In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo2S4@MnCo2O4 core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m2g-1, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg-1 at 1 Ag-1 demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg-1 and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg-1. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.
The purpose of this review paper is to provide a comprehensive overview of hydrogels in cancer therapy. This aims to explore the definition of hydrogels and their unique characteristics of hydrogel, role of hydrogel in cancer therapy, cancer therapy treatment approaches, challenges in cancer therapy, that make them suitable for use in cancer treatment. It seeks to emphasize on the integration of innovative approaches and new technologies in addressing the challenges of conventional cancer therapies and to highlight their potential to revolutionize cancer treatment approaches. The review will delve into different types of hydrogels, methods of preparation of hydrogel including natural and synthetic hydrogels, providing insights into their characteristics, synthesis methods, and tenability. Furthermore, it will examine the diverse applications of hydrogels in cancer therapy, such as drug delivery systems, tissue engineering, localized therapy, and combination therapies.
Nanocrystalline PbTe and Ag & Sb co-doped PbTe thin films are prepared using an integrated physical-chemical approach by evaporating chemically synthesized PbTe and Ag & Sb co-doped PbTe nanopowders on glass substrates. The X-Ray Diffractogram (XRD) reveals that all samples are NaCl-type structure and the structural parameters such as crystallite size D, dislocation density , strain , lattice constant, volume of the cell and number of crystallites are calculated and reported the results. The crystallite size of the films is around 24 nm. The absolute value of the Seebeck coefficient of nanocrystalline PbTe and Ag and Sb co-doped PbTe thin films is 1.069 mV/K and 0.569 mV/K respectively and the positive values indicate their p-type conductivity of the film. The values of Seebeck coefficient and power factor are higher than that of bulk which implies an enhancement in the thermoelectric properties with a reduction in the particle size and co doping.
In this work, we present the spectroscopic and structural analysis of synthetic melanin incorporated within alginate films. We propose a synthesis methodology for alginate films with different concentrations of melanin. For this, Ca2-crosslinked alginate films plasticized with glycerol (30% w/w) are used as a matrix to support melanin in a non-disolved state. The structural and morphological characteristics of the alginate-melanin films are evaluated. Furthermore, we analyze the structural and morphological characteristics of the obtained films and analyze their spectroscopic characteristics from the ultraviolet to the terahertz bands of the electromagnetic spectrum. This work demonstrates that alginate films are a viable option as a matrix for the analysis and characterization of non-dissolved melanin. Moreover, we determine the dependence of the analyzed physical and optical properties of the alginate-melanin films with respect to the melanin concentration and discuss the relevance of the observed changes. The analysis suggests the potential use of melanin-alginate films for further examination of non-dissolved melanin.
Synthetic plastics pose a major environmental threat and it is necessary to produce an alternative biopolymer. In the current study, the production of polyhydroxybutyrate (PHB) by Mesobacillus aurentius was enhanced using Response surface methodology (Box–Behnken design). This study explores the potential of aquabiofloc systems as a source of polyhydroxyalkanoates (PHB)-producing bacteria. The optimized medium conditions, as determined by Response Surface Methodology (RSM), included 18.68 g of sucrose, 4.0 g of yeast, an incubation period of 69.57 h, and a pH of 7.1. The ANOVA results revealed that the model developed for predicting PHA yield was highly significant (p < 0.05). The predicted PHA yield was 63.12%, while the experimental yield was 65.35%. The maximum production of PHA was obtained with sucrose and yeast as carbon and nitrogen sources. The extracted polymer was characterized using UV, FTIR, 1H NMR, and SEM-EDAX analysis confirming the polymer to be PHB. The thermal stability of the produced PHA showed degradation temperatures ranging from 310 °C. The mechanical properties of the extracted PHA were also assessed, demonstrating tensile strength and viscosity of 22.4 MPa and 1.23 MPa. respectively. The antimicrobial activity of the produced PHA was evaluated, demonstrating significant inhibitory effects against both Gram-positive and Gram-negative bacterial strains as well as fungal strains. The Cytotoxicity assessment in HepG2 cells indicated that PHB is less toxic in nature. The findings highlight the promising role of marine bacteria, Mesobacillus aurentius, in the development of environmentally friendly biopolymers. This bacterium represents a novel candidate for PHB production, offering a potential alternative to petroleum-based plastics.
The nitrogen containing heterocyclic and chalcones moiety widely recognized as favorable combination of diagnostic and therapeutic facilities in medicinal chemistry. In particular, indole analogs play a very important medicinal role in pharmacology activities, hence, drugs like pindolol, indomethacin, oxypertine, ellipticine, arbidol and ate viridine are well known in market. In this view, the title compounds 4(a-j) were synthesized in good yield. The purified compounds were explained by spectroscopic procedures (FT-IR, 1H NMR, 13CNMR, and LC-MS), and lastly, all synthetic compounds have in-vitro efficacy assessed against the HeLa human cervical cancer and MCF-7 human breast cancer cell lines, and their efficacy was compared to that of the well-known anticancer drug methotrexate (Methotrexate). Compounds 4a, 4b, 4c, and 4e from the series (4a-j) demonstrated the most notable inhibitory activity. The cytotoxicity evaluation of these newly synthesized compounds revealed that 4a, 4b, 4c, and 4e were the most toxic to HeLa cells, with IC50 values for growth inhibition of 20.41 ± 3.14, 23.54 ± 3.27, 24.77 ± 2.14, and 26.10 ± 1.58, respectively. These compounds exhibited an even stronger growth-inhibitory effect on MCF-7 cells, with IC50 values of 18.84 ± 2.69, 19.45 ± 3.14, 22.83 ± 2.68, and 21.80 ± 1.68, respectively. In comparison, methotrexate (Methotrexate) showed IC50 values of 28.29 ± 1.0 for HeLa cells and 45.08 ± 2.61 for MCF-7 cells. Additionally, compounds 4a, 4b, 4c, and 4e played a crucial role in interacting with the catalytic domain of PDE3, demonstrating IC50 values for PDE3A inhibition of 8.05 ± 1.27, 7.55 ± 2.14, 15.09 ± 1.54, and 17.12 ± 3.14, respectively. These results are compared with Cilostazol, a known PDE inhibitor, which exhibited an IC50 of 0.00368 ± 3.14. In-silico studies revealed that compounds (4a, 4b, and 4c) are comparatively very efficient in binding with PDE3A which was further validated with MMGBSA and MDSs.
Antimicrobial resistance (AMR) is currently a global health concern, mostly caused by microorganisms like bacteria, viruses, parasites, and fungi that acquire resistance to antimicrobial drugs. Salmonella is responsible for a variety of diseases but mainly cause typhoid. The primary concern is the rise in resistance in both non-typhoid and typhoid strains of this species. To address this issue, it is necessary to identify novel targets and strategies for the development of new antibacterial drugs. Lipid A, a strong bacterial endotoxin that modulates the immune system in human, is a key component of the virulence factor generated during the salmonella infection. Lipid A is synthesized in case of Gram-negative bacteria by cascade of nine enzyme pathway. The second step in case of Lipid A biosynthesis, catalysed by LpxC, a Zn+ dependent metallo-amidase considered as rate limiting step. In this manuscript we have used protein-ligand interaction fingerprint (PLIF)–derived pharmacophore models to screen small molecules (natural products library from Zinc database, Asinex database, Thiophene analogues) against Salmonella typhi LpxC (StLpxC). Further top hit molecules were subjected to MD-simulation and ADMET studies. We identified three optimal compounds, s1_dl_mseq2, s1_ll_mseq2, and s2_ll_mseq8, that exhibit strong binding affinity towards the LpxC active site.
Nanocomposite, which comprise organic and inorganic materials have gained increasing interest in the application for enhanced sensing response to both reducing and oxidation gases. In this study, a nanocomposite is chemical polymerization synthesized by reinforcing Ag nanoparticles with different concentration doped into the matrix of Polypyrrole (PPy). This nanocomposite is used as a sensing platform for ammonia detection with different concentration (ppm). The homogeneous distribution of Ag nanoparticles onto the PPy matrix provides a smooth and dense surface area, further accelerating the transmission of electrons. The synergistic effect of PPy@Ag matrix is responsible for the outstanding conductivity, compatibility and catalytic power of the proposed gas sensor. The structure, morphology, and surface composition of as-synthesized samples were respectively, examined via X-ray diffraction, field emission scanning electron microscopy, Ultraviolet-visible spectroscopy, Thermogravimetric analysis and Fourier transform infrared spectroscopy. The results indicated that sensor based on the PPy@Ag5 (2 gm) nanocomposite showed the highest response toward ammonia as compare to pure PPy at room temperature with a response value is 58 % to 100 ppm. Overall, the obtained findings demonstrated that the PPy@Ag nanocomposite are promising materials for gas sensing applications in environmental monitoring.