首页 > 最新文献

Chemical Physics Impact最新文献

英文 中文
Disrupting SARS-CoV-2: molecular dynamics insights into the role of human β-defensin 2 and α-defensin 5 peptides in membrane structure alteration 破坏 SARS-CoV-2:通过分子动力学深入了解人类 β-defensin 2 和 α-defensin 5 肽在膜结构改变中的作用
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-07 DOI: 10.1016/j.chphi.2024.100727
M.A. Dashti , D. Mohammad-Aghaie , O. Bavi

As a part of the host-defense system of many organisms, defensins are considered a suitable option for treating infection agents. Using the molecular dynamics simulation, this work studied the effects of two important human antimicrobial peptides, human β-defensin 2 and human α-defensin 5 on the SARS-CoV-2 membrane. The results demonstrate that defensin peptides notably alter the bilayer membrane's structure and physicochemical activity leading to a hydrophobic mismatch that impacts transmembrane protein channel function. This study elucidates the antiviral mechanisms of defensins and their therapeutic potential, offering valuable insights for researchers in virology and public health seeking novel medications.

作为许多生物宿主防御系统的一部分,防御素被认为是治疗感染病原体的合适选择。本研究利用分子动力学模拟研究了两种重要的人类抗菌肽--人类β防御素2和人类α防御素5对SARS-CoV-2膜的影响。研究结果表明,防御素肽显著改变了双层膜的结构和理化活性,导致疏水错配,从而影响跨膜蛋白通道的功能。这项研究阐明了防御素的抗病毒机制及其治疗潜力,为病毒学和公共卫生研究人员寻求新型药物提供了宝贵的见解。
{"title":"Disrupting SARS-CoV-2: molecular dynamics insights into the role of human β-defensin 2 and α-defensin 5 peptides in membrane structure alteration","authors":"M.A. Dashti ,&nbsp;D. Mohammad-Aghaie ,&nbsp;O. Bavi","doi":"10.1016/j.chphi.2024.100727","DOIUrl":"10.1016/j.chphi.2024.100727","url":null,"abstract":"<div><p>As a part of the host-defense system of many organisms, defensins are considered a suitable option for treating infection agents. Using the molecular dynamics simulation, this work studied the effects of two important human antimicrobial peptides, human β-defensin 2 and human α-defensin 5 on the SARS-CoV-2 membrane. The results demonstrate that defensin peptides notably alter the bilayer membrane's structure and physicochemical activity leading to a hydrophobic mismatch that impacts transmembrane protein channel function. This study elucidates the antiviral mechanisms of defensins and their therapeutic potential, offering valuable insights for researchers in virology and public health seeking novel medications.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002718/pdfft?md5=38beacab9faeb66a4e69783713ed4231&pid=1-s2.0-S2667022424002718-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O, N co-doped porous activated carbon from polyvinyl chloride for super capacitors and solar cells application 用于超级电容器和太阳能电池的聚氯乙烯 O、N 共掺多孔活性炭
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-05 DOI: 10.1016/j.chphi.2024.100721
Pawan Singh Dhapola , Sushant Kumar , Manoj Karakoti , M.Z.A. Yahya , Vinay Deep Punetha , Sandeep Pandey , Faisal Islam Chowdhury , Serguei V. Savilov , Pramod K. Singh

Porous-activated carbons (PAC) show a lot of applications in various fields due to their large surface area and appropriate pore volume, along with decent thermal, chemical, and mechanical stability. Because of these characteristics, PACs are the best choice as an electrode material in supercapacitors (SCs). Due to the utility of PACs, this work reports the transformation of polyvinyl chloride (PVC) into PAC with a surface area of 162.40 m2/g. The synthesized PAC exhibits a maximum specific capacitance (CSP) of 40 F/g at five mV/s in 1-ethyl-3- methylimidazolium thiocyanate ionic liquid (EMIM SCN-IL) electrolyte. Also, no degradation was recorded in the initial Csp of the fabricated SC, even after 9000 cycles at room temperature. Additionally, using the same PAC in counter electrode dye-sensitized solar cell (DSSC) was also fabricated, and the cell was tested at 1 sun condition, which shows a fill factor of 59.37 % and an efficiency of 1.42 %.

多孔活性碳(PAC)具有较大的表面积和适当的孔隙率,以及良好的热稳定性、化学稳定性和机械稳定性,因此在各个领域都有广泛的应用。由于这些特性,多孔活性碳是超级电容器(SC)电极材料的最佳选择。鉴于 PAC 的实用性,本研究报告将聚氯乙烯(PVC)转化为表面积为 162.40 m2/g 的 PAC。合成的 PAC 在 1-ethyl-3- methylimidazolium thiocyanate ionic liquid(EMIM SCN-IL)电解液中以 5 mV/s 的速度显示出 40 F/g 的最大比电容(CSP)。此外,即使在室温下循环 9000 次,所制造 SC 的初始 Csp 也没有发生降解。此外,还利用相同的 PAC 制作了反电极染料敏化太阳能电池(DSSC),并在日照条件下对该电池进行了测试,结果显示其填充因子为 59.37%,效率为 1.42%。
{"title":"O, N co-doped porous activated carbon from polyvinyl chloride for super capacitors and solar cells application","authors":"Pawan Singh Dhapola ,&nbsp;Sushant Kumar ,&nbsp;Manoj Karakoti ,&nbsp;M.Z.A. Yahya ,&nbsp;Vinay Deep Punetha ,&nbsp;Sandeep Pandey ,&nbsp;Faisal Islam Chowdhury ,&nbsp;Serguei V. Savilov ,&nbsp;Pramod K. Singh","doi":"10.1016/j.chphi.2024.100721","DOIUrl":"10.1016/j.chphi.2024.100721","url":null,"abstract":"<div><p>Porous-activated carbons (PAC) show a lot of applications in various fields due to their large surface area and appropriate pore volume, along with decent thermal, chemical, and mechanical stability. Because of these characteristics, PACs are the best choice as an electrode material in supercapacitors (SCs). Due to the utility of PACs, this work reports the transformation of polyvinyl chloride (PVC) into PAC with a surface area of 162.40 m<sup>2</sup>/g. The synthesized PAC exhibits a maximum specific capacitance (CSP) of 40 F/g at five mV/s in 1-ethyl-3- methylimidazolium thiocyanate ionic liquid (EMIM SCN-IL) electrolyte. Also, no degradation was recorded in the initial C<sub>sp</sub> of the fabricated SC, even after 9000 cycles at room temperature. Additionally, using the same PAC in counter electrode dye-sensitized solar cell (DSSC) was also fabricated, and the cell was tested at 1 sun condition, which shows a fill factor of 59.37 % and an efficiency of 1.42 %.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002652/pdfft?md5=cd51e74c8b81a9a131b4c35ddc59a0e6&pid=1-s2.0-S2667022424002652-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cheminformatics approaches to predict the bioactivity and to discover the pharmacophoric traits crucial to block NF-κB 用化学信息学方法预测生物活性并发现阻断 NF-κB 的关键药效特征
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-05 DOI: 10.1016/j.chphi.2024.100720
Rahul D. Jawarkar , Suraj N. Mali , Rahul G. Ingle , Sami A. Al-Hussain , Aamal A. Al-Mutairi , Prashant Deshmukh , Magdi E.A. Zaki

Many human disorders include NF-kB signaling pathways, making IKK a therapeutic target in cancer treatment. Inflammatory illnesses and cancer are examples. COVID-19 is one of several triggers that stimulate NF-kB signaling. The activation of the NF-kB pathway is necessary for COVID-19 to cease its development. To learn more about the mechanism and structural features essential to IKK inhibition (IC50), molecular modeling studies have been undertaken on experimentally reported 503. QSAR analysis explores certain reported and hidden structural features critical for IKKβ inhibition. The OECD guidelines guided the construction of the QSAR model, which achieved all the endorsed threshold values for all validation parameters (R2tr:0.81, R2LMO:0.80, and R2ext:0.78). The present QSAR study shows that IKK inhibitory activity is linked to the following structural features: lipophilic hydrogen atoms within 2 A units of the molecule's center of mass; ring nitrogen atoms within one bond of planar nitrogen atoms; ring carbon atoms exactly four bonds from the non-ring nitrogen atoms; planar nitrogen atoms exactly four bonds from sp2 hybridized carbon atoms; and so on. Pharmacophore modeling highlighted QSAR-identified structural characteristics. To investigate binding, we docked all 503 molecules. The observation indicates that the QSAR and molecular docking/pharmacophore modeling findings are in agreement. Following this, we conducted 200 ns of molecular dynamics simulation to validate the molecular docking protocol. MMGBSA analysis determined the binding energy of the dock complex. Thus, the current study found unique pharmacophoric properties that may assist in optimizing lead/hit compounds for anti-IKKβ activity.

许多人类疾病都包含 NF-kB 信号通路,这使得 IKK 成为癌症治疗的一个靶点。炎症性疾病和癌症就是例子。COVID-19 是刺激 NF-kB 信号传导的几种诱因之一。激活 NF-kB 通路是 COVID-19 停止发展的必要条件。为了进一步了解 IKK 抑制作用(IC50)的机制和结构特征,对实验报告的 503 进行了分子建模研究。QSAR 分析探索了某些已报道和隐藏的对 IKKβ 抑制作用至关重要的结构特征。在 OECD 准则的指导下构建了 QSAR 模型,该模型的所有验证参数都达到了认可的阈值(R2tr:0.81、R2LMO:0.80 和 R2ext:0.78)。本 QSAR 研究表明,IKK 抑制活性与以下结构特征有关:分子质心 2 A 单位范围内的亲脂性氢原子;平面氮原子一个键范围内的环状氮原子;与非环状氮原子正好相距四个键的环状碳原子;与 sp2 杂化碳原子正好相距四个键的平面氮原子等。药效学建模突出了 QSAR 确定的结构特征。为了研究结合情况,我们对接了所有 503 个分子。观察结果表明,QSAR 和分子对接/药层建模结果是一致的。随后,我们进行了 200 ns 的分子动力学模拟,以验证分子对接方案。MMGBSA 分析确定了对接复合物的结合能。因此,目前的研究发现了一些独特的药效特性,这些特性可能有助于优化具有抗IKKβ活性的先导/命中化合物。
{"title":"Cheminformatics approaches to predict the bioactivity and to discover the pharmacophoric traits crucial to block NF-κB","authors":"Rahul D. Jawarkar ,&nbsp;Suraj N. Mali ,&nbsp;Rahul G. Ingle ,&nbsp;Sami A. Al-Hussain ,&nbsp;Aamal A. Al-Mutairi ,&nbsp;Prashant Deshmukh ,&nbsp;Magdi E.A. Zaki","doi":"10.1016/j.chphi.2024.100720","DOIUrl":"10.1016/j.chphi.2024.100720","url":null,"abstract":"<div><p>Many human disorders include NF-kB signaling pathways, making IKK a therapeutic target in cancer treatment. Inflammatory illnesses and cancer are examples. COVID-19 is one of several triggers that stimulate NF-kB signaling. The activation of the NF-kB pathway is necessary for COVID-19 to cease its development. To learn more about the mechanism and structural features essential to IKK inhibition (IC<sub>50</sub>), molecular modeling studies have been undertaken on experimentally reported 503. QSAR analysis explores certain reported and hidden structural features critical for IKKβ inhibition. The OECD guidelines guided the construction of the QSAR model, which achieved all the endorsed threshold values for all validation parameters (R<sup>2</sup>tr:0.81, R<sup>2</sup>LMO:0.80, and R<sup>2</sup>ext:0.78). The present QSAR study shows that IKK inhibitory activity is linked to the following structural features: lipophilic hydrogen atoms within 2 A units of the molecule's center of mass; ring nitrogen atoms within one bond of planar nitrogen atoms; ring carbon atoms exactly four bonds from the non-ring nitrogen atoms; planar nitrogen atoms exactly four bonds from sp2 hybridized carbon atoms; and so on. Pharmacophore modeling highlighted QSAR-identified structural characteristics. To investigate binding, we docked all 503 molecules. The observation indicates that the QSAR and molecular docking/pharmacophore modeling findings are in agreement. Following this, we conducted 200 ns of molecular dynamics simulation to validate the molecular docking protocol. MMGBSA analysis determined the binding energy of the dock complex. Thus, the current study found unique pharmacophoric properties that may assist in optimizing lead/hit compounds for anti-IKKβ activity.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002640/pdfft?md5=b3837200b92b14ba7c76c4ca550933af&pid=1-s2.0-S2667022424002640-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, spectral characterization, biological, FMO, MEP, molecular docking, and molecular dynamics simulation studies of cytidine derivatives as antimicrobial and anticancer agents 作为抗菌剂和抗癌剂的胞苷衍生物的合成、光谱表征、生物学、FMO、MEP、分子对接和分子动力学模拟研究
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-04 DOI: 10.1016/j.chphi.2024.100724
Rahnuma Tabassum , Sarkar M.A. Kawsar , Asraful Alam , Supriyo Saha , Anowar Hosen , Imtiaj Hasan , Prinsa , Mohammed Chalkha

Nucleoside derivatives are essential to medicinal chemistry because they provide biologically active drugs. A 5´-O-palmitoyl derivative (2) was obtained by directly treating cytidine (1) with palmitoyl chloride. New antimicrobial compounds were developed by transforming the 5´-O-acyl derivative into 2´,3´-di-O-acyl derivatives (3-7) with several functionalities. Physicochemical, spectroscopic, and elemental investigations were used to determine the structures of the synthesized compounds. XRD confirmed the crystalline structure of the synthesized compounds. Compounds 3 and 5 exhibited good antibacterial and antifungal activity against bacteria and fungi in vitro. MIC and MBC investigations were performed on compounds 3 and 5 on the basis of their effectiveness. Most of the compounds resulted in >77% fungal mycelial growth. Compound 6 had antiproliferative effects on EAC cells in vitro, with an IC50 value of 1001.11 µg/ml. A DFT study was used to calculate the FMO and MEP parameters, whereas molecular docking identified microbial pathogen prescription drug possibilities. In silico docking studies of cytidine derivatives against the 4URO and 6COX receptors revealed that compounds 3 and 6 had the best docking. In a stimulating environment, a 100-ns MD simulation revealed stable conformation and binding patterns. MD simulation and MM-PBSA analysis of the 3-4URO and 6-6COX complexes indicated good receptor-best-docked molecule interactions. Finally, in vitro and in silico, SAR studies, the acyl chains, (CH3(CH2)10CO-) and (C6H5CH=CHCO-) incorporated into sugar moieties were shown to have the most promising antimicrobial/anticancer drug-targeting potential.

核苷衍生物对药物化学至关重要,因为它们能提供具有生物活性的药物。通过用棕榈酰氯直接处理胞苷(1),获得了 5´-O-棕榈酰衍生物(2)。通过将 5´-O-酰基衍生物转化为具有多种官能团的 2´,3´-二-O-酰基衍生物 (3-7),开发出了新的抗菌化合物。物理化学、光谱和元素研究用于确定合成化合物的结构。XRD 证实了合成化合物的晶体结构。化合物 3 和 5 在体外对细菌和真菌具有良好的抗菌和抗真菌活性。根据化合物 3 和 5 的有效性,对其进行了 MIC 和 MBC 研究。大多数化合物导致了 77% 的真菌菌丝生长。化合物 6 在体外对 EAC 细胞具有抗增殖作用,其 IC50 值为 1001.11 µg/ml。DFT 研究用于计算 FMO 和 MEP 参数,而分子对接则确定了微生物病原体处方药的可能性。针对 4URO 和 6COX 受体的胞苷衍生物的硅对接研究表明,化合物 3 和 6 的对接效果最好。在刺激环境中,100ns MD 模拟显示了稳定的构象和结合模式。对 3-4URO 和 6-6COX 复合物进行的 MD 模拟和 MM-PBSA 分析表明,受体与最佳对接分子之间存在良好的相互作用。最后,体外和硅学 SAR 研究表明,与糖分子结合的酰基链(CH3(CH2)10CO-)和(C6H5CH=CHCO-)具有最有希望的抗菌/抗癌药物靶向潜力。
{"title":"Synthesis, spectral characterization, biological, FMO, MEP, molecular docking, and molecular dynamics simulation studies of cytidine derivatives as antimicrobial and anticancer agents","authors":"Rahnuma Tabassum ,&nbsp;Sarkar M.A. Kawsar ,&nbsp;Asraful Alam ,&nbsp;Supriyo Saha ,&nbsp;Anowar Hosen ,&nbsp;Imtiaj Hasan ,&nbsp;Prinsa ,&nbsp;Mohammed Chalkha","doi":"10.1016/j.chphi.2024.100724","DOIUrl":"10.1016/j.chphi.2024.100724","url":null,"abstract":"<div><p>Nucleoside derivatives are essential to medicinal chemistry because they provide biologically active drugs. A 5´-<em>O</em>-palmitoyl derivative (<strong>2</strong>) was obtained by directly treating cytidine (<strong>1</strong>) with palmitoyl chloride. New antimicrobial compounds were developed by transforming the 5´-<em>O</em>-acyl derivative into 2´,3´-di-<em>O</em>-acyl derivatives (<strong>3-7</strong>) with several functionalities. Physicochemical, spectroscopic, and elemental investigations were used to determine the structures of the synthesized compounds. XRD confirmed the crystalline structure of the synthesized compounds. Compounds <strong>3</strong> and <strong>5</strong> exhibited good antibacterial and antifungal activity against bacteria and fungi <em>in vitro</em>. MIC and MBC investigations were performed on compounds <strong>3</strong> and <strong>5</strong> on the basis of their effectiveness. Most of the compounds resulted in &gt;77% fungal mycelial growth. Compound <strong>6</strong> had antiproliferative effects on EAC cells <em>in vitro</em>, with an IC<sub>50</sub> value of 1001.11 µg/ml. A DFT study was used to calculate the FMO and MEP parameters, whereas molecular docking identified microbial pathogen prescription drug possibilities. <em>In silico</em> docking studies of cytidine derivatives against the 4URO and 6COX receptors revealed that compounds <strong>3</strong> and <strong>6</strong> had the best docking. In a stimulating environment, a 100-ns MD simulation revealed stable conformation and binding patterns. MD simulation and MM-PBSA analysis of the <strong>3</strong>-4URO and <strong>6</strong>-6COX complexes indicated good receptor-best-docked molecule interactions. Finally, <em>in vitro</em> and <em>in silico</em>, SAR studies, the acyl chains, (CH<sub>3</sub>(CH<sub>2</sub>)<sub>10</sub>CO-) and (C<sub>6</sub>H<sub>5</sub>CH=CHCO-) incorporated into sugar moieties were shown to have the most promising antimicrobial/anticancer drug-targeting potential.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002688/pdfft?md5=1378a6cea44d929af8da122c458df0e8&pid=1-s2.0-S2667022424002688-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DFT/TD-DFT study of novel triphenylamine-based dyes with azo moieties and π-spacer variations for enhanced dye-sensitized solar cell performance 具有偶氮分子和 π-间隔物变化的新型三苯胺基染料的 DFT/TD-DFT 研究,用于提高染料敏化太阳能电池的性能
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-03 DOI: 10.1016/j.chphi.2024.100725
Jubaer Ahmod Shakil , Shassatha Paul Saikat , Niloy Bhattacharjee , Md. Rithoan Hossain , Mahafuz Hossen , Jahidul Islam , Mayeen Uddin Khandaker , Jamal Uddin , Faisal Islam Chowdhury

This study involves a computational analysis of new D-π-A dyes obtained from triphenylamine (TPA), which contain various azo-dye components. The structural, molecular, electrical, and optical properties of these dyes were computed using Density Functional Theory (DFT) and Time-Dependent DFT, utilizing the B3LYP/6–31 G model. Our research specifically aimed to investigate the effects of incorporating different azo dye constituents in the para position of two phenyl groups of TPA. The results indicate that these alterations lead to notably broadened and red-shifted absorption spectra, as well as improved optoelectronic properties that are subject to additional tuning through the manipulation of the π-spacer. The excitation energies and HOMO-LUMO energy levels that have been estimated indicate the presence of effective electron injection and dye regeneration mechanisms. The results concerning the nonlinear optical (NLO) properties suggest that these dyes are likely to demonstrate superior performance in NLO applications. The factors encompassed in this study consist of light-harvesting efficiency (LHE), open-circuit photovoltage (VOC), electron injection driving force (ΔGinj), dye regeneration driving force (ΔGreg), excited state lifetime (τ) and reorganization energy (λtotal), which has a strong correlation with the electrical current density in a short-circuit (JSC) and DSSC's overall effectiveness. This scientific attempt contributes to the systematic advancement of efficient dyes, demonstrating the possibility for enhanced efficiency in DSSCs. Further validation of computational forecasts and advancement of renewable energy technology necessitate future experimental synthesis and testing.

本研究对从三苯胺 (TPA) 中获得的新型 D-π-A 染料进行了计算分析,这些染料含有多种偶氮染料成分。我们使用密度泛函理论(DFT)和时变 DFT,利用 B3LYP/6-31 G 模型计算了这些染料的结构、分子、电学和光学特性。我们的研究特别旨在调查在 TPA 的两个苯基的对位上加入不同偶氮染料成分的影响。研究结果表明,这些改变导致吸收光谱明显变宽和红移,并改善了光电特性,这些特性可通过对 π 隔板的操作进行额外调整。对激发能量和 HOMO-LUMO 能级的估算表明,存在有效的电子注入和染料再生机制。有关非线性光学(NLO)特性的结果表明,这些染料很可能在 NLO 应用中表现出卓越的性能。本研究涵盖的因素包括光收集效率(LHE)、开路光电压(VOC)、电子注入驱动力(ΔGinj)、染料再生驱动力(ΔGreg)、激发态寿命(τ)和重组能(λtotal),这些因素与短路电流密度(JSC)和 DSSC 的整体效能密切相关。这一科学尝试有助于系统地推动高效染料的发展,证明了提高 DSSC 效率的可能性。为了进一步验证计算预测结果和推动可再生能源技术的发展,今后有必要进行实验合成和测试。
{"title":"DFT/TD-DFT study of novel triphenylamine-based dyes with azo moieties and π-spacer variations for enhanced dye-sensitized solar cell performance","authors":"Jubaer Ahmod Shakil ,&nbsp;Shassatha Paul Saikat ,&nbsp;Niloy Bhattacharjee ,&nbsp;Md. Rithoan Hossain ,&nbsp;Mahafuz Hossen ,&nbsp;Jahidul Islam ,&nbsp;Mayeen Uddin Khandaker ,&nbsp;Jamal Uddin ,&nbsp;Faisal Islam Chowdhury","doi":"10.1016/j.chphi.2024.100725","DOIUrl":"10.1016/j.chphi.2024.100725","url":null,"abstract":"<div><p>This study involves a computational analysis of new D-π-A dyes obtained from triphenylamine (TPA), which contain various azo-dye components. The structural, molecular, electrical, and optical properties of these dyes were computed using Density Functional Theory (DFT) and Time-Dependent DFT, utilizing the B3LYP/6–31 G model. Our research specifically aimed to investigate the effects of incorporating different azo dye constituents in the para position of two phenyl groups of TPA. The results indicate that these alterations lead to notably broadened and red-shifted absorption spectra, as well as improved optoelectronic properties that are subject to additional tuning through the manipulation of the π-spacer. The excitation energies and HOMO-LUMO energy levels that have been estimated indicate the presence of effective electron injection and dye regeneration mechanisms. The results concerning the nonlinear optical (NLO) properties suggest that these dyes are likely to demonstrate superior performance in NLO applications. The factors encompassed in this study consist of light-harvesting efficiency (LHE), open-circuit photovoltage (<span><math><msub><mi>V</mi><mtext>OC</mtext></msub></math></span>), electron injection driving force (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msup><mrow><mi>G</mi></mrow><mtext>inj</mtext></msup></mrow></math></span>), dye regeneration driving force (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>G</mi><mtext>reg</mtext></msub></mrow></math></span>), excited state lifetime (τ) and reorganization energy (<span><math><msub><mi>λ</mi><mtext>total</mtext></msub></math></span>), which has a strong correlation with the electrical current density in a short-circuit (<span><math><msub><mi>J</mi><mtext>SC</mtext></msub></math></span>) and DSSC's overall effectiveness. This scientific attempt contributes to the systematic advancement of efficient dyes, demonstrating the possibility for enhanced efficiency in DSSCs. Further validation of computational forecasts and advancement of renewable energy technology necessitate future experimental synthesis and testing.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266702242400269X/pdfft?md5=559006bc314460a7a3fa0c26373b1b3e&pid=1-s2.0-S266702242400269X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective move of Polypyrrole/TiO2 hybrid nanocomposites on removal of methylene blue dye by photocatalytic activity 聚吡咯/二氧化钛杂化纳米复合材料的光催化活性对去除亚甲基蓝染料的有效作用
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-09-02 DOI: 10.1016/j.chphi.2024.100723
N. Dhachanamoorthi , K. Oviya , Sathish Sugumaran , P. Suresh , M. Parthibavarman , K. Jeshaa dharshini , M. Aishwarya

Polypyrrole (PPy) was synthesized effectively by chemical oxidative polymerization of pyrrole. Organic-inorganic hybrid materials PPy-TiO2 with different PPy weight percents were prepared by mechanical mixing, by using titanium oxide nanoparticles. The characterizations of PPy-TiO2 hybrid nanocomposites were analyzed by FTIR, UV–Vis, XRD, TGA & DSC and SEM & EDAX. Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) were used to distinguish the structure of the attained PPy-TiO2 hybrid nanocomposites. UV–vis techniques are proved the polymerization of pyrrole monomer and the strong interaction between PPy and TiO2 nanoparticles. Thermogravimetric analyzer (TGA-DSC) curves revealed that TiO2 can decrease the weight loss of nanocomposite and increase the thermal stability of synthesized nanocomposites. The residual mass of the pure Pyy-36.51 %, PPy-TiO2 (25 %)-64.82 %, PPy-TiO2 (50 %)-60.82 %, PPy-TiO2 (75 %)-70.50 % and pure TiO2- 96.69 % nanocomposites at the residual temperature 497.80 °C. The morphology and molecular structure of the hybrid nanocomposite were characterized by scanning electron microscope & Energy dispersive X-ray analysis spectroscopy (SEM & EDAX). These characterization results confirmed the polymerization of pyrrole and the strong interaction between PPy and TiO2. The material with outstanding absorption capability that meet in optical application is the challenging way, thus the photocatalytic analysis of PPy-TiO2 hybrid nanocomposites is merely a admissible results. It is notably the favorable degradation efficiency of pure PPy, the PPy+TiO2 (25 % 50 % & 75 %) nanocomposites are 82 %, 66 %, 67 % and 53 % respectively.

通过对吡咯进行化学氧化聚合,有效合成了聚吡咯(PPy)。利用氧化钛纳米颗粒,通过机械混合法制备了不同 PPy 重量百分比的有机-无机杂化材料 PPy-TiO2。傅立叶变换红外光谱(FTIR)、紫外可见光谱(UV-Vis)、X射线衍射(XRD)、热重分析(TGA & DSC)和扫描电镜(SEM & EDAX)分析了 PPy-TiO2 杂化纳米复合材料的特性。傅立叶变换红外光谱(FTIR)和 X 射线衍射(XRD)被用来区分 PPy-TiO2 杂化纳米复合材料的结构。紫外可见光技术证明了吡咯单体的聚合以及 PPy 与 TiO2 纳米粒子之间的强相互作用。热重分析仪(TGA-DSC)曲线显示,TiO2 可以减少纳米复合材料的失重,提高合成纳米复合材料的热稳定性。在残余温度为 497.80 ℃时,纯 Pyy-36.51 %、PPy-TiO2(25 %)-64.82 %、PPy-TiO2(50 %)-60.82 %、PPy-TiO2(75 %)-70.50 % 和纯 TiO2- 96.69 % 纳米复合材料的残余质量。扫描电子显微镜和能量色散 X 射线分析光谱(SEM & EDAX)对混合纳米复合材料的形貌和分子结构进行了表征。这些表征结果证实了吡咯的聚合以及 PPy 与 TiO2 之间的强相互作用。因此,PPy-TiO2 杂化纳米复合材料的光催化分析只是一个可接受的结果。值得注意的是,纯 PPy、PPy+TiO2(25 % 50 % & 75 %)纳米复合材料的降解效率分别为 82 %、66 %、67 % 和 53 %。
{"title":"Effective move of Polypyrrole/TiO2 hybrid nanocomposites on removal of methylene blue dye by photocatalytic activity","authors":"N. Dhachanamoorthi ,&nbsp;K. Oviya ,&nbsp;Sathish Sugumaran ,&nbsp;P. Suresh ,&nbsp;M. Parthibavarman ,&nbsp;K. Jeshaa dharshini ,&nbsp;M. Aishwarya","doi":"10.1016/j.chphi.2024.100723","DOIUrl":"10.1016/j.chphi.2024.100723","url":null,"abstract":"<div><p>Polypyrrole (PPy) was synthesized effectively by chemical oxidative polymerization of pyrrole. Organic-inorganic hybrid materials PPy-TiO<sub>2</sub> with different PPy weight percents were prepared by mechanical mixing, by using titanium oxide nanoparticles. The characterizations of PPy-TiO<sub>2</sub> hybrid nanocomposites were analyzed by FTIR, UV–Vis, XRD, TGA &amp; DSC and SEM &amp; EDAX. Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) were used to distinguish the structure of the attained PPy-TiO<sub>2</sub> hybrid nanocomposites. UV–vis techniques are proved the polymerization of pyrrole monomer and the strong interaction between PPy and TiO<sub>2</sub> nanoparticles. Thermogravimetric analyzer (TGA-DSC) curves revealed that TiO<sub>2</sub> can decrease the weight loss of nanocomposite and increase the thermal stability of synthesized nanocomposites. The residual mass of the pure Pyy-36.51 %, PPy-TiO<sub>2</sub> (25 %)-64.82 %, PPy-TiO<sub>2</sub> (50 %)-60.82 %, PPy-TiO<sub>2</sub> (75 %)-70.50 % and pure TiO<sub>2</sub>- 96.69 % nanocomposites at the residual temperature 497.80 °C. The morphology and molecular structure of the hybrid nanocomposite were characterized by scanning electron microscope &amp; Energy dispersive X-ray analysis spectroscopy (SEM &amp; EDAX). These characterization results confirmed the polymerization of pyrrole and the strong interaction between PPy and TiO<sub>2</sub>. The material with outstanding absorption capability that meet in optical application is the challenging way, thus the photocatalytic analysis of PPy-TiO<sub>2</sub> hybrid nanocomposites is merely a admissible results. It is notably the favorable degradation efficiency of pure PPy, the PPy+TiO<sub>2</sub> (25 % 50 % &amp; 75 %) nanocomposites are 82 %, 66 %, 67 % and 53 % respectively.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002676/pdfft?md5=51fa9884081929e56e966a6a9535c307&pid=1-s2.0-S2667022424002676-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical and photoluminescence properties of Ce3+ doped copper aluminate nanoparticles 掺杂 Ce3+ 的铝酸铜纳米粒子的电化学和光致发光特性
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-29 DOI: 10.1016/j.chphi.2024.100707
N.R. Srinath , H.C. Manjunatha , Y.S. Vidya , Rajavaram Ramaraghavulu , R. Munirathnam , K.N. Sridhar , S. Manjunatha , M. Shivanna , Suman Kumar , G. Satish babu

In this communication, for the first of its kind, CuAl2O4 doped with Ce3+ (1-9 mol %) are syn- thesized by solution combustion method using Aloe Vera gel as a reducing agent. The as-formed sample was calcined at 500° C for 3 hours, followed by characterization. The addition of dopants to the copper aluminate matrix didn't alter the crystal structure of the host matrix. Bragg reflec- tions confirm the formation of the cubic phase and also absence of other impurities. The surface morphology consists of nanorods arranged one above the other. The estimated crystallite size was found to decrease from 12 to 9 nm whereas, the direct energy band gap increases from 2.84 to 3.02 eV with an increase in dopant concentration. Under λex = 305 nm excitation, photoluminescence (PL) emission spectra have a high intense peak at 553 nm along with a less intense peak at 472 nm. The peak at 553 nm can be attributed to the existence of oxygen vacancies which arise due to the transition of an electron from the 2D3/2 2F7/2 of Ce3+, however, the peak observed at 472 nm results from the transition of ionized oxygen vacancies (VO) to the valence band caused by the 2D3/2 2F5/2 transition. The CIE coordinates lie well within the green region with 5758 K aver- age CCT. Further, Cyclic voltammetry analysis was conducted to investigate oxidation and redox peaks, while electrochemical impedance spectroscopy provided insights into ion transport kinetics. Specific capacitance values ranging from 29 to 59 F/g were obtained for CuAl2O4:Ce(1-9 mol %) NPs. These findings suggest potential applications for the synthesized material in areas such as display technology as a green nano phosphor and energy storage materials.

本文首次使用芦荟胶作为还原剂,通过溶液燃烧法合成了掺杂有 Ce3+ (1-9 mol %)的 CuAl2O4。成型样品在 500° C 煅烧 3 小时,然后进行表征。在铝酸铜基体中添加掺杂剂不会改变主基体的晶体结构。布拉格折射证实了立方相的形成,而且没有其他杂质。表面形态由一个接一个排列的纳米棒组成。随着掺杂剂浓度的增加,估计结晶尺寸从 12 纳米减小到 9 纳米,而直接能带隙则从 2.84 eV 增加到 3.02 eV。在 λex = 305 nm 的激发下,光致发光(PL)发射光谱在 553 nm 处有一个高强度峰,在 472 nm 处有一个强度较低的峰。553 nm 处的峰值可归因于氧空位的存在,它是由于 Ce3+ 的电子从 2D3/2 → 2F7/2 转变而产生的,然而,在 472 nm 处观察到的峰值则是由于电离氧空位 (VO) 向价带的转变,这种转变是由 2D3/2 → 2F5/2 转变引起的。CIE 坐标位于绿色区域内,平均 CCT 为 5758 K。此外,还进行了循环伏安分析,以研究氧化和氧化还原峰,而电化学阻抗谱分析则有助于深入了解离子传输动力学。CuAl2O4:Ce(1-9 mol %) NPs 的比电容值介于 29 到 59 F/g 之间。这些研究结果表明,这种合成材料有望应用于显示技术、绿色纳米荧光粉和储能材料等领域。
{"title":"Electrochemical and photoluminescence properties of Ce3+ doped copper aluminate nanoparticles","authors":"N.R. Srinath ,&nbsp;H.C. Manjunatha ,&nbsp;Y.S. Vidya ,&nbsp;Rajavaram Ramaraghavulu ,&nbsp;R. Munirathnam ,&nbsp;K.N. Sridhar ,&nbsp;S. Manjunatha ,&nbsp;M. Shivanna ,&nbsp;Suman Kumar ,&nbsp;G. Satish babu","doi":"10.1016/j.chphi.2024.100707","DOIUrl":"10.1016/j.chphi.2024.100707","url":null,"abstract":"<div><p>In this communication, for the first of its kind, CuAl2O4 doped with Ce<sup>3+</sup> (1-9 mol %) are syn- thesized by solution combustion method using Aloe Vera gel as a reducing agent. The as-formed sample was calcined at 500<em>°</em> C for 3 hours, followed by characterization. The addition of dopants to the copper aluminate matrix didn't alter the crystal structure of the host matrix. Bragg reflec- tions confirm the formation of the cubic phase and also absence of other impurities. The surface morphology consists of nanorods arranged one above the other. The estimated crystallite size was found to decrease from 12 to 9 nm whereas, the direct energy band gap increases from 2.84 to 3.02 eV with an increase in dopant concentration. Under <em>λex</em> = 305 nm excitation, photoluminescence (PL) emission spectra have a high intense peak at 553 nm along with a less intense peak at 472 nm. The peak at 553 nm can be attributed to the existence of oxygen vacancies which arise due to the transition of an electron from the <sup>2</sup>D<sub>3</sub><em><sub>/</sub></em><sub>2</sub> <em>→</em> <sup>2</sup>F<sub>7</sub><em><sub>/</sub></em><sub>2</sub> of Ce<sup>3+</sup>, however, the peak observed at 472 nm results from the transition of ionized oxygen vacancies (V<em>O</em>) to the valence band caused by the <sup>2</sup>D<sub>3</sub><em><sub>/</sub></em><sub>2</sub> <em>→</em> <sup>2</sup>F<sub>5</sub><em><sub>/</sub></em><sub>2</sub> transition. The CIE coordinates lie well within the green region with 5758 K aver- age CCT. Further, Cyclic voltammetry analysis was conducted to investigate oxidation and redox peaks, while electrochemical impedance spectroscopy provided insights into ion transport kinetics. Specific capacitance values ranging from 29 to 59 F/g were obtained for CuAl<sub>2</sub>O<sub>4</sub>:Ce(1-9 mol %) NPs. These findings suggest potential applications for the synthesized material in areas such as display technology as a green nano phosphor and energy storage materials.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002512/pdfft?md5=cb294500b408a8032b92283534d150ff&pid=1-s2.0-S2667022424002512-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structural, magnetic and electrical properties of chromium doped calcium ferrite nanoparticles 掺铬钙铁氧体纳米粒子的结构、磁学和电学特性
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-28 DOI: 10.1016/j.chphi.2024.100710
R. UmashankaraRaja , H.C. Manjunatha , Y.S. Vidya , E. Krishnakanth , R. Munirathnam , K.M. Rajashekara , S. Manjunatha

Calcium ferrite nanoparticles doped with Chromium (10-50 mol %) are synthesized using the solution combustion method, employing citrus Lemon extract as a reducing agent, followed by a calcination process at 500oC. Various characterization techniques are employed on the calcined samples. The Bragg reflections resulting from Chromium doping confirm the formation of a singular orthorhombic calcium ferrite phase. Crystallite sizes determined using both Scherrer’s and W-H plot methods found to be decreases with increase in dopant concentration. The surface morphology showcases agglomerated nanoparticles with irregular shapes and sizes, accompanied by pores and voids. The energy band gap found to be increases with increase in dopant concentration from 2.82 to 2.93 eV. The hysteresis loop analysis provides magnetic parameters including saturation magnetization (Ms), remanence (Mr), and coercivity (Hc). As the dopant concentration increases, Ms and Hc found to be maximum at 30 mol% cr3+ concentration in CaFe2O4 NPs. Linear increase in frequency-dependent conductivity at lower frequencies was observed. The presence of semicircles at low frequencies signifies compliance with the Cole-Cole formula for impedance behavior. Additionally, a detailed discussion on dielectric properties is presented. Notably, the dielectric constant decreases from 4.2 to 2.74 with an increase in dopant concentration. These distinctive attributes position the samples as suitable candidates for memory devices as well as high-frequency device applications.

采用溶液燃烧法合成了掺杂铬(10-50 摩尔%)的钙铁氧体纳米粒子,该方法使用柑橘柠檬提取物作为还原剂,然后在 500 摄氏度下进行煅烧。煅烧后的样品采用了各种表征技术。铬掺杂产生的布拉格反射证实形成了奇异的正方体钙铁氧体相。使用舍勒法和 W-H 图法测定的晶体尺寸随着掺杂浓度的增加而减小。表面形貌显示出具有不规则形状和尺寸的团聚纳米颗粒,并伴有孔隙和空隙。能带隙随掺杂剂浓度的增加而增大,从 2.82 到 2.93 eV。磁滞回线分析提供的磁性参数包括饱和磁化(Ms)、剩磁(Mr)和矫顽力(Hc)。随着掺杂剂浓度的增加,Ms 和 Hc 在 CaFe2O4 NPs 中 cr3+ 浓度为 30 mol% 时达到最大值。在较低频率下,频率相关电导率呈线性增长。低频时半圆的出现表明符合阻抗行为的科尔-科尔公式。此外,还详细讨论了介电性质。值得注意的是,随着掺杂浓度的增加,介电常数从 4.2 降至 2.74。这些独特的特性使样品成为存储器件和高频器件应用的合适候选材料。
{"title":"The structural, magnetic and electrical properties of chromium doped calcium ferrite nanoparticles","authors":"R. UmashankaraRaja ,&nbsp;H.C. Manjunatha ,&nbsp;Y.S. Vidya ,&nbsp;E. Krishnakanth ,&nbsp;R. Munirathnam ,&nbsp;K.M. Rajashekara ,&nbsp;S. Manjunatha","doi":"10.1016/j.chphi.2024.100710","DOIUrl":"10.1016/j.chphi.2024.100710","url":null,"abstract":"<div><p>Calcium ferrite nanoparticles doped with Chromium (10-50 mol %) are synthesized using the solution combustion method, employing citrus Lemon extract as a reducing agent, followed by a calcination process at 500<span><math><msup><mrow></mrow><mi>o</mi></msup></math></span>C. Various characterization techniques are employed on the calcined samples. The Bragg reflections resulting from Chromium doping confirm the formation of a singular orthorhombic calcium ferrite phase. Crystallite sizes determined using both Scherrer’s and W-H plot methods found to be decreases with increase in dopant concentration. The surface morphology showcases agglomerated nanoparticles with irregular shapes and sizes, accompanied by pores and voids. The energy band gap found to be increases with increase in dopant concentration from 2.82 to 2.93 eV. The hysteresis loop analysis provides magnetic parameters including saturation magnetization (M<span><math><msub><mrow></mrow><mi>s</mi></msub></math></span>), remanence (M<span><math><msub><mrow></mrow><mi>r</mi></msub></math></span>), and coercivity (H<span><math><msub><mrow></mrow><mi>c</mi></msub></math></span>). As the dopant concentration increases, M<span><math><msub><mrow></mrow><mi>s</mi></msub></math></span> and H<span><math><msub><mrow></mrow><mi>c</mi></msub></math></span> found to be maximum at 30 mol% cr<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> concentration in CaFe<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span>O<span><math><msub><mrow></mrow><mn>4</mn></msub></math></span> NPs. Linear increase in frequency-dependent conductivity at lower frequencies was observed. The presence of semicircles at low frequencies signifies compliance with the Cole-Cole formula for impedance behavior. Additionally, a detailed discussion on dielectric properties is presented. Notably, the dielectric constant decreases from 4.2 to 2.74 with an increase in dopant concentration. These distinctive attributes position the samples as suitable candidates for memory devices as well as high-frequency device applications.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002548/pdfft?md5=0a4dc2a35563c7892e3ce6e4b08ce6dd&pid=1-s2.0-S2667022424002548-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of photosensitizer dyes for high-performance dye-sensitized solar cells application: A computational investigation 用于高性能染料敏化太阳能电池的光敏剂染料研究:计算研究
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-24 DOI: 10.1016/j.chphi.2024.100719
M. Ashraful Hasan , Ismail M.M. Rahman , Jamal Uddin , Faisal Islam Chowdhury

Dye-sensitized solar cells (DSSCs) offer a promising, cost-effective alternative to conventional photovoltaic systems. Organic sensitizers, capable of capturing a broad spectrum of sunlight, are key components in DSSCs, but their development and testing are often time-consuming and expensive. Quantum chemical calculations, specifically Density Functional Theory (DFT), have emerged as valuable tools to evaluate potential dye candidates, streamlining the design process and reducing costs. This study investigated the molecular structures and photophysical properties of three common dye classes used in high-performance DSSCs: natural pigments, anthocyanidin pigments, and squaraine dyes. Employing DFT and time-dependent DFT (TD-DFT) at the B3LYP/6–31G level, key parameters such as the HOMO-LUMO energy gap, free energy differences for electron injection and dye regeneration, short-circuit current density, total reorganization energy, and open-circuit voltage were analyzed. Additionally, maximum absorption wavelengths and oscillator strength values were calculated. Our findings provide valuable insights into the optical and electrical properties of these natural dyes, aiding DSSC manufacturers in selecting optimal sensitizers. This research highlights the potential of computational methods in accelerating dye development and improving the overall efficiency of DSSC technology.

染料敏化太阳能电池(DSSC)为传统光伏系统提供了一种前景广阔、经济高效的替代方案。有机敏化剂能够捕捉广谱太阳光,是 DSSC 的关键成分,但其开发和测试往往耗时且昂贵。量子化学计算,特别是密度泛函理论(DFT),已成为评估潜在候选染料的重要工具,可简化设计过程并降低成本。本研究调查了高性能 DSSC 中常用的三类染料的分子结构和光物理性质:天然色素、花青素色素和角鲨烷染料。利用 B3LYP/6-31G 水平的 DFT 和随时间变化的 DFT (TD-DFT),分析了 HOMO-LUMO 能隙、电子注入和染料再生的自由能差、短路电流密度、总重组能和开路电压等关键参数。此外,还计算了最大吸收波长和振荡器强度值。我们的研究结果为了解这些天然染料的光学和电学特性提供了宝贵的见解,有助于 DSSC 制造商选择最佳敏化剂。这项研究凸显了计算方法在加速染料开发和提高 DSSC 技术整体效率方面的潜力。
{"title":"Study of photosensitizer dyes for high-performance dye-sensitized solar cells application: A computational investigation","authors":"M. Ashraful Hasan ,&nbsp;Ismail M.M. Rahman ,&nbsp;Jamal Uddin ,&nbsp;Faisal Islam Chowdhury","doi":"10.1016/j.chphi.2024.100719","DOIUrl":"10.1016/j.chphi.2024.100719","url":null,"abstract":"<div><p>Dye-sensitized solar cells (DSSCs) offer a promising, cost-effective alternative to conventional photovoltaic systems. Organic sensitizers, capable of capturing a broad spectrum of sunlight, are key components in DSSCs, but their development and testing are often time-consuming and expensive. Quantum chemical calculations, specifically Density Functional Theory (DFT), have emerged as valuable tools to evaluate potential dye candidates, streamlining the design process and reducing costs. This study investigated the molecular structures and photophysical properties of three common dye classes used in high-performance DSSCs: natural pigments, anthocyanidin pigments, and squaraine dyes. Employing DFT and time-dependent DFT (TD-DFT) at the B3LYP/6–31G level, key parameters such as the HOMO-LUMO energy gap, free energy differences for electron injection and dye regeneration, short-circuit current density, total reorganization energy, and open-circuit voltage were analyzed. Additionally, maximum absorption wavelengths and oscillator strength values were calculated. Our findings provide valuable insights into the optical and electrical properties of these natural dyes, aiding DSSC manufacturers in selecting optimal sensitizers. This research highlights the potential of computational methods in accelerating dye development and improving the overall efficiency of DSSC technology.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002639/pdfft?md5=9b2390f9dcead9e688a8de5223b37fb9&pid=1-s2.0-S2667022424002639-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and magnetic properties of α-Fe2O3 with lithium ferrite prepared using co-precipitation method and annealed at different temperatures 用共沉淀法制备并在不同温度下退火的含锂铁氧体的 α-Fe2O3 的结构和磁特性
IF 3.8 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-24 DOI: 10.1016/j.chphi.2024.100717
T. Sai Santoshi , S. Bharadwaj , M. Chaitanya Varma , Vivek Dhand , G.S.V.R.K. Choudary

Using Co-precipitation method, an attempt was made to prepare lithium ferrite. However, during the synthesis, formation of an additional α-Fe2O3 phase along with Li0.5Fe2.5O4 was observed. To reduce the α-Fe2O3 phase, samples were annealed at 700°C, 800°C and 900°C temperatures for 2 hours. The investigated samples were then characterized using X-Ray diffraction for phase formation and Rietveld analysis was carried out to determine the different structural parameters such as phase percentage, lattice parameter and cell volume. The Chi square values were observed to be within the limit along with goodness of fit less than 3 for all the samples annealed at different temperatures. Surface morphology was carried out using scanning electron microscope and the average grain size was found to be 1.43 µm for the sample annealed at 900°C. Magnetic properties of samples were investigated, and it was observed that all the samples exhibit low values of saturation magnetization along with coercivity. The presence of two phases such as α-Fe2O3 phase and lithium ferrite phase dilutes the exchange interaction, tuning the magnetic parameters.

我们尝试使用共沉淀法制备锂铁氧体。然而,在合成过程中,观察到在 Li0.5Fe2.5O4 的同时还形成了额外的 α-Fe2O3 相。为了减少 α-Fe2O3 相,样品分别在 700°C、800°C 和 900°C 温度下退火 2 小时。然后使用 X 射线衍射法对所研究的样品进行表征,以确定相的形成,并进行里特维尔德分析,以确定不同的结构参数,如相百分比、晶格参数和晶胞体积。所有在不同温度下退火的样品的奇平方值都在限值之内,拟合优度小于 3。使用扫描电子显微镜观察了样品的表面形态,发现在 900°C 下退火的样品平均晶粒大小为 1.43 µm。对样品的磁性能进行了研究,发现所有样品的饱和磁化率和矫顽力都很低。α-Fe2O3相和锂铁氧体相等两相的存在稀释了交换相互作用,从而调整了磁性参数。
{"title":"Structural and magnetic properties of α-Fe2O3 with lithium ferrite prepared using co-precipitation method and annealed at different temperatures","authors":"T. Sai Santoshi ,&nbsp;S. Bharadwaj ,&nbsp;M. Chaitanya Varma ,&nbsp;Vivek Dhand ,&nbsp;G.S.V.R.K. Choudary","doi":"10.1016/j.chphi.2024.100717","DOIUrl":"10.1016/j.chphi.2024.100717","url":null,"abstract":"<div><p>Using Co-precipitation method, an attempt was made to prepare lithium ferrite. However, during the synthesis, formation of an additional α-Fe<sub>2</sub>O<sub>3</sub> phase along with Li<sub>0.5</sub>Fe<sub>2.5</sub>O<sub>4</sub> was observed. To reduce the α-Fe<sub>2</sub>O<sub>3</sub> phase, samples were annealed at 700°C, 800°C and 900°C temperatures for 2 hours. The investigated samples were then characterized using X-Ray diffraction for phase formation and Rietveld analysis was carried out to determine the different structural parameters such as phase percentage, lattice parameter and cell volume. The Chi square values were observed to be within the limit along with goodness of fit less than 3 for all the samples annealed at different temperatures. Surface morphology was carried out using scanning electron microscope and the average grain size was found to be 1.43 µm for the sample annealed at 900°C. Magnetic properties of samples were investigated, and it was observed that all the samples exhibit low values of saturation magnetization along with coercivity. The presence of two phases such as α-Fe<sub>2</sub>O<sub>3</sub> phase and lithium ferrite phase dilutes the exchange interaction, tuning the magnetic parameters.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002615/pdfft?md5=fece485576a9b152f5cd710b88b54cf5&pid=1-s2.0-S2667022424002615-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Physics Impact
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1