常在大脑皮层而不是小脑中观察到。小脑对淀粉样斑块沉积的局部抵抗机制尚不清楚。我们用5xFAD小鼠研究了这种小脑抗性,5xFAD小鼠是一种淀粉样变模型,在皮质和小脑中高表达突变的人类APP和PSEN1。在老年5xFAD小鼠中,尽管转基因表达强劲,但小脑的淀粉样蛋白-β (Aβ)沉积很少,与皮层相比,IBA1、CD68、TREM2和CD36的表达水平较低(尽管CD45和MHC I的表达升高)。与斑块的缺失一致,小脑组织缺乏营养不良的vglut1阳性突触积聚在皮层突出。小脑小胶质细胞保持了明显的、较少的炎症表型,但显示出有效的清除活性。值得注意的是,ASC炎性小体-能够播种Aβ聚集-在小脑中更丰富,这意味着快速清除Aβ阻止了这些种子驱动斑块的形成。此外,5xFAD小鼠小脑中关键的细胞外基质(ECM)蛋白聚糖brevican和aggrecan升高。小脑小胶质细胞与小Aβ聚集物的内在化增强,超过皮质小胶质细胞。这些发现表明,区域特异性小胶质细胞和ECM的相互作用,特别是ECM- a - β共聚集物的有效摄取和降解,可能是小脑对淀粉样斑块病理恢复能力的基础。
{"title":"Cerebellar Resistance to Amyloid Plaque Deposition and Elevated Microglial ECM Proteoglycan Uptake in 5xFAD Mice.","authors":"Carla Cangalaya, Henning Peter Düsedau, Ildiko Rita Dunay, Alexander Dityatev, Stoyan Stoyanov","doi":"10.3390/cells15020182","DOIUrl":"10.3390/cells15020182","url":null,"abstract":"<p><p>In both Alzheimer's disease (AD) patients and animal models, senile plaques are generally observed in the cerebral cortex rather than the cerebellum. The mechanisms underlying the regional resistance of the cerebellum to amyloid plaque deposition remain poorly understood. We investigated this cerebellar resistance using 5xFAD mice, an amyloidosis model with high expression of mutant human <i>APP</i> and <i>PSEN1</i> in the cortex and cerebellum. In aged 5xFAD mice, the cerebellum had minimal amyloid-β (Aβ) deposition despite robust transgene expression, correlating with lower expression levels of IBA1, CD68, TREM2, and CD36 (although elevated expression of CD45 and MHC I) compared to the cortex. Consistent with the absence of plaques, cerebellar tissue lacked the dystrophic VGLUT1-positive synaptic accumulations prominent in the cortex. Cerebellar microglia maintained a distinct, less inflammatory phenotype yet displayed efficient clearance activity. Notably, ASC inflammasome specks-capable of seeding Aβ aggregation-were paradoxically more abundant in the cerebellum, implying that rapid Aβ clearance prevents these seeds from driving plaque formation. Furthermore, key extracellular matrix (ECM) proteoglycans brevican and aggrecan were elevated in the 5xFAD cerebellum. Cerebellar microglia showed enhanced internalization of brevican alongside small Aβ aggregates, exceeding that in cortical microglia. These findings indicate that region-specific microglial and ECM interactions-particularly efficient uptake and degradation of ECM-Aβ co-aggregates-may underlie the cerebellum's resilience to amyloid plaque pathology.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Romina Mancinelli, Ludovica Ceci, Lindsey Kennedy, Heather Francis, Vik Meadows, Lixian Chen, Guido Carpino, Konstantina Kyritsi, Nan Wu, Tianhao Zhou, Keisaku Sato, Luigi Pannarale, Shannon Glaser, Sanjukta Chakraborty, Gianfranco Alpini, Eugenio Gaudio, Paolo Onori, Antonio Franchitto
The journal retracts the article titled "The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling" [...].
该杂志撤回了题为“牛头胆酸对胆道损伤和肝纤维化的影响是由降钙素基因相关肽信号介导的”的文章。
{"title":"RETRACTED: Mancinelli et al. The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. <i>Cells</i> 2022, <i>11</i>, 1591.","authors":"Romina Mancinelli, Ludovica Ceci, Lindsey Kennedy, Heather Francis, Vik Meadows, Lixian Chen, Guido Carpino, Konstantina Kyritsi, Nan Wu, Tianhao Zhou, Keisaku Sato, Luigi Pannarale, Shannon Glaser, Sanjukta Chakraborty, Gianfranco Alpini, Eugenio Gaudio, Paolo Onori, Antonio Franchitto","doi":"10.3390/cells15020180","DOIUrl":"10.3390/cells15020180","url":null,"abstract":"<p><p>The journal retracts the article titled \"The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling\" [...].</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12814983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146003027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir-Hossein Bayat, Damien D Pearse, Praveen Kumar Singh, Mousumi Ghosh
Microglia-derived small extracellular vesicles (MGEVs) are key mediators of neuroimmune communication, yet their cross-species comparability and translational relevance remain poorly defined. Here, we establish a harmonized framework to compare the molecular and biochemical signatures of sEVs derived from immortalized mouse (BV2) and human (HMC3) microglial cells as well as assess their bioactivity on a human Schwann cell (HuSC) line. MGEVs were isolated via MISEV-aligned size-exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and immunoblotting for canonical EV markers CD9, CD63, CD81, TSG101. Human and mouse MGEVs exhibited similar morphology but displayed distinct membrane tetraspanin protein enrichment patterns. Functionally, mouse and human MGEVs attenuated HuSC migration while enhancing HuSC proliferation and their resistance to H2O2-induced oxidative stress, with human MGEVs providing stronger protective effects, suggesting they retain similar core functional properties. Short, non-coding-miRNA sequencing analysis identified 196 shared miRNAs (Spearman ρ = 0.72) with species-specific enrichment: human MGEVs-derived miRNAs favored regenerative and metabolic pathways, whereas mouse MGEVs-derived miRNAs aligned more so with inflammatory signaling. This study delivers the first integrated cross-species blueprint of MGEVs, revealing conserved neuroprotective actions alongside species-biased miRNA cargo that define translational boundaries and highlight human-relevant MGEV signatures for therapeutic innovation, therefore contributing to the importance of considering these differences in translational research.
{"title":"Comparative Profiling of Mouse and Human Microglial Small Extracellular Vesicles Reveals Conserved Core Functions with Distinct miRNA Signatures.","authors":"Amir-Hossein Bayat, Damien D Pearse, Praveen Kumar Singh, Mousumi Ghosh","doi":"10.3390/cells15020184","DOIUrl":"10.3390/cells15020184","url":null,"abstract":"<p><p>Microglia-derived small extracellular vesicles (MGEVs) are key mediators of neuroimmune communication, yet their cross-species comparability and translational relevance remain poorly defined. Here, we establish a harmonized framework to compare the molecular and biochemical signatures of sEVs derived from immortalized mouse (BV2) and human (HMC3) microglial cells as well as assess their bioactivity on a human Schwann cell (HuSC) line. MGEVs were isolated via MISEV-aligned size-exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and immunoblotting for canonical EV markers CD9, CD63, CD81, TSG101. Human and mouse MGEVs exhibited similar morphology but displayed distinct membrane tetraspanin protein enrichment patterns. Functionally, mouse and human MGEVs attenuated HuSC migration while enhancing HuSC proliferation and their resistance to H<sub>2</sub>O<sub>2</sub>-induced oxidative stress, with human MGEVs providing stronger protective effects, suggesting they retain similar core functional properties. Short, non-coding-miRNA sequencing analysis identified 196 shared miRNAs (Spearman ρ = 0.72) with species-specific enrichment: human MGEVs-derived miRNAs favored regenerative and metabolic pathways, whereas mouse MGEVs-derived miRNAs aligned more so with inflammatory signaling. This study delivers the first integrated cross-species blueprint of MGEVs, revealing conserved neuroprotective actions alongside species-biased miRNA cargo that define translational boundaries and highlight human-relevant MGEV signatures for therapeutic innovation, therefore contributing to the importance of considering these differences in translational research.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12840537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim Herrmann, Claire Delbridge, Michael Griessmair, Julian Canisius, Meike Mitsdoerffer, Denise Bernhardt, Isabel C Hostettler, Chiara Negwer, Igor Yakushev, Bernhard Meyer, Friederike Schmidt-Graf, Stephanie E Combs, Jan S Kirschke, Benedikt Wiestler, Marie-Christin Metz
Precise molecular characterization of glioblastoma (GB) is fundamental for accurate risk stratification and therapeutic planning. DNA methylation profiling reliably identifies key molecular features, including O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and specific molecular subtypes, such as receptor tyrosine kinase (RTK) I and II, and the mesenchymal (MES) subtype. In this study, we investigated the hypothesized correlation between these molecular profiles and preferential tumor locations, which could reveal a link to underlying tumor biology. We analyzed 227 GB patients characterized by DNA methylation profiling. To map significant clusters of tumor occurrence across subtypes and subcomponents, we performed voxel-wise analysis of differential involvement, utilizing 500 permutations to correct for multiple comparisons. While uncorrected frequency differential maps suggested localization tendencies for the RTK I, RTK II, and MES subtypes, stringent statistical correction revealed only one robust association: the non-enhancing component of MES tumors showed significant clustering in the left frontal lobe, the insula, and the temporal lobe. Contrary to prior literature, we observed no significant hemispheric preference regarding MGMT promoter methylation status. Our findings challenge prior assumptions regarding the spatial distinctiveness of GB subtypes and highlight the need to further elucidate the mechanisms governing tumorigenesis and spatial growth patterns.
{"title":"The Spatial Signature of Glioblastoma: A Statistical Re-Assessment of Anatomical Distribution Based on Methylation Subtypes.","authors":"Tim Herrmann, Claire Delbridge, Michael Griessmair, Julian Canisius, Meike Mitsdoerffer, Denise Bernhardt, Isabel C Hostettler, Chiara Negwer, Igor Yakushev, Bernhard Meyer, Friederike Schmidt-Graf, Stephanie E Combs, Jan S Kirschke, Benedikt Wiestler, Marie-Christin Metz","doi":"10.3390/cells15020175","DOIUrl":"10.3390/cells15020175","url":null,"abstract":"<p><p>Precise molecular characterization of glioblastoma (GB) is fundamental for accurate risk stratification and therapeutic planning. DNA methylation profiling reliably identifies key molecular features, including O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and specific molecular subtypes, such as receptor tyrosine kinase (RTK) I and II, and the mesenchymal (MES) subtype. In this study, we investigated the hypothesized correlation between these molecular profiles and preferential tumor locations, which could reveal a link to underlying tumor biology. We analyzed 227 GB patients characterized by DNA methylation profiling. To map significant clusters of tumor occurrence across subtypes and subcomponents, we performed voxel-wise analysis of differential involvement, utilizing 500 permutations to correct for multiple comparisons. While uncorrected frequency differential maps suggested localization tendencies for the RTK I, RTK II, and MES subtypes, stringent statistical correction revealed only one robust association: the non-enhancing component of MES tumors showed significant clustering in the left frontal lobe, the insula, and the temporal lobe. Contrary to prior literature, we observed no significant hemispheric preference regarding MGMT promoter methylation status. Our findings challenge prior assumptions regarding the spatial distinctiveness of GB subtypes and highlight the need to further elucidate the mechanisms governing tumorigenesis and spatial growth patterns.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12840343/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyperphosphorylated collapsin response mediator protein 2 (CRMP2) is elevated in the cerebral cortex of an APP-SAA knock-in mouse model of Alzheimer's disease and binds the adenine nucleotide translocase (ANT) in a phosphorylation-dependent manner. We propose that, in Alzheimer's disease (AD) mitochondria, dissociation of hyperphosphorylated CRMP2 from ANT promotes opening of the permeability transition pore (PTP). We showed that purified ANT, when reconstituted into giant liposomes, forms large calcium-dependent channels resembling the PTP, which are effectively blocked by recombinant, unphosphorylated CRMP2. In synaptic mitochondria isolated from the cortices of APP-SAA knock-in mice and control B6J hAbeta mice, we observed an increased susceptibility to permeability transition pore (PTP) induction in AD mitochondria, accompanied by reduced viability of cultured cortical neurons. Pre-treatment of AD mice with the CRMP2-binding small molecule (S)-lacosamide ((S)-LCM), which prevents CRMP2 hyperphosphorylation and restores its interaction with ANT, attenuated PTP induction and improved neuronal viability. Interestingly, direct application of (S)-LCM to isolated mitochondria failed to suppress PTP induction, indicating that its protective effect requires upstream cellular mechanisms. These findings support a phosphorylation-dependent role for CRMP2 in regulating PTP induction in AD mitochondria and highlight (S)-LCM as a promising therapeutic candidate for mitigating mitochondrial dysfunction and enhancing neuronal viability in AD.
{"title":"Collapsin Response Mediator Protein 2 (CRMP2) Modulates Induction of the Mitochondrial Permeability Transition Pore in a Knock-In Mouse Model of Alzheimer's Disease.","authors":"Tatiana Brustovetsky, Rajesh Khanna, Nickolay Brustovetsky","doi":"10.3390/cells15020179","DOIUrl":"10.3390/cells15020179","url":null,"abstract":"<p><p>Hyperphosphorylated collapsin response mediator protein 2 (CRMP2) is elevated in the cerebral cortex of an APP-SAA knock-in mouse model of Alzheimer's disease and binds the adenine nucleotide translocase (ANT) in a phosphorylation-dependent manner. We propose that, in Alzheimer's disease (AD) mitochondria, dissociation of hyperphosphorylated CRMP2 from ANT promotes opening of the permeability transition pore (PTP). We showed that purified ANT, when reconstituted into giant liposomes, forms large calcium-dependent channels resembling the PTP, which are effectively blocked by recombinant, unphosphorylated CRMP2. In synaptic mitochondria isolated from the cortices of APP-SAA knock-in mice and control B6J hAbeta mice, we observed an increased susceptibility to permeability transition pore (PTP) induction in AD mitochondria, accompanied by reduced viability of cultured cortical neurons. Pre-treatment of AD mice with the CRMP2-binding small molecule (S)-lacosamide ((S)-LCM), which prevents CRMP2 hyperphosphorylation and restores its interaction with ANT, attenuated PTP induction and improved neuronal viability. Interestingly, direct application of (S)-LCM to isolated mitochondria failed to suppress PTP induction, indicating that its protective effect requires upstream cellular mechanisms. These findings support a phosphorylation-dependent role for CRMP2 in regulating PTP induction in AD mitochondria and highlight (S)-LCM as a promising therapeutic candidate for mitigating mitochondrial dysfunction and enhancing neuronal viability in AD.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"15 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12840006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}